FULL SIGN-INVERTIBILITY AND SYMPLECTIC MATRICES

By

David A. Schmidt
and
Chjan C. Lim

IMA Preprint Series # 1216
March 1994
Full Sign-Invertibility and Symplectic Matrices

David A. Schmidt
Chjan C. Lim
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12180
E-mail: schmid@rpi.edu, limc@rpi.edu
Fax: (518) 276 - 4824

December, 1993
Abstract

An \(n \times n \) sign pattern \(H \) is said to be \textit{sign-invertible} if there exists a sign pattern \(H^{-1} \) (called the \textit{sign-inverse} of \(H \)) such that, for all matrices \(A \in Q(H) \), \(A^{-1} \) exists and \(A^{-1} \in Q(H^{-1}) \). If, in addition, \(H^{-1} \) is sign-invertible (implying \((H^{-1})^{-1} = H\)), \(H \) is said to be \textit{fully sign-invertible} and \((H, H^{-1})\) is called a sign-invertible pair. Given an \(n \times n \) sign pattern \(H \), a \textit{Symplectic Pair} in \(Q(H) \) is a pair of matrices \((A, D)\) such that \(A \in Q(H), D \in Q(H), \) and \(A^T D = I \). (Symplectic Pairs are a pattern-generalization of orthogonal matrices which arise from a special symplectic matrix found in \(n \)-body problems in celestial mechanics [1].)

We discuss the digraphical relationship between a sign-invertible pattern \(H \) and its sign-inverse \(H^{-1} \), and use this to cast a necessary condition for full sign-invertibility of \(H \). We proceed to develop sufficient conditions for \(H \)'s full sign-invertibility in terms of allowed paths and cycles in the digraph of \(H \), and conclude with a complete characterization of those sign patterns that require Symplectic Pairs.

1. Introduction

A \textit{sign pattern} is an \(m \times n \) matrix \(H \) whose entries are 0, 1 or -1. We say that an \(m \times n \) matrix \(A \in Q(H) \) (the sign-class of \(H \)) if \(sgn(A_{ij}) = sgn(H_{ij}) \) for all pairs of indices \((i, j)\), where

\[
sgn(x) = \begin{cases}
-1, & x < 0; \\
0, & x = 0; \\
1, & x > 0.
\end{cases}
\]

Equivalently, we sometimes write \(sgn(A) = sgn(H) \) in this case. The \textit{signed digraph} of the \(n \times n \) pattern \(H \) is the directed graph \(D(H) \) with \(n \) vertices and the arc set \(\{(i, j) : i \neq j, H_{ij} \neq 0\} \), with each arc assigned the weight \(sgn(H_{ij}) \). Since it will not cause confusion to do so, we will refer to the signed digraph of a sign pattern \(H \) simply as the \textit{digraph} of \(H \). An \(n \times n \) sign pattern \(H \) is \textit{sign-nonsingular} if \(det(A) \neq 0 \) for all matrices \(A \in Q(H) \);

\(H \) is \textit{combinatorially singular} if \(det(A) = 0 \) for all \(A \in Q(H) \) [2].

The matrix obtained by eliminating the \(i \)th row and the \(j \)th column of the matrix \(A \) is called the \((i, j)\) \textit{minor} of \(A \) and is denoted \(A[i, j] \). Its determinant is called the \((i, j)\) \textit{minor} of \(A \) and is denoted \(K_A[i, j] \). An \(n \times n \) sign pattern \(H \) is said to be \textit{sign-invertible} if there exists a sign pattern \(H^{-1} \) (called the \textit{sign-inverse} of \(H \)) such that for all \(A \in Q(H), A^{-1} \) exists and \(A^{-1} \in Q(H^{-1}) \). It should be noted that the sign-inverse of \(H \) is not the same as the matrix inverse of \(H \), as the latter is not in general a \((0, \pm 1)\)-matrix; however, the matrix inverse of \(H \) is always in \(Q(H^{-1}) \).

Because the inverse of a matrix depends on its adjoint matrix, it is evident that a pattern \(H \) is sign-invertible if and only if \(H \) is sign-nonsingular and each of its minor matrices is either sign-nonsingular or combinatorially singular. Sign-invertibility has been investigated previously by Bassett, Maybee and Quirk [3], and by Lady and Maybee [4]. In addition, Thomassen [5] developed a polynomial-time algorithm using strict parity digraphs to test a pattern for sign-invertibility.

An \(n \times n \) sign pattern \(H \) is \textit{negative-diagonal} if \(H_{ii} = -1 \) for \(i = 1, \ldots, n \). A square \((0, 1)\)-matrix with exactly one zero in each row and column is called a \textit{permutation matrix}. A \textit{signature matrix} is a diagonal matrix whose diagonal entries belong to
\{-1, 1\}. Two sign patterns \(G\) and \(H\) are sign-equivalent (written \(G \sim H\)) if \(G\) can be obtained from \(H\) by negating some of its rows and columns and then permuting the rows and columns. Note that \(G\) and \(H\) are sign-equivalent if and only if there exist permutation matrices \(P\) and \(Q\) and signature matrices \(X\) and \(Y\) such that \(G = PXHYQ\). Note also that for a permutation matrix \(P\), \(P^{-1} = P^T\) is also a permutation matrix, and that for a signature matrix \(X\), \(X^{-1} = X\).

It is easy to show that sign-equivalence is an equivalence relation that preserves sign-invertibility, and it is well known that any sign-nonsingular (and hence any sign-invertible) pattern is sign-equivalent to some negative-diagonal pattern. The following lemmas establish some connections between sign-equivalence and sign-invertibility, which are used later.

Lemma 1.1 is a direct consequence of the results of Bassett, Maybee and Quirk [3], and is explicitly stated and proven by Lady and Maybee in [4]:

Lemma 1.1: Let \(H\) be a negative-diagonal sign-invertible pattern with sign-inverse \(H^{-1}\). Then \(H^{-1}\) is negative-diagonal.

Lemma 1.2: Suppose \(H\) is sign-invertible, \(H'\) is negative-diagonal, and \(H \sim H'\). Then \(H'\) is sign-invertible, \((H')^{-1}\) is negative-diagonal, and \(H^{-1} \sim (H')^{-1}\).

Proof: Since sign-invertibility is an equivalence class property, \(H'\) is sign-invertible, and \((H')^{-1}\) is negative-diagonal by Lemma 1.1. Since \(H \sim H'\), there exist permutation matrices \(P\) and \(Q\) and signature matrices \(X\) and \(Y\) such that \(H = PXH'YQ\). Since \(H\) is sign-invertible, \(H^{-1} = (PXH'YQ)^{-1} = Q^TY(H')^{-1}XP^T\). Thus \(H^{-1} \sim (H')^{-1}\).

In investigating the relationship between the digraphs of a sign-invertible pattern and its sign-inverse, it is thus sufficient (in the sense of Lemma 1.2) to consider only negative-diagonal patterns.

A simple \(k\)-path in an \(n \times n\) matrix \(A\) is a product of entries from \(A\) of the form

\[A_{i_1,i_2}A_{i_2,i_3} \cdots A_{i_k,i_{k+1}},\]

where the set \(\{i_1, i_2, \ldots, i_{k+1}\}\) consists of distinct indices. A simple \(k\)-cycle in an \(n \times n\) matrix \(A\) is a product of entries from \(A\) of the form

\[A_{i_1,i_2}A_{i_2,i_3} \cdots A_{i_k,i_1},\]

where the set \(\{i_1, i_2, \ldots, i_k\}\) consists of distinct indices. A non-zero simple \(k\)-path (\(k\)-cycle) in a sign pattern \(H\) corresponds to a simple \(k\)-path (\(k\)-cycle) in the digraph of \(H\). The sign of a path or cycle in \(D(H)\) is simply the product of the signs of the arcs that comprise that path or cycle. The complementary cycle for a cycle \(A_{i_1,i_2}A_{i_2,i_3} \cdots A_{i_k,i_1}\) is the cycle \(A_{i_1,i_2}A_{i_2,i_3} \cdots A_{i_k,i_1}A_{i_1,i_2}\).

In Section 2, we recall some important results involving sign-invertibility and digraphs. The first of these is a digraphical characterization due to Bassett, Maybee and Quirk [3]. Next, we adapt several previous results to give a digraphical characterization of the relationship between a sign-invertible pattern \(H\) and its sign-inverse \(H^{-1}\). The transitive closure of an unsigned digraph \(D(H)\) is a digraph with the vertex set of \(D(H)\) whose arc set consists of arcs \((i, j)\) such that \(D(H)\) contains a simple \((i, j)\)-path. \(D(H)\) is called
transitively closed if the transitive closure of $D(H)$ is $D(H)$ itself. We conclude that if H is sign-invertible, then the digraph $D(H^{-1})$ is the transitive closure of $D(H)$, with the common arcs in the two digraphs having opposite signs.

A sign-invertible pattern H whose sign-inverse H^{-1} is also sign-invertible (implying that $(H^{-1})^{-1} = H$) is said to be fully sign-invertible, and (H, H^{-1}) is called a sign-invertible pair in this case. In Section 3, we show that a necessary, but not sufficient condition for the full sign-invertibility of a negative-diagonal pattern H is that $D(H^{-1})$ and $D(H)$ have the same arc set, with each arc in $D(H^{-1})$ having the opposite sign from its associated arc in $D(H)$. In this case, we denote the relationship between the patterns H and H^{-1} by $H^{-1} = \text{neg}H$. Finally, we use the transitive closure relationship between $D(H)$ and $D(H^{-1})$ to express this necessary condition in terms of $D(H)$ only.

Let H be a sign pattern. A path or cycle in $D(H)$ is said to be even if it contains an even number of arcs; otherwise, it is said to be odd. A path or cycle has even (odd) positive-arc parity if it contains an even (odd) number of positive arcs. A similar statement defines even (odd) negative-arc parity. In Section 4 we obtain sufficient conditions for full sign-invertibility of a negative-diagonal pattern H. These conditions make considerable use of the structural similarity between the digraphs of H and H^{-1} that is necessary for full sign-invertibility. We first demonstrate that the sign-inverse H^{-1} of a sign-invertible pattern H for which $H^{-1} = \text{neg}H$ is always sign-nonsingular by showing that all cycles in $D(H)$ must be even. We then cast the path-sign uniformity condition necessary for the sign-invertibility of H^{-1} in terms of the positive-arc parity of simple paths in $D(H)$.

We now give a brief introduction to symplectic matrices from the standpoint of n-body problems [1]. Consider the $2n \times 2n$ block matrix

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix},$$

where I_n is the $n \times n$ identity matrix, and 0 is the $n \times n$ zero matrix. A $2n \times 2n$ block matrix

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $A, B, C,$ and D are $n \times n$ matrices, is called symplectic if it satisfies the symplectic condition $M^TJM = J$, which is equivalent to both of the matrices ATC and DTB being symmetric, together with the condition $ATD - C^TB = I_{2n}$. The $2n \times 2n$ symplectic matrices form a group (which we shall call S_{2n}) under matrix multiplication. We shall be concerned specifically with the subgroup of S_{2n} for which $B = C = 0$, each element of which corresponds to an uncoupled linear canonical transformation in an n-body problem. For such matrices, the symplectic condition becomes $ATD = I_{2n}$.

It is with these ideas in mind that we define a Symplectic Pair. Given an $n \times n$ sign pattern H, a Symplectic Pair in $Q(H)$ is a pair of matrices (A, D) such that $A \in Q(H), D \in Q(H)$, and $ATD = I$. (The requirement that A and D share the same sign pattern characterizes transformations that yield the so-called Jacobi Coordinates, which have historically been useful in solving certain n-body problems in celestial mechanics.)
Symplectic Pairs are a pattern-generalization of orthogonal matrices [6] in the sense that for a Symplectic Pair \((A, D)\) in \(Q(H)\), \(D^{-1} \in Q(H^T)\).

Using terminology from [7], let \(P\) be a property that a real, square matrix may or may not possess. The sign pattern \(H\) is said to allow property \(P\) if there exists a matrix \(A \in Q(H)\) such that \(A\) has property \(P\). \(H\) is said to require \(P\) if all matrices \(A\) in \(Q(H)\) have property \(P\). As an example, the sign pattern \(H\) requires Symplectic Pairs if, for all \(A \in Q(H)\), there exists some \(D \in Q(H)\) such that \(A^TD = I\).

In Section 5, we first relate sign-invertibility to requirement of Symplectic Pairs, and note that sign-invertibility provides a connection between those patterns that require Symplectic Pairs and those that allow Symplectic Pairs. We then demonstrate that a negative-diagonal sign pattern requires Symplectic Pairs if and only if its digraph is the disjoint union of isolated vertices and negative 2-cycles.

In Section 6, we extend our characterization of patterns that require Symplectic Pairs beyond the negative-diagonal case. For this extension, it is important to establish that the Symplectic Pair property is a sign-equivalence class property. (This fact separates the Symplectic Pair Property from related properties which are not satisfied on a sign-equivalence class basis; see, for example, the discussion on self-inverse sign patterns in [7].) We use this result in conjunction with our results from Section 5 to characterize requirement of Symplectic Pairs for arbitrary sign patterns.

2. The Digraphical Relationship Between \(H\) and \(H^{-1}\)

In this section we discuss the digraphical relationship between a sign-invertible pattern \(H\) and its sign-inverse \(H^{-1}\).

The following is a digraphical equivalent for sign-invertibility which was proven by Bassett, Maybee and Quirk in [3]. Thomassen, in [5], used this characterization in his algorithm to test for sign-invertibility.

Proposition 2.1: Let \(H\) be a negative-diagonal sign-pattern. Then \(H\) is sign-invertible if and only if both of the following conditions are satisfied:

- **C1:** \(H\) is sign-nonsingular.
- **C2:** Given any pair of distinct vertices \(i\) and \(j\) in \(D(H)\), all simple paths from \(i\) to \(j\) have the same sign.

This result will be used later in developing conditions on \(D(H)\) for the sign-invertibility of \(H^{-1}\).

Proposition 2.2 summarizes some important results due to Bassett, Maybee and Quirk which follow from Proposition 2.1. Most of this previous work was done for irreducible matrices (see [3] and [4] for stronger results thus obtained). Since the assumption of irreducibility is too restrictive for most of the work to follow, these results have been adapted to include the reducible case as well.

Proposition 2.2: Let \(H\) be a negative-diagonal, sign-invertible sign pattern. Then \(D(H^{-1})\) is the transitive closure of \(D(H)\). In addition, if \(i \neq j\) and \(H_{ij} \neq 0\), \(\text{sgn}(H_{ij}^{-1}) = -\text{sgn}(H_{ij})\).

Remark: In words, the proposition states that if an arc is present in the digraph of \(H\), it will be present with opposite sign in the digraph of \(H^{-1}\), and if a simple path from \(i\) to \(j\)
occurs in $D(H)$, then the arc (i, j) will occur in $D(H^{-1})$. In the special case where H is irreducible (for which $D(H)$ is strongly connected), $D(H^{-1})$ will be a complete digraph.

Example 2.3: Consider the 3×3 sign pattern

$$H = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}.$$

Direct computation shows that H is sign-invertible, and that its sign-inverse is

$$H^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & -1 & -1 \end{pmatrix}.$$

The digraphs of H and H^{-1} are shown below; it is clear that each arc from $D(H)$ is preserved, with opposite sign, in $D(H^{-1})$, although additional arcs in $D(H^{-1})$ due to paths in $D(H)$ are generated as well.

3. **Full Sign-Invertibility: A Necessary Condition**

It should be noted that, unlike the analogous matrix result, the sign-invertibility of a sign pattern does not imply that its sign-inverse will be sign-invertible; in fact, Example 2.3 provides an instance of a sign-invertible pattern H whose sign-inverse H^{-1} is not even sign-nonsingular. Thus the fully sign-invertible patterns are a proper subclass of the sign-invertible patterns.

The following corollary to Proposition 2.2 gives a necessary condition on H for full sign-invertibility.

Corollary 3.1: Suppose H is negative-diagonal and fully sign-invertible. Then

$$sgn(H_{ij}^{-1}) = \begin{cases} -sgn(H_{ij}), & i \neq j; \\ sgn(H_{ij}), & i = j. \end{cases}$$

Remark: This relationship, which we denote by $H^{-1} = negH$, can be interpreted in digraphical terms as follows. If H is negative-diagonal and fully sign-invertible, $D(H)$ and $D(H^{-1})$ have identical arc sets, where each arc in one has opposite sign from its
counterpart in the other. It should be noted that for $n > 2$, the digraph corresponding to a sign-nonsingular pattern cannot be complete; as a result, irreducible sign-invertible patterns cannot be fully sign-invertible.

Proof: By Lemma 1.1, the sign-inverse of a negative-diagonal sign-invertible pattern is also negative-diagonal, so Proposition 2.2 implies that

$$sgn(H_{ij}^{-1}) = \begin{cases} -sgn(H_{ij}), & i \neq j, H_{ij} \neq 0; \\ sgn(H_{ij}), & i = j. \end{cases}$$

Suppose $i \neq j$ and $H_{ij} = 0$, but $H_{ij}^{-1} \neq 0$. Since H is fully sign-invertible, Proposition 2.2 applies to H^{-1}, with $(H^{-1})^{-1} = H$, so

$$sgn(H_{ij}) = -sgn(H_{ij}^{-1}) \neq 0,$$

which is a contradiction. Thus $H_{ij} = 0$ implies $H_{ij}^{-1} = 0$, and so $H^{-1} = negH$.

While $H^{-1} = negH$ is a necessary condition for the full sign-invertibility of H, it involves the digraphs of both H and H^{-1}, requiring the computation of H^{-1}, and is thus undesirable. The next proposition, which follows directly from Proposition 2.2, casts the condition $H^{-1} = negH$ in terms only of $D(H)$.

Proposition 3.2: Suppose H is negative-diagonal and sign-invertible, so that H^{-1} exists. Then $H^{-1} = negH$ if and only if $D(H)$ is transitively closed.

Stated alternatively, Proposition 3.2 says that $H^{-1} = negH$ if and only if the existence of a path from i to j in $D(H)$ implies the existence in $D(H)$ of the arc (i, j).

4. **Full Sign-Invertibility: Sufficient Conditions**

The condition $H^{-1} = negH$, while necessary for the full sign-invertibility of H, is not sufficient, as the following example shows.

Example 4.1: Consider the 3×3 sign pattern

$$H = \begin{pmatrix} -1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

Direct computation shows that H is sign-invertible, and that its sign-inverse is

$$H^{-1} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix},$$

so that $H^{-1} = negH$ is satisfied. However, H^{-1} is not sign-invertible, since the minor $K_{H^{-1}}[3, 2]$ is ambiguously signed. In this section we develop sufficient conditions for the full sign-invertibility of H.

7
To ensure the full sign-invertibility of H, we require that conditions $C1$ and $C2$ from Proposition 2.1 hold for H^{-1}; in addition, we prefer to phrase these conditions on H^{-1} in terms of $D(H)$, making use of the structural similarities between $D(H)$ and $D(H^{-1})$ that have been established.

The following lemma relates cycle parity in $D(H)$ to sign-nonsingularity of H^{-1}.

Lemma 4.2: Suppose H is negative-diagonal, sign-invertible and $H^{-1} = \text{neg}H$. Then H^{-1} is sign-nonsingular if and only if all cycles in $D(H)$ are even.

Proof: We make use in the proof of the well known result due to Bassett, Maybee and Quirk (see [3]) that a negative-diagonal pattern H is sign-nonsingular if and only if its digraph contains no positive cycles. First suppose all cycles in $D(H)$ are even. Since H is sign-nonsingular, any cycle in $D(H)$ is negative, and hence has odd negative-arc parity, so any cycle in $D(H)$, being even, has odd positive-arc parity as well. Since $H^{-1} = \text{neg}H$, it follows that any cycle in $D(H^{-1})$ has odd negative-arc parity, so that all cycles in $D(H^{-1})$ are negative and H^{-1} is sign-nonsingular.

Now suppose that H^{-1} is sign-nonsingular, so that all cycles in $D(H^{-1})$ are negative, and hence have odd negative-arc parity. Since $H^{-1} = \text{neg}H$, it follows that all cycles in $D(H)$ have odd positive-arc parity. Since H is sign-nonsingular, and since all cycles in $D(H)$ are therefore negative, all cycles in $D(H)$ must have odd negative-arc parity, and are therefore even.

The next lemma shows that no cycles of length greater than two can occur in sign-invertible patterns for which $H^{-1} = \text{neg}H$.

Lemma 4.3: Suppose H is negative-diagonal, sign-invertible and $H^{-1} = \text{neg}H$. Then any cycle in $D(H)$ has length two.

Proof: Since $H^{-1} = \text{neg}H$, $D(H)$ is transitively closed by Proposition 3.2. Thus if $D(H)$ contains a cycle of length $p > 2$, it follows that $D(H)$ contains a complete subdigraph of order p. Such a subdigraph contains a double 3-cycle, which guarantees the existence of a positive cycle in $D(H)$, contradicting the sign-nonsingularity of H. Thus all cycles in $D(H)$ have length two.

We use these lemmas to show that the sign-nonsingularity of H^{-1} follows directly from the condition $H^{-1} = \text{neg}H$.

Proposition 4.4: Suppose H is negative-diagonal, sign-invertible and $H^{-1} = \text{neg}H$. Then H^{-1} is sign-nonsingular.

Proof: By Lemma 4.3, all cycles in $D(H)$ have length two, and are therefore even. So by Lemma 4.2, H^{-1} is sign-nonsingular.

This shows that condition $C1$ from Proposition 2.1 is satisfied for H^{-1} as long as $H^{-1} = \text{neg}H$. We now develop conditions on $D(H)$ that will insure that condition $C2$ will be satisfied for H^{-1}.

Proposition 4.5: Suppose H is negative-diagonal, sign-invertible and $H^{-1} = \text{neg}H$. Then H^{-1} satisfies condition $C2$ if and only if for each pair of distinct vertices (i, j) in $D(H)$, all paths from i to j in $D(H)$ have the same positive-arc parity.
Proof: Let \((i, j)\) be an arbitrary pair of distinct vertices from \(D(H)\), and suppose that all paths from \(i\) to \(j\) in \(D(H)\) have the same positive-arc parity. Since \(H^{-1} = negH\), all paths from \(i\) to \(j\) in \(D(H^{-1})\) have the same negative-arc parity, and hence the same sign, fulfilling condition \(C2\) for \(H^{-1}\). Now suppose \(C2\) holds for \(H^{-1}\), i.e. that all paths from \(i\) to \(j\) in \(D(H^{-1})\) have the same sign, and hence the same negative-arc parity. Since \(H^{-1} = negH\), all paths from \(i\) to \(j\) in \(D(H)\) have the same positive-arc parity.

The foregoing results are summarized in the following theorem.

Theorem 4.6: Suppose \(H\) is negative-diagonal, sign-invertible and \(H^{-1} = negH\). Then \(H\) is fully sign-invertible if and only if for each pair of distinct vertices \((i, j)\) in \(D(H)\), all paths from \(i\) to \(j\) in \(D(H)\) have the same positive-arc parity.

Proof: For sufficiency, Propositions 4.4 and 4.5 respectively imply that \(H^{-1}\) satisfies conditions \(C1\) and \(C2\). Thus by Proposition 2.1 \(H^{-1}\) is sign-invertible, so that \(H\) is fully sign-invertible.

For necessity, suppose that the hypotheses of the theorem hold and \(H\) is fully sign-invertible, so that \(H^{-1}\) is sign-invertible. Then Proposition 2.1 implies that \(H^{-1}\) satisfies condition \(C2\), and so Proposition 4.5 implies that the parity condition holds.

5. Sign-Invertibility and Symplectic Pairs

In this section we establish some results linking Symplectic Pairs to sign-invertibility and full sign-invertibility, and characterize the negative-diagonal patterns that require Symplectic Pairs.

For a sign pattern \(H\) to require Symplectic Pairs, \(H\) must be sign-invertible, with the added requirement that that \(H^{-1} = H^T\); in other words, a pattern \(H\) that allows S-Pairs will require S-Pairs if and only if \(H\) is sign-invertible. Now \(H^T\) is sign-nonsingular if and only if \(H\) is; furthermore, since there is a one-to-one correspondence between the \((i, j)\)-paths of \(H\) and the \((j, i)\)-paths of \(H^T\), it follows that \(H^T\) will be sign-invertible if and only if \(H\) is. So for a sign pattern \(H\) that allows Symplectic Pairs, sign-invertibility and full sign-invertibility coincide.

We now give a complete characterization of the negative-diagonal sign patterns that require Symplectic Pairs.

Proposition 5.1: A negative-diagonal sign pattern \(H\) requires Symplectic Pairs if and only if \(D(H)\) is the disjoint union of isolated vertices and negative 2-cycles.

Remark: An equivalent characterization, given in terms of the pattern \(H\) itself rather than \(D(H)\), is that the negative-diagonal pattern \(H\) requires Symplectic Pairs if and only if there exists a permutation matrix \(P\) such that \(PHP^T\) is the direct sum of \(m\) copies of the \(2 \times 2\) pattern

\[
J = \begin{pmatrix}
-1 & 1 \\
-1 & -1
\end{pmatrix}
\]

with the negative identity matrix \(I_{n-2m}\), where \(m\) is the number of 2-cycles in \(D(H)\).

Proof: Suppose \(H\) requires Symplectic Pairs. Then \(H\) is sign-invertible, and hence fully sign-invertible, so \(H^{-1} = H^T = negH\). Thus, for any two distinct vertices \(i\) and \(j\) of
$D(H)$, the existence of arc (i, j) in $D(H)$ implies the existence of the arc (j, i) in $D(H)$ with opposite sign, inducing a negative 2-cycle. To see that no pair of 2-cycles can share a common vertex, suppose the opposite, i.e. that there exists a 2-cycle corresponding to both of the pairs (i, j) and (i, k). Then there is a path from j to k, so that the arc (j, k) exists by Proposition 3.2. The resulting 3-cycle contradicts Lemma 4.3. Thus $D(H)$ is the disjoint union of isolated vertices and negative 2-cycles.

Now suppose $D(H)$ is the disjoint union of isolated vertices and negative 2-cycles, and recall the statement of Proposition 2.1. Since all cycles in $D(H)$ are negative, H is sign-nonsingular, so that H satisfies $C1$. Since, given two distinct vertices i and j from $D(H)$, the only possible path from i to j is arc (i, j), H satisfies property $C2$, so that H is sign-invertible by Proposition 2.1. In addition, the transitive closure of $D(H)$ is trivially identical to $D(H)$ in this case, so that $H^{-1} = negH$ by Proposition 3.2. Since $D(H)$ is the disjoint union of isolated vertices and negative 2-cycles, it follows that $H^T = negH$, from which we have $H^T = H^{-1}$. Thus H requires Symplectic Pairs.

6. Arbitrary Sign Patterns and Symplectic Pairs

In Section 5, we characterized the negative-diagonal sign patterns H that require Symplectic Pairs in terms of conditions on $D(H)$. We now extend these results to arbitrary sign patterns by showing that allowing Symplectic Pairs is a sign-equivalence class property.

Proposition 6.1: Suppose H allows Symplectic Pairs, and $G \sim H$. Then G allows Symplectic Pairs.

Proof: By assumption, there exist permutation matrices P and R and signature matrices X and Y such that $PXHYR = G$. Since H allows Symplectic Pairs, there is a matrix $A \in Q(H)$ such that $A^{-1} \in Q(H^T)$. Then $PXAYR \in Q(G)$ and $(PXAYR)^{-1} = R^TYA^{-1}XP^T \in Q(R^TYA^TXP^T) = Q((PXAYR)^T) = Q(G^T)$. So G allows Symplectic Pairs.

Proposition 6.1 shows that allowing S-pairs is a sign-equivalence class property. The following corollary discusses the repercussions in terms of requiring Symplectic Pairs.

Corollary 6.2: Suppose the sign pattern H requires Symplectic Pairs and $G \sim H$. Then G requires Symplectic Pairs.

Proof: Since H requires Symplectic Pairs, H is sign-invertible, and since sign-invertibility is a sign-equivalence class property, G is sign-invertible. Since H requires Symplectic Pairs, H allows Symplectic Pairs, and hence G allows Symplectic Pairs by Proposition 6.1. Thus we conclude that G requires Symplectic Pairs.

Corollary 6.2 shows that our result regarding negative-diagonal sign patterns and requirement of Symplectic Pairs carries over to arbitrary patterns as follows. Given an arbitrary pattern H that is not combinatorially singular (in which case H couldn't even allow Symplectic Pairs), there exists a negative-diagonal pattern G such that $G \sim H$. Having constructed such a G, we can use Proposition 5.1 to test G for requirement of Symplectic Pairs. Corollary 6.2 then asserts that H will require Symplectic Pairs if and
only if G does. Proposition 5.1 therefore provides a characterization of all patterns that require Symplectic Pairs.

7. Conclusions

To summarize, the sign-invertibility of the negative-diagonal sign pattern H can be tested by checking that $C1$ and $C2$ hold for H (Thomassen [3] gave a polynomial-time algorithm for performing this task). Having confirmed H's sign-invertibility, we can test H for full sign-invertibility graphically, using only $D(H)$, as follows. The condition $H^{-1} = negH$, which is necessary for H's full sign-invertibility, can be checked using $D(H)$ and Proposition 3.2. Once this condition is confirmed, H^{-1} is automatically sign-nonsingular, and full sign-invertibility of H can be checked using $D(H)$ and Theorem 4.6.

The arbitrary sign pattern H can be checked for requirement of Symplectic Pairs as follows. If H is combinatorially singular, H doesn't require (or, indeed, allow) Symplectic Pairs. If H isn't combinatorially singular, there exists a negative-diagonal pattern G satisfying $G \sim H$ which can be checked for requirement of Symplectic Pairs via Proposition 5.1. H will require Symplectic Pairs if and only if G does.

8. Acknowledgements

The authors would like to acknowledge the referee's contribution of several helpful suggestions, in particular the alternate characterization of patterns requiring Symplectic Pairs discussed in the remark following Proposition 5.1.
References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1135</td>
<td>Avner Friedman & J.L. Velázquez</td>
<td>The analysis of coating flows in a strip</td>
</tr>
<tr>
<td>1136</td>
<td>Eduardo D. Sontag</td>
<td>Control of systems without drift via generic loops</td>
</tr>
<tr>
<td>1137</td>
<td>Yuan Wang & Eduardo D. Sontag</td>
<td>Orders of input/output differential equations and state space dimensions</td>
</tr>
<tr>
<td>1138</td>
<td>Scott W. Hansen</td>
<td>Boundary control of a one-dimensional, linear, thermoelastic rod</td>
</tr>
<tr>
<td>1139</td>
<td>Robert Lipton & Bogdan Vernescu</td>
<td>Homogenization of two phase emulsions with surface tension effects</td>
</tr>
<tr>
<td>1140</td>
<td>Scott Hansen & Enrique Zuazua</td>
<td>Exact controllability and stabilization of a vibrating string with an interior point mass</td>
</tr>
<tr>
<td>1141</td>
<td>Bei Hu & Jiongmin Yong</td>
<td>Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints</td>
</tr>
<tr>
<td>1142</td>
<td>Mark H.A. Davis</td>
<td>A deterministic approach to optimal stopping with application to a prophet inequality</td>
</tr>
<tr>
<td>1143</td>
<td>M.H.A. Davis & M. Zervos</td>
<td>A problem of singular stochastic control with discretionary stopping</td>
</tr>
<tr>
<td>1144</td>
<td>Bernardo Cockburn & Pierre-Alain Gremaud</td>
<td>An error estimate for finite element methods for scalar conservation laws</td>
</tr>
<tr>
<td>1145</td>
<td>David C. Dobson & Fadil Santos</td>
<td>An image enhancement technique for electrical impedance tomography</td>
</tr>
<tr>
<td>1146</td>
<td>Jin Ma, Philip Procter, & Jiongmin Yong</td>
<td>Solving forward-backward stochastic differential equations explicitly — a four step scheme</td>
</tr>
<tr>
<td>1147</td>
<td>Yong Liu</td>
<td>The equilibrium plasma subject to skin effect</td>
</tr>
<tr>
<td>1148</td>
<td>Ulrich Hornung</td>
<td>Models for flow and transport through porous media derived by homogenization</td>
</tr>
<tr>
<td>1149</td>
<td>Avner Friedman, Chaocheng Huang, & Jiongmin Yong</td>
<td>Effective permeability of the boundary of a domain</td>
</tr>
<tr>
<td>1150</td>
<td>Gang Bao</td>
<td>A uniqueness theorem for an inverse problem in periodic diffractive optics</td>
</tr>
<tr>
<td>1151</td>
<td>Angelo Favini, Mary Ann Horn, & Irena Lasiecka</td>
<td>Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1152</td>
<td>E.G. Kalnins & Willard Miller, Jr.</td>
<td>Models of (q)-algebra representations: (q)-integral transforms and "addition theorems"</td>
</tr>
<tr>
<td>1153</td>
<td>E.G. Kalnins, V.B. Kuznetsov & Willard Miller, Jr.</td>
<td>Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet</td>
</tr>
<tr>
<td>1154</td>
<td>A. Kersch, W. Morokoff & Chr. Werner</td>
<td>Selfconsistent simulation of sputtering with the DSMC method</td>
</tr>
<tr>
<td>1155</td>
<td>Bing-Yu Zhang</td>
<td>A remark on the Cauchy problem for the Korteweg-de Vries equation on a periodic domain</td>
</tr>
<tr>
<td>1156</td>
<td>Gang Bao</td>
<td>Finite element approximation of time harmonic waves in periodic structures</td>
</tr>
<tr>
<td>1157</td>
<td>Tao Lin & Hong Wang</td>
<td>Recovering the gradients of the solutions of second-order hyperbolic equations by interpolating the finite element solutions</td>
</tr>
<tr>
<td>1158</td>
<td>Zhangxin Chen</td>
<td>(L^p)-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems</td>
</tr>
<tr>
<td>1159</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>Homogenization of compositional flow in fractured porous media</td>
</tr>
<tr>
<td>1160</td>
<td>L. Qiu, B. Bernhardsson, A. Rantzner, E.J. Davison, P.M. Young & J.C. Doyle</td>
<td>A formula for computation of the real stability radius</td>
</tr>
<tr>
<td>1161</td>
<td>Maria Inés Troparevsky</td>
<td>Adaptive control of linear discrete time systems with external disturbances under inaccurate modelling: A case study</td>
</tr>
<tr>
<td>1162</td>
<td>Petr Klouček & Franz S. Rys</td>
<td>Stability of the fractional step (\Theta)-scheme for the nonstationary Navier-Stokes equations</td>
</tr>
<tr>
<td>1163</td>
<td>Eduardo Casas, Luis A. Fernández & Jiongmin Yong</td>
<td>Optimal control of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1164</td>
<td>Darrell Duffie, Jin Ma & Jiongmin Yong</td>
<td>Black's consol rate conjecture</td>
</tr>
<tr>
<td>1165</td>
<td>D.G. Aronson & J.L. Vazquez</td>
<td>Anomalous exponents in nonlinear diffusion</td>
</tr>
<tr>
<td>1166</td>
<td>Ruben D. Spies</td>
<td>Local existence and regularity of solutions for a mathematical model of thermomechanical phase transitions in shape memory materials with Landau-Ginzburg free energy</td>
</tr>
<tr>
<td>1167</td>
<td>Pu Sun</td>
<td>On circular pipe Poiseuille flow instabilities</td>
</tr>
<tr>
<td>1168</td>
<td>Angelo Favini, Mary Ann Horn, Irena Lasiecka & Daniel Tataru</td>
<td>Global existence, uniqueness and regularity of solutions to a Von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1169</td>
<td>A. Dontchev, Tz. Donchev & I. Slavov</td>
<td>On the upper semicontinuity of the set of solutions of differential inclusions with a small parameter in the derivative</td>
</tr>
<tr>
<td>1170</td>
<td>Jin Ma & Jiongmin Yong</td>
<td>Regular-singular stochastic controls for higher dimensional diffusions — dynamic programming approach</td>
</tr>
<tr>
<td>1171</td>
<td>Alex Solomonoff</td>
<td>Bayes finite difference schemes</td>
</tr>
<tr>
<td>1172</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>On the implementation of mixed methods as nonconforming methods for second order elliptic problems</td>
</tr>
<tr>
<td>1173</td>
<td>Zhangxin Chen & Bernardo Cockburn</td>
<td>Convergence of a finite element method for the drift-diffusion semiconductor device equations: The multidimensional case</td>
</tr>
<tr>
<td>1174</td>
<td>Boris Mordukhovich</td>
<td>Optimization and finite difference approximations of nonconvex differential inclusions with free time</td>
</tr>
</tbody>
</table>
Avner Friedman, David S. Ross, and Jianhua Zhang, A Stefan problem for reaction-diffusion system
Alex Solomonoff, Fast algorithms for micromagnetic computations
Nikan B. Firoozye, Homogenization on lattices: Small parameter limits, H-measures, and discrete Wigner measures
G. Yin, Adaptive filtering with averaging
Wlodzimierz Byrc and Amir Dembo, Large deviations for quadratic functionals of Gaussian processes
Ilja Schmelzer, 3D anisotropic grid generation with intersection-based geometry interface
Alex Solomonoff, Application of multipole methods to two matrix eigenproblems
A.M. Latypov, Numerical solution of steady euler equations in streamline-aligned orthogonal coordinates
Bei Hu & Hong-Ming Yin, Semilinear parabolic equations with prescribed energy
Bei Hu & Jianhua Zhang, Global existence for a class of Non-Fickian polymer-penetrant systems
Rongze Zhao & Thomas A. Posbergh, Robust stabilization of a uniformly rotating rigid body
Mary Ann Horn & Irena Lasiecka, Uniform decay of weak solutions to a von Kármán plate with nonlinear boundary dissipation
Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions to a von Kármán system with nonlinear dissipative boundary conditions
Mary Ann Horn, Nonlinear boundary stabilization of a von Kármán plate via bending moments only
Frank H. Shaw & Charles J. Geyer, Constrained covariance component models
Tomasz Luczaka, A greedy algorithm estimating the height of random trees
Timo Seppäläinen, Maximum entropy principles for disordered spins
Yuandan Lin, Eduardo D. Sontag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for nonlinear stability
Svante Janson, Random regular graphs: Asymptotic distributions and contiguity
Rachid Ababou, Random porous media flow on large 3-D grids: Numerics, performance, & application to homogenization
Moshe Fridman, Hidden Markov model regression
Petr Klouček, Bo Li & Mitchell Luskin, Analysis of a class of nonconforming finite elements for Crystalline microstructures
Steven P. Lalley, Random series in inverse Pisot powers
Rudy Yakick, Expected optimal exercise time of a perpetual American option: A closed-form solution
Rudy Yakick, Valuation of an American put catastrophe insurance futures option: A Martingale approach
János Pach, Farhad Shahrokhi & Mario Szegedy, Application of the crossing number
Avner Friedman & Chaocheng Huang, Averaged motion of charged particles under their self-induced electric field
Joel Spencer, The Erdős-Hanani conjecture via Talagrand’s inequality
Zhangxin Chen, Superconvergence results for Galerkin methods for wave propagation in various porous media
Russell Lyons, Robin Pemantle & Yuval Peres, When does a branching process grow like its mean? Conceptual proofs of $L \log L$ criteria
Robin Pemantle, Maximum variation of total risk
Robin Pemantle & Yuval Peres, Galton-Watson trees with the same mean have the same polar sets
Robin Pemantle, A shuffle that mixes sets of any fixed size much faster than it mixes the whole deck
Itai Benjamini, Robin Pemantle & Yuval Peres, Martin capacity for Markov chains and random walks in varying dimensions
Wlodzimierz Bryc & Amir Dembo, On large deviations of empirical measures for stationary Gaussian processes
Martin Hildebrand, Some random processes related to affine random walks
Alexander E. Mazel & Yuri M. Suhov, Ground states of a Boson quantum lattice model
Roger L. Fosdick & Darren E. Mason, Single phase energy minimizers for materials with nonlocal spatial dependence
Bruce Hajek, Load balancing in infinite networks
Petr Klouček, The transonic flow stability analysis and numerical results
Petr Klouček, On the existence of the entropic solutions for the transonic flow problem
David A. Schmidt & Clijan C. Lim, Full sign-invertibility and symplectic matrices
Piermarco Cannarsa & Maria Elisabetta Tessitore, Infinite dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type
Zhangxin Chen, Multigrid algorithms for mixed methods for second order elliptic problems
Zhangxin Chen, Expanded mixed finite element methods for linear second order elliptic problems I
Gang Bao, A note on the uniqueness for an inverse diffraction problem
Moshe Fridman, A two state capital asset pricing model
Paolo Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation
Carl Dou & Martin Hildebrand, Enumeration and random random walks on finite groups
Jaksu Cvitanic & Ioannis Karatzas, On portfolio optimization under “drawdown” constraints
Avner Friedman & Yong Liu, A free boundary problem arising in magnetohydrodynamic system