AN INVERSE PROBLEM FOR HARMONIC ACOUSTICS IN STRATIFIED OCEANS

By

Robert P. Gilbert

and

Yongzhi Xu

IMA Preprint Series # 788

March 1991
An inverse problem for harmonic acoustics in stratified oceans

Robert P. Gilbert 1 and Yongzhi Xu 2

Abstract. In this paper we study the problem of determining the refraction index $n(z)$, as well as the propagating sound field, produced by a line source in a stratified ocean.

Key words. Inverse problem, Helmholtz equation, eigenvalue problem, transmutation, nonlinear Volterra integral equation.

AMS (MOS) Mathematics subject classifications 1980 (1985 Revised). 35R30, 76Q05, 35J05

1 Introduction

In this paper we study the problem of determining the refraction index $n(z)$, as well as the propagating sound field, produced by a line source in a stratified ocean. This problem is motivated from a current method of measuring the noise of ships or other vessels in the ocean. The usual arrangement for measuring vessels' noise involves using an array of hydrophones, strung either in a line along the bottom in shallow water, or vertically in deeper water, as illustrated in Figure 10.2 of [12]. A similar arrangement allows us to measure the sound pressure, u, which is produced by a known source, at the bottom of the ocean or at a proper distance from the source. We are motivated by this to consider the problem of determining the refraction index from known data at either the bottom or at a chosen distance. More precisely, we seek to determine $n^2(z) < 1$, where the sound pressure satisfies:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} + k^2 n^2(z)u = -\frac{\delta(r)}{2\pi r} f(z), \ 0 \leq z \leq h, \ 0 \leq r < \infty, \quad (1.1)$$

$$u(r, 0) = 0, \ 0 \leq r < \infty, \quad (1.2)$$

$$\frac{\partial u}{\partial z}(r, h) = 0, \ 0 \leq r < \infty, \quad (1.3)$$

$$\frac{\partial u_n}{\partial r} - ika_n u_n = o\left(\frac{1}{r^{1/2}}\right), \ as \ r \to \infty, \quad (1.4)$$

$$u(r, h) = g(r), \ 0 \leq r < \infty, \quad (1.5)$$

or

$$u(r_0, z) = l(z), \ 0 \leq z \leq h. \quad (1.6)$$

1Department of Mathematical Sciences, University of Delaware, Newark, DE 19716

2Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455
Here $n^2(z) < 1$ is unknown, the n^{th} normal mode u_n is defined by

$$u_n(r) = \int_0^h u(r, z) \phi_n(z) dz,$$

(1.7)

where $\phi_n(z)$, a_n are the n^{th} normalized eigenfunction and eigenvalue for the eigenvalue problem

$$\phi_n''(z) + k^2(n^2(z) - a_n^2)\phi_n(z) = 0,$$

(1.8)

$$\phi_n'(h) = 0,$$

(1.9)

and

$$\phi_n(0) = 0.$$

(1.10)

The eigenvalue problem (1.8)-(1.10) is obtained from (1.1)-(1.3) by separation of variables (cf.[1]).

The functions $f(z)$, $g(r)$, $l(z)$ are given functions whose properties will be specified later. We call (1.1)-(1.5) the problem (B) and call (1.1)-(1.4), (1.6) the problem (V).

Similar to Rudell [10], we define the pair of functions $(n(z), u(r, z))$ as a solution of the problem (B) (or the problem (V)) provided that

1. $n(z) \in C[0, h]$, $u \in C^2((0, h) \times (0, \infty)) \cap C([0, h] \times [0, \infty))$;
2. $\lim_{z \to 0} u_z(r, z)$ and $\lim_{z \to h} u_z(r, z)$ exist;
3. (1.1)-(1.5) are satisfied, (or (1.1)-(1.4), (1.6) are satisfied).

In this paper we consider only the problem (B). In section 2, we obtain an a priori estimate to the transmutation kernel. In section 3, we reduce the inverse problem to an equivalent nonlinear Volterra integral equation. In section 4, we prove that there exists a unique solution to the Volterra equation, which implies problem (B) is uniquely solvable.

2 A priori estimate of the transmutation kernel

Let $\phi_n(z)$ be an eigenfunction of the problem (1.8)-(1.10), and let us represent $u(r, z)$ in the form

$$u(r, z) = \sum_{n=0}^{\infty} u_n(r) \phi_n(z),$$

where the $u_n(r)$ satisfy the radiating condition (1.4).

Following Gelfand and Levetan [3] and others (see, for example, [4],[10]), we represent the eigenfunction $\phi_n(x)$ in transmutation form as

$$\phi_n(x) = \cos \sqrt{\lambda_n(h - z)} + \int_1^z K(z, s) \cos \sqrt{\lambda_n(h - s)} ds,$$

(2.1)

where $K(z, s)$ is determined uniquely by the Goursat problem:

$$\frac{\partial^2 K}{\partial z^2} - \frac{\partial^2 K}{\partial s^2} + k^2[n^2(z) - 1]K = 0, \quad 0 \leq z \leq h,$$

(2.2)
\[
\frac{\partial K}{\partial z}(z, z) + k^2[n^2(z) - 1]K = 0, \quad 0 \leq z \leq h, \quad (2.3)
\]
\[
2\frac{\partial K}{\partial z}(z, h) = 0, \quad 0 \leq z \leq h, \quad K(h, h) = 0, \quad (2.4)
\]

and where \(n^2(z) \in C[0, h] \) such that \(n^2(z) < 1 \). If we extended \(K(z, s) \) as an even function about \(s = h \) into \(s \in [h, 2h] \), then (2.4) can be replaced by
\[
2\frac{\partial K}{\partial z}(z, 2h - z) + k^2[n^2(z) - 1]K = 0, \quad 0 \leq z \leq h. \quad (2.5)
\]

By introducing the new unknown
\[
M(\xi, \eta) = K(h - \xi - \eta, h - \xi + \eta),
\]
the above problem is equivalent to
\[
\frac{\partial^2 M}{\partial \xi \partial \eta} + k^2[n^2(h - \xi - \eta) - 1]M = 0, \quad 0 \leq \xi + \eta \leq h, \quad (2.6)
\]
\[
M(\xi, 0) = \frac{1}{2} k^2 \int_0^\xi [n^2(h - t) - 1]dt, \quad 0 \leq \xi \leq h, \quad (2.7)
\]
\[
M(0, \eta) = \frac{1}{2} k^2 \int_0^\eta [n^2(h - t) - 1]dt, \quad 0 \leq \eta \leq h, \quad (2.8)
\]
which is uniquely solvable.

We now give some a priori estimates for the transmutation kernel \(K(z, s) \).

Lemma 2.1: If \(n^2(z) \leq 1 \) and \(n(z) \in C[0, h] \), then
\[
M(\xi, \eta) \leq 0 \text{ for } 0 \leq \xi + \eta \leq h.
\]

Proof: Denote
\[
a(h - \xi - \eta) = k^2[1 - n^2(h - \xi - \eta)],
\]
then \(a(h - \xi - \eta) \geq 0 \) for \(0 \leq \xi + \eta \leq h \). Hence, \(M(\xi, \eta) \) can be written as
\[
M(\xi, \eta) = -\frac{1}{2} \int_0^\xi a(h - t)dt - \frac{1}{2} \int_0^n a(h - t)dt + \int_0^\xi \int_0^\eta a(h - \xi - \eta)M(\xi, \eta)d\xi d\eta
\]
\[
= b(\xi, \eta) + \int_0^\eta \int_0^\xi a(h - \xi - \eta)M(\xi, \eta)d\xi d\eta, \quad (2.9)
\]
where
\[
b(\xi, \eta) = -\frac{1}{2} \int_0^\xi a(h - t)dt - \frac{1}{2} \int_0^n a(h - t)dt \leq 0.
\]
We look for a solution of (2.8) in the form of
\[
M(\xi, \eta) = M_0(\xi, \eta) + \sum_{n=1}^{\infty} [M_n(\xi, \eta) - M_{n-1}(\xi, \eta)], \quad (2.10)
\]
where
\[M_0(\xi, \eta) = b(\xi, \eta), \]
\[M_n(\xi, \eta) = b(\xi, \eta) + \int_0^\xi \int_0^\eta a(h - \xi - \eta)M_{n-1}(\xi, \eta)d\xi d\eta. \]
Moreover, we define
\[\tilde{M}_n(\xi, \eta) := M_n(\xi, \eta) - M_{n-1}(\xi, \eta) \]
\[= \int_0^\xi \int_0^\eta a(h - \xi - \eta)\tilde{M}_{n-1}(\xi, \eta)d\xi d\eta. \]
Since \(a \in C[0, h] \) and, hence is bounded, say, \(\max_{t \in [0, h]} |a(t)| = A \), we have
\[|M_0(\xi, \eta)| \leq \frac{A}{2}(\xi + \eta), \]
and
\[|\tilde{M}_n(\xi, \eta)| \leq A \int_0^\xi \int_0^\eta a(h - \xi - \eta)\tilde{M}_{n-1}(\xi, \eta)d\xi d\eta. \]
By induction it follows that
\[|\tilde{M}_n(\xi, \eta)| \leq \frac{A(\xi + \eta)}{2} \frac{(A \xi \eta)^n}{(n + 1)!n!} \]
for \(0 \leq \xi + \eta \leq h, \ n \geq 1. \)
This implies that the series (2.9) is uniformly convergent and defines a solution of the integral equation (2.8). But from \(M_0(\xi, \eta) = b(\xi, \eta) \leq 0 \) and \(a(h - \xi - \eta) \geq 0 \) it follows by induction that \(M_n(\xi, \eta) \leq 0 \) for \(n = 1, 2, \cdots \). Hence,
\[M(\xi, \eta) = \lim_{n \to \infty} M_n(\xi, \eta) \leq 0. \]
We use the following notation for the sup norm
\[||u||_h = \sup_{0 \leq z \leq h} |u(z)|. \]
Let \(K(z, s; a_1(z)), \ K(z, s; a_2(z)) \) be the solutions of (2.2), (2.3) and (2.4) with undetermined \(a(z) = k^2[1 - n^2(z)] \) and boundary data determined by \(a_1(z) \) and \(a_2(z) \) respectively, and let
\[\Gamma(z) := \sup_{z \leq \xi \leq 2h - z} |K(z, s, a(z))|. \]
It may be seen from (2.9), \(K(z, s, n(z)) \) satisfies
\[K(z, s; a(z)) = b(h - (z + s)/2, (s - z)/2) + \int_{D(z, s)} a(\tau)K(\tau, t, a(\tau))d\tau dt, \]
(2.11)
where \(D(z, s) \) is the parallelogram bounded by the characteristic lines of slope \(\pm 1 \) through \((h, h)\) and \((z, s)\) respectively. Since \(D(z, s) \subseteq \{(\tau, t) : \tau \leq t \leq 2h - \tau, z \leq \tau \leq h\} \), it follows from (2.11) that for \(z \in [0, h] \),

\[
\Gamma(z) \leq 2h\|a\|_h + 2h\|a\|_h \int_z^h \Gamma(\tau) d\tau.
\]

(2.12)

Gronwall’s inequality now implies for \(0 \leq z \leq h \), that

\[
\Gamma(z) \leq 2h\|a\|_h e^{2zh\|a\|_h}.
\]

(2.13)

Lemma 2.2: Let \(a_1(z), a_2(z) \in C[0, h] \) and \(a_1(z) \leq C_1, a_2(z) \leq C_1 \) for some fixed constant \(C_1 \). If \(K(z, s; a_1(z)), K(z, s; a_2(z)) \) are the solutions of (2.2), (2.3) and (2.4) with undetermined coefficient \(a(z) \) and boundary conditions determined by \(a_1(z) \) and \(a_2(z) \) respectively, then for a constant \(C = C(h, C_1) \),

\[
\sup_{z \leq s \leq 2h - z} |K(z, s; a_1(z)) - K(z, s; a_2(z))| \leq C \sup_{z \leq \tau \leq h} |a_1(\tau) - a_2(\tau)|.
\]

Proof: From (2.11) we obtain

\[
K(z, s; a_1(z)) - K(z, s; a_2(z))
\]

\[
= -\frac{1}{2} \int_0^{h-(z+s)/2} [a_1(h - t) - a_2(h - t)] dt - \frac{1}{2} \int_0^{(s-z)/2} [a_1(h - t) - a_2(h - t)] dt
\]

\[
+ \int_{D(z, s)} [a_1(\tau)K(\tau, t; a_1(\tau)) - a_2(\tau)K(\tau, t; a_2(\tau))] d\tau dt
\]

\[
= -\frac{1}{2} \int_0^{h-(z+s)/2} [a_1(h - t) - a_2(h - t)] dt - \frac{1}{2} \int_0^{(s-z)/2} [a_1(h - t) - a_2(h - t)] dt
\]

\[
+ \int_{D(z, s)} [a_1(\tau) - a_2(\tau)] K(\tau, t; a_1(\tau)) d\tau dt
\]

\[
+ \int_{D(z, s)} a_2(\tau) [K(\tau, t; a_1(\tau)) - K(\tau, t; a_2(\tau))] d\tau dt.
\]

It follows

\[
|K(z, s; a_1(z)) - K(z, s; a_2(z))|
\]

\[
\leq h\|a_1 - a_2\|_h + \int_{D(z, s)} \|a_1 - a_2\|_h |K(\tau, t; a_1(\tau))| d\tau dt
\]

\[
+ \int_{D(z, s)} \|a_2\|_h |K(\tau, t; a_1(\tau)) - K(\tau, t; a_2(\tau))| d\tau dt.
\]

Setting

\[
\Lambda(\tau) := \sup_{\tau \leq \tau \leq 2h - \tau} |K(\tau, t, a_1(\tau)) - K(\tau, t, a_2(\tau))|
\]

we have

\[
|K(z, s; a_1(z)) - K(z, s; a_2(z))|
\]
\[\leq (h + \int_{D(z,s)} |K(\tau, t; a_1(\tau))|d\tau dt)\|a_1 - a_2\|_h + 2C_1h \int_{z}^{h} \Lambda(\tau)d\tau. \]

Using (2.13), we can conclude that for \(0 \leq z \leq h\),

\[\Lambda(z) \leq C_2 h \|a_1 - a_2\|_h + C_3 \int_{z}^{h} \Lambda(\tau)d\tau, \tag{2.14} \]

where

\[C_2 = 1 + C_1 h^2 e^{2C_1 h^2}, \]

and \(C_3 = 2C_1 h\). Using Gronwall's inequality we have

\[\Lambda(z) \leq C_2 h \|a_1 - a_2\|_h e^{C_3 z}, \]

and by setting \(C = C_2 he^{C_3 h}\), we have proved the lemma.

3 A nonlinear Volterra integral equation deduced from the inverse problem

In this section we reduce the inverse problem to a nonlinear Volterra integral equation. We will assume that the given functions \(f(z)\), \(g(r)\) satisfy the following conditions.

(C1) The function \(f(z) \in C^2[0, h]\) is positive for all \(z \in [0, h]\) and satisfies \(f(0) = f'(h) = 0\). Also \(f'(0) \neq 0\), \(f(h) \neq 0\) and \(f''(z)/f(z)\) is bounded for \(z \in [0, h]\).

(C2) The function \(g(r) \in C^1[0, \infty)\) and is analytic in the half plane \(Re r > 0\), having the series expansion \(g(r) = \sum_{n=0}^{\infty} \alpha_n H_0^{(1)}(ka_nr)\) where \(\{a_n\}_{n=0}^{\infty}\) is a negative decreasing sequence of real numbers satisfying the asymptotic formula

\[\sqrt{\lambda_n} h = kh \sqrt{1 - a^2} = (n + \frac{1}{2})\pi + O(\frac{1}{n}). \tag{3.1} \]

Let \(\{a_n\}_{n=0}^{\infty}\) be the sequence generated by \(g(r)\), and

\[\mathcal{N} = \{n(z) \in C[0, 1] | \phi_n''(z) + k^2(n^2(z) - a_n^2)\phi_n(z) = 0, \phi_n(0) = 0, \]

\[\phi_n'(h) = 0 \text{ for some set of eigenfunctions } \{\phi_n(z)\}_{n=1}^{\infty}, \]

then \(\mathcal{N}\) consists of those continuous potentials appearing in the Sturm-Liouville problem (1.8) with boundary conditions (1.9) and (1.10) that have the set \(\{\lambda_n\}_{n=0}^{\infty}\) as spectrum.

For any \(n(z) \in \mathcal{N}\), if the corresponding eigenfunction basis is \(\{\phi_n(z)\}_{n=0}^{\infty}\) given by

\[\phi_n(z) = \cos\sqrt{\lambda_n} (h - z) + \int_{h}^{z} K(z, s)\cos\sqrt{\lambda_n} (h - s)ds \tag{3.2} \]

where \(K(z, s)\) is determined uniquely by the Goursat problem (2.2),(2.3) and (2.4), then the function

\[u(r, z) = \sum_{n=0}^{\infty} \alpha_n \phi_n(z) H_0^{(1)}(ka_nr) \tag{3.3} \]
satisfies (1.1)-(1.4). Moreover,

\[u_{rr} + \frac{1}{r} u_r + u_{zz} + k^2 n^2(z) u \]

\[= \sum_{n=0}^{\infty} \alpha_n \left[\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + k^2 a_n^2 \right) H_0^{(1)}(ka_n r) \phi_n(z) \right. \]

\[+ \left(\frac{\partial^2}{\partial z^2} + k^2 (n^2(z) - a_n^2) \right) \phi_n(z) H_0^{(1)}(ka_n r) \right] \]

\[= \sum_{n=0}^{\infty} \alpha_n \phi_n(z) \delta(r), \]

so

\[f(z) = \sum_{n=0}^{\infty} \alpha_n \phi_n(z). \]

Now we consider the representation (2.1). If we multiply both sides by \(\alpha_n \) and sum from \(n = 1 \) to infinity, then, in view of that \(\sum_{n=0}^{\infty} \lambda_n \alpha_n < \infty \) due to \(f''(h) \) existing, we can interchange the order of summation and integration, and obtain

\[\sum_{n=0}^{\infty} \alpha_n \phi_n(z) = \sum_{n=0}^{\infty} \alpha_n \cos(\sqrt{\lambda_n}(h - z)) + \int_{h}^{z} K(z, s) \sum_{n=0}^{\infty} \alpha_n \cos(\sqrt{\lambda_n}(h - s)) ds. \]

If we define a function \(h(z) \) by

\[h(z) = \sum_{n=0}^{\infty} \alpha_n \cos(\sqrt{\lambda_n}(h - z)), \quad (3.4) \]

then

\[f(z) = h(z) + \int_{h}^{z} K(z, s, a(z)) h(s) ds. \quad (3.5) \]

Here in order to emphasize the dependence of \(K(z, s) \) on the \(a(z) \),

\[a(z) := k^2[1 - n^2(z)], \]

we denote \(K(z, s) \) as \(K(z, s, a(z)) \).

We want to convert (3.5) to a Volterra equation of the second kind for an unknown \(a(z) \). Differentiating (3.5) twice, we have

\[f''(z) = h''(z) + \frac{\partial}{\partial z} [K(z, z, a(z)) h(z)] + K_1(z, z, a(z)) h(z) \]

\[+ \int_{h}^{z} K_{11}(z, s, a(z)) h(s) ds. \]

But

\[\int_{h}^{z} K_{11}(z, s, a(z)) h(s) ds \]
\[
= \int_h^z [K_{22}(z, s, a(z)) - k^2(n^2(z) - 1)K(z, s, a(z))] h(s) ds
\]
\[
= K_2(z, z, a(z))h(z) - K_2(z, h, a(z))h(h) - K(z, z, a(z))h'(z)
+ K(z, h, a(z))h'(h) + \int_h^z K(z, s, a(z))h''(s) ds
+ \int_h^z [k^2(n^2(z) - 1)]K(z, s, a(z)) h(s) ds.
\]

It follows then that
\[
f''(z) = h''(z) + 2 \left[\frac{\partial}{\partial z} K(z, z, a(z)) \right] h(z) + k^2(n^2(z) - 1) \int_h^z K(z, s, a(z)) h(s) ds + \int_h^z K(z, s, a(z)) h''(s) ds
\]
\[
= h''(z) + k^2(n^2(z) - 1) h(z) + k^2(n^2(z) - 1) \int_h^z K(z, s, a(z)) h(s) ds
+ \int_h^z K(z, s, a(z)) h''(s) ds
\]
\[
= h''(z) + k^2(n^2(z) - 1) f(z) + \int_h^z K(z, s, a(z)) h''(s) ds.
\]

Hence, the inverse problem is equivalent to the following nonlinear Volterra equation
\[
f(z) a(z) + \int_h^z K(z, s, a(z)) h''(s) ds = - f''(z) - h''(z).
\] (3.6)

Now we need to show that \(h(z) \) can be determined by \(g(r) \) in problem (B). Let
\[
v(r, z) = \sum_{n=0}^{\infty} \alpha_n \cos[\sqrt{\lambda_n}(h - z)] H_{0}^{(1)}(ka_n r),
\] (3.7)
then \(v(r, z) \) satisfies
\[
v_{rr} + \frac{1}{r} v_r + v_{zz} + k^2 v = \frac{1}{2\pi r} \delta(r) h(z),
\] (3.8)
\[
v(r, h) = \sum_{n=0}^{\infty} \alpha_n H_{0}^{(1)}(ka_n r) = g(r),
\] (3.9)
\[
v_z(r, h) = 0,
\] (3.10)
and \(v \) satisfies an outgoing radiating condition as \(r \to \infty \) and \(v \) is bounded as \(z \to \infty \).

Notice that (3.9) and (3.10) give the Cauchy data for the homogeneous Helmholtz equation when \(r \neq 0 \), so \(g(r) = 0 \) follows \(v(r, z) = 0 \) for \(0 < r < \infty \), \(z \in \mathbb{R}^1 \). It then forces \(h(z) = 0 \) for \(z \in \mathbb{R}^1 \), i.e. \(h(z) \) is determined uniquely by \(g(r) \). Furthermore, by separation of variables in (3.8) and using (3.10) and the radiating condition as \(r \to \infty \), we can express \(v(r, z) \) in the form
\[
v(r, z) = \int_{-\infty}^{1} C(t^2) \cos[k \sqrt{1 - t^2} (h - z)] H_{0}^{(1)}(ktr) dt^2,
\] (3.11)
where $C(t^2)$ is an arbitrary constant depending on t^2. From direct calculation it follows that

$$v_{rr} + \frac{1}{r}v_r + v_{zz} + k^2v$$

$$= \int_{-\infty}^{1} C(t^2) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) H_0^{(1)}(ktr) \cos[k\sqrt{1 - t^2}(h - z)]dt^2$$

$$+ \int_{-\infty}^{1} C(t^2)H_0^{(1)}(ktr) \left(\frac{\partial^2}{\partial z^2} + k^2 \right) \cos[k\sqrt{1 - t^2}(h - z)]dt^2$$

$$= \int_{-\infty}^{1} C(t^2) \left(-k^2t^2 H_0^{(1)}(ktr) + \frac{\delta(r)}{2\pi r} \right) \cos[k\sqrt{1 - t^2}(h - z)]dt^2$$

$$+ \int_{-\infty}^{1} C(t^2)k^2t^2 H_0^{(1)}(ktr) \cos[k\sqrt{1 - t^2}(h - z)]dt^2$$

$$= \frac{\delta(r)}{2\pi r} \int_{-\infty}^{1} C(t^2) \cos[k\sqrt{1 - t^2}(h - z)]dt^2$$

$$= \frac{\delta(r)}{2\pi r} h(z).$$

Therefore,

$$\int_{-\infty}^{1} C(t^2) \cos[k\sqrt{1 - t^2}(h - z)]dt^2 = h(z), \quad (3.12)$$

and

$$\int_{-\infty}^{1} C(t^2)H_0^{(1)}(kar)dt^2 = g(r) \quad (3.13)$$

due to (3.9) and (3.11). But (3.13) means that $g(r)$ is some kind of H-transform of $C(t^2)$, hence, $C(t^2)$ can be represented as some Y-transform of $g(r)$, (ref. p.191 and p.221 of [9]), and $h(z)$ can be constructed.

4 Solution to the nonlinear Volterra integral equation

Since $f(z) > 0$ for $z \in (0, h]$ and $f'(0) \neq 0$, $z = 0$ is the simple zero point of $f(z)$. $\sum_{n=0}^{\infty} \alpha_n \lambda_n < \infty$ insures

$$h''(z) + \int_{h}^{z} K(z, s)h''(s)ds$$

$$= -\sum_{n=0}^{\infty} \alpha_n \lambda_n [\cos \sqrt{\lambda_n}(h - z) + \int_{h}^{z} K(z, s) \cos \sqrt{\lambda_n}(h - s)ds]$$

$$= -\sum_{n=0}^{\infty} \alpha_n \lambda_n \phi_n(z).$$

Hence,

$$h''(0) + \int_{h}^{0} K(0, s)h''(s)ds = 0.$$
Therefore,
\[
a(z) = \frac{f''(z)}{f(z)} - \frac{1}{f(z)} \left[h''(z) + \int_{h}^{z} K(z, s) h''(s) ds \right]
\]
is bounded at \(z = 0 \), and the integral equation (3.6) is regular on \([0, h] \).

The following lemmas for the nonlinear Volterra equation can be proved in a standard way, we omit the detail here (cf. [8]).

Consider a Volterra integral equation of the form
\[
x(t) = f(t) + \int_{0}^{t} g(t, s, x(t)) ds, \quad (t \geq 0).
\]

Let \(T > 0 \) and suppose \(f \) and \(g \) in equation (4.1) satisfy the following hypotheses:

(H1) \(f \) is defined and continuous for all \(t \) in \([0, T] \),

(H2) \(g \) is measurable in \((t, s, x)\) for \(0 \leq s \leq t < T \), \(x \in \mathbb{R} \), \(g(t, s, x) \) is continuous in \(x \) for each fixed pair \((t, s)\) and \(g(t, s, x) = 0 \) if \(s > t \).

(H3) For each real number \(T \geq K > 0 \) and each bounded subset \(B \) of \(\mathbb{R}^1 \) there exists a measurable function \(m \) such that
\[
|g(t, s, x)| \leq m(t, s), \quad (0 \leq s \leq t \leq K, \ x \in B)
\]

and
\[
\sup \left\{ \int_{0}^{t} m(t, s) ds : 0 \leq t \leq K \right\} < \infty.
\]

(H4) For each compact interval \(I \subset [0, T] \), each continuous function \(\phi : I \rightarrow \mathbb{R}^1 \) and each \(t_0 \) in \([0, T] \)
\[
\lim_{t \to t_0} \int_{I} \{ g(t, s, \phi(t)) - g(t_0, s, \phi(t_0)) \} ds = 0.
\]

(H5) For each constant \(T \geq K > 0 \) and each bounded \(B \subset \mathbb{R}^1 \) there exists a measurable function \(k(t, s) \) such that
\[
|g(t, s, x) - g(t, s, y)| \leq k(t, s)|x - y|
\]
whenever \(0 \leq s \leq t \leq K \) and both \(x \) and \(y \) are in \(B \). For each \(t \in [0, K] \) the function \(k(t, s) \) is in \(L^1(0, t) \) as a function of \(s \) and
\[
\lim_{h \to 0} \int_{t}^{t+h} k(t + h, s) ds = 0.
\]

We have the following Lemmas:

Lemma 4.1: Let the functions \(f \) and \(g \) satisfy hypotheses (H1)-(H5). If \(\int_{0}^{t} m(t, s) ds \to 0 \) as \(t \to 0^+ \) for each \(m \) in (H3), then there exists a constant \(\beta > 0 \) such that equation (1.11) has a unique continuous solution \(x(t) \) on the interval \([0, \beta] \).

Lemma 4.2: Let \(f \) and \(g \) satisfy (H1)-(H3) and \(g \) satisfies (H6):
(H6) For each compact subinterval J of T, each bounded set $B \in R$ and each t_0 in T

$$\sup \{ \int_J |g(t, s, \phi(t)) - g(t_0, s, \phi(t_0))| ds : \phi \in C(J : B) \}$$

tend to zero as $t \to t_0$.

If $x(t)$ is a bounded continuous solution of (1.11) on an interval $[0, \alpha)$, then $x(t)$ can be extended as a continuous solution of (1.11) to an interval $0 \leq t \leq \alpha_0$ where $\alpha_0 > \alpha$.

By virtue of the above lemmas, we can prove the following theorems:

Theorem 4.1: If assumptions (C1) and (C2) are satisfied, then there is a constant $\beta < h$ and the linear Volterra integral equation (3.6) has a unique solution $n(z) \in C[\beta, h]$.

Proof: Rewrite (3.6) as

$$a(z) + \int_h^z K(z, s, a(z)) \frac{h''(s)}{f(s)} ds = \frac{f''(z) - h''(z)}{f(z)}.$$ \hspace{1cm} (4.2)

If (C1) and (C2) hold, then the hypotheses (H1) is satisfied by the free term of (4.2). For any $n(z) \in C[0, h]$, the transmutation kernel $K(z, s)$, as a solution to the Goursat problem for hyperbolic equation, is in C^1. If $a_0(z), a_n(z) \in C[0, h]$ and $a_n(z) \to a_0(z)$ in the supremum norm, then $K(z, s; a_n(z)) \to K(z, s; a_0(z))$ in the supremum norm by Lemma 2.2. Hence, (H2) holds. Also (H3) holds from (2.14) for $m(z, s) = 2h\hat{C} e^{2\hat{C}z}$ where

$$\hat{C} = \max \{ ||n||_h : n \in B \},$$

and B is a bounded subset of R. (H4) is implied by Lemma 2.2. Now let

$$k(z, s) = (1 + \hat{C} h^2 e^{2\hat{C}z}) e^{\hat{C}h},$$

then

$$\sup_{z \leq s \leq 2h - z} |K(z, s; a_1(z) - K(z, s; a_2(z))| \leq k(z, s)||a_1 - a_2||_h$$

due to Lemma 2.2. Moreover,

$$\lim_{\epsilon \to 0} \int_{z+\epsilon}^{z+\epsilon} k(z + \epsilon, s) ds = 0,$$

hence (H5) is satisfied.

Furthermore,

$$\lim_{z \to 0^+} \int_0^z m(z, s) ds = \lim_{z \to 0^+} \int_0^z 2h\hat{C} e^{2\hat{C}z} ds = 0,$$

for each \hat{C}. By Lemma 4.1, there exists a constant $\beta < h$ such that the equation (4.2) has a unique continuous solution $a(z)$ on the interval $[\beta, h]$.

Theorem 4.2: If assumptions (C1) and (C2) are satisfied, then Volterra integral equation (3.6) has a solution $a(z) \in C[0, h]$.
Proof: We first prove that if (C1) (C2) are satisfied, then $K(z, s, a(z))$ satisfies (H6). For our problem, it is sufficient to consider the compact set $J \subset [0, h]$ and for each $z_0 \in [0, h]$. If B is a bounded set of R, and $a \in C(J, B)$, then

$$\sup\{|a(z)|; a \in C(J, B)\} \leq M \quad \text{for some constant } M.$$ \hspace{1cm} (4.3)

For any $\epsilon > 0$ and $z_0 + \epsilon \in [0, h]$, using (2.11) we obtain for any $a \in C(J, B)$

$$\left| K(z + \epsilon, s, a(z + \epsilon)) - K(z, s, a(z)) \right|$$

$$\leq \frac{1}{2} \left[\int_{0}^{h-(z+\epsilon)/2} a(h - t)dt - \int_{0}^{h-(z+\epsilon)/2} a(h - t)dt \right]$$

$$+ \frac{1}{2} \left[\int_{0}^{s-(z+\epsilon)/2} a(h - t)dt - \int_{0}^{s-(z+\epsilon)/2} a(h - t)dt \right]$$

$$\leq M \left(\frac{\epsilon}{4} + \frac{\epsilon}{4} + 2hC\epsilon \right) \to 0, \quad \text{as } \epsilon \to 0.$$

Here $C = 2hMe^{2Mh^2}$ is the bound of $|K(z, s, a(z))|$ due to (2.13) and (4.3). From Lemma 4.2, $a(z)$ can be extended as a continuous function of (4.2) to an interval $\beta_0 \leq z \leq h$ where $\beta_0 < \beta$. Repeating this argument a finite number of times we come to the conclusion that there exists a continuous solution $a(z)$ on $[0, h]$.

Now we show the uniqueness of the solution to equation (4.1).

Theorem 4.3: If assumptions (C1) and (C2) are satisfied, then the solution of the Volterra integral equation (3.6) in $[0, h]$ is unique.

Proof: For simplicity we make a change of coordinates: $z' = h - z$, $s' = h - s$ and rename these once more as z, s. Also we denote the corresponding function as $K(z, s, a(z))$ instead of $K(h - z, h - s, a(h - z))$. We first show that if $a_1, a_2 \in C([0, h])$, then for any positive parameters λ and ϵ it holds that

$$|K(z, s, a_1(z)) - K(z, s, a_2(z))| \leq \frac{C}{\lambda} \|a_1 - a_2\|_{s, \epsilon} e^{\lambda z},$$

where

$$\|a_1 - a_2\|_{s, \epsilon} = \sup_{0 \leq z \leq h - \epsilon} \left\{|a_1(z) - a_2(z)|e^{-\lambda z} \right\}, \quad \epsilon > 0.$$
In the new coordinates, (2.11) follows

\[|K(z, s, a_1(z)) - K(z, s, a_2(z))|\]

\[\leq \frac{1}{2} \int_0^{(z-s)/2} |a_1(t) - a_2(t)| dt + \frac{1}{2} \int_0^{(z+s)/2} |a_1(t) - a_2(t)| dt\]

\[+ \int_0^z \int_{-t}^t |K(t, s, a_1(t)) - K(t, s, a_2(t))||a_1(t) - a_2(t)||dsdt\]

\[+ \int_0^z \int_{-t}^t |K(t, s, a_2(t))||a_1(t) - a_2(t)||dsdt\]

\[\leq \left(\frac{1}{2} + \frac{1}{2} + 2hC_1 \right) \int_0^z |a_1(t) - a_2(t)| dt\]

\[+ 2Mh \int_0^z \sup_{-t \leq s \leq t} |K(t, s, a_1(t)) - K(t, s, a_2(t))||dsdt.\]

Here we have noticed the fact that in the new coordinates \(z \geq s, \text{ and } z \geq -s\) and used \(C_1 = \sup_{0 \leq s \leq h-\epsilon} \{K(z, s, a_2(z))\}\), \(M = \sup_{0 \leq s \leq h-\epsilon} \{a_1(z)\}\). Using Gronwall's inequality, the above inequality implies

\[\sup_{-z \leq s \leq z} |K(z, s, a_1(z)) - K(z, s, a_2(z))|\]

\[\leq (1 + 2hC_1) \int_0^z |a_1(t) - a_2(t)|e^{-\lambda t} dt e^{2Mhz}\]

\[\leq C_2 ||a_1 - a_2||_{\lambda, z} e^{\lambda z},\]

where \(C_2 = (1 + 2hC_1)e^{2Mh^2}\).

If \(a_1(z)\) and \(a_2(z)\) are solutions to the Volterra integral equation (4.2), then, in the new coordinates,

\[a_1(z) - a_2(z) = \int_0^{h-z} [K(z, s, a_1(z)) - K(z, s, a_2(z))] \rho(s) ds\]

where \(\rho(z, s) = |h''(s)/f(z)| \leq C_\epsilon\) for some constant \(C_\epsilon\) in \([0, h - \epsilon]\). It follows that

\[|a_1(z) - a_2(z)| \leq \int_0^z |K(z, s, a_1(z)) - K(z, s, a_2(z))||\rho(s)| ds\]

\[\leq C \int_0^{h-\epsilon} |K(z, s, a_1(z)) - K(z, s, a_2(z))| ds\]

\[\leq C \int_0^{h-\epsilon} \frac{C_2}{\lambda} ||a_1 - a_2||_{\lambda, z} e^{\lambda z} ds, \text{ for } 0 \leq z \leq h - \epsilon.\]

Still using \(C\) to denote the constant \(CC_2h\), we obtain for any \(z \in [0, h - \epsilon]\)

\[|a_1(z) - a_2(z)|e^{-\lambda z} \leq \frac{C}{\lambda} ||a_1 - a_2||_{\lambda, \epsilon}.\]

Therefore, for any \(\lambda > 0\),

\[||a_1 - a_2||_{\lambda, \epsilon} \leq \frac{C}{\lambda} ||a_1 - a_2||_{\lambda, \epsilon}.\]
This implies that \(\|a_1 - a_2\|_{\lambda, \epsilon} = 0 \); hence, \(a_1(z) \equiv a_2(z) \) for \(z \in [0, h - \epsilon] \), and letting \(\epsilon \to 0 \), we have \(a_1(z) \equiv a_2(z) \) for \(z \in [0, h) \). Now from the continuity and boundness of \(a_1(z) - a_2(z) \) at \(z = h \), it follows that it is also true at \(z = h \).

From Theorem 4.2 and Theorem 4.3 we have immediately

Corollary 4.1: If assumptions (C1) and (C2) are satisfied, then the problem (B) has unique solution pair \((n(z), u(z))\) for \(z \in [0, h] \).

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>699</td>
<td>László Gerencsér</td>
<td>Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>702</td>
<td>P. Galdi, D.D. Josephl, L. Preziosi, S. Rionero</td>
<td>Mathematical problems for miscible, incompressible fluids with Korteweg stresses</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
<tr>
<td>706</td>
<td>H.S. Dumas, J.A. Ellison and A.W. Sáenz</td>
<td>Axial channeling in perfect crystals, the continuum model and the method of averaging</td>
</tr>
<tr>
<td>707</td>
<td>M.A. Kaashoek and S.M. Verduyn Lunel</td>
<td>Characteristic matrices and spectral properties of evolutionary systems</td>
</tr>
<tr>
<td>708</td>
<td>Xinfu Chen</td>
<td>Generation and Propagation of interfaces in reaction diffusion systems</td>
</tr>
<tr>
<td>709</td>
<td>Avner Friedman and Bei Hu</td>
<td>Homogenization approach to light scattering from polymer-dispersed liquid crystal films</td>
</tr>
<tr>
<td>710</td>
<td>Yoshihisa Morita and Shuichi Jimbo</td>
<td>ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels</td>
</tr>
<tr>
<td>711</td>
<td>Wenxiong Liu</td>
<td>Blow-up behavior for semilinear heat equations: multi-dimensional case</td>
</tr>
<tr>
<td>712</td>
<td>Hi Jun Choe</td>
<td>Hölder continuity for solutions of certain degenerate parabolic systems</td>
</tr>
<tr>
<td>713</td>
<td>Hi Jun Choe</td>
<td>Regularity for certain degenerate elliptic double obstacle problems</td>
</tr>
<tr>
<td>714</td>
<td>Fernando Reitich</td>
<td>On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation</td>
</tr>
<tr>
<td>715</td>
<td>Xinfu Chen and Fernando Reitich</td>
<td>Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling</td>
</tr>
<tr>
<td>716</td>
<td>C.C. Lim, J.M. Pimbley, C. Schmeiser, D.W. Schwendeman</td>
<td>Rotating waves for semiconductor inverter rings</td>
</tr>
<tr>
<td>717</td>
<td>W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya</td>
<td>Multisummability of formal power series solutions of linear ordinary differential equations</td>
</tr>
<tr>
<td>718</td>
<td>Peter J. Olver and Chelhrad Shakiban</td>
<td>Dissipative decomposition of partial differential equations</td>
</tr>
<tr>
<td>719</td>
<td>Clark Robinson</td>
<td>Homoclinic bifurcation to a transitive attractor of Lorenz type, II</td>
</tr>
<tr>
<td>720</td>
<td>Michelle Schatzman</td>
<td>A simple proof of convergence of the QR algorithm for normal matrices without shifts</td>
</tr>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential forces. I</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semidiscrete methods for a system of reaction-diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma systems</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Erickson</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flow in fractured porous media</td>
</tr>
<tr>
<td>733</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzhi Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem</td>
</tr>
<tr>
<td>737</td>
<td>Epifanio G. Virga</td>
<td>New variational problems in the statics of liquid crystals</td>
</tr>
<tr>
<td>738</td>
<td>Yoshikazu Giga and Shun'ichi Goto</td>
<td>Geometric evolution of phase-boundaries</td>
</tr>
<tr>
<td>739</td>
<td>Ling Ma</td>
<td>Large time study of finite element methods for 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>740</td>
<td>Mitchell Luskin and Ling Ma</td>
<td>Analysis of the finite element approximation of microstructure in micromagnetics</td>
</tr>
<tr>
<td>741</td>
<td>M. Chipot</td>
<td>Numerical analysis of oscillations in nonconvex problems</td>
</tr>
<tr>
<td>742</td>
<td>J. Carrillo and M. Chipot</td>
<td>The dam problem with leaky boundary conditions</td>
</tr>
<tr>
<td>743</td>
<td>Eduard Harabetian and Robert Pego</td>
<td>Efficient hybrid shock capturing schemes</td>
</tr>
<tr>
<td>744</td>
<td>B.L.J. Braaksma</td>
<td>Multisummability and Stokes multipliers of linear meromorphic differential equations</td>
</tr>
</tbody>
</table>
Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations

Emad A. Fatemi, A new splitting method for scaler conservation laws with stiff source terms

Hi Jun Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities

Haitao Fan, A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids

Avner Friedman and Bei Hu, A free boundary problem arising in superconductor modeling

Avner Friedman and Wenxiong Liu, An augmented drift-diffusion model in semiconductor device

Avner Friedman and Miguel A. Herrero, Extinction and positivity for a system of semilinear parabolic variational inequalities

David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure

Hi Jun Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth

Vincenzo M. Tortorelli and Epifanio G. Virga, Axis-symmetric boundary-value problems for nematic liquid crystals with variable degree of orientation

Nikan B. Firoozyee and Robert V. Kohn, Geometric parameters and the relaxation of multiwell energies

Joseph D. Fehribach, Analysis and application of a continuation method for a self-similar coupled Stefan system

C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi, Dissipativity of numerical schemes

D.D. Joseph, T.Y.J. Liao and J.-C. Saut, Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods

N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems

João Palhoto Matos, Young measures and the absence of fine microstructures in the α – β quartz phase transition

L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors

H. Scott Dumas and James A. Ellison, Nekhoroshev’s theorem, ergodicity, and the motion of energetic charged particles in crystals

Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of \(u_t - \Delta u = u^p \).

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity

Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension

J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces

George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains

T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods

Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another free fall

Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem

Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature functions

F. Abbergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane

Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems

Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans

Roger Fosdick and Eric Volkmann, Normality and convexity of the yield surface in nonlinear plasticity