ON THE EXISTENCE OF THE ENTROPIC SOLUTIONS
FOR THE TRANSONIC FLOW PROBLEM

By

Petr Klouček

IMA Preprint Series # 1215
March 1994
ON THE EXISTENCE OF THE ENTROPIC SOLUTIONS FOR THE TRANSONIC FLOW PROBLEM

PETR KLOUČEK
University of Minnesota

ABSTRACT. Full Potential Equation is studied using the time dependent formulation. The original entropic solution of FPE is obtained as an asymptotic solution of a quasilinear parabolic equation.

INTRODUCTION

Results contained in the presented paper are the further development of the paper by P.Klouček, J.Nečas [1]. The spirit of the analysis for the pseudo-time-dependent approach is taken from the paper of A.Friedman, J.Nečas [2].

The "nearest" mathematical model, bringing the problem of transonic flow within the framework of well-established theory, is the so-called Unsteady Transonic Flow Problem . The analysis of the existence and eventually the unicity of the resulting nonlinear second order hyperbolic equation is still an open problem.

Most of the numerical methods for the calculating of transonic flow can be rewritten in a form, from which a successive iteration could be derived, using an artificial time coordinate (see e.g. Jameson [3],[4], Hafez,South,Murman [5]). Typically, one ends up with

$$\alpha_1 u_{xt} + \alpha_2 u_{yt} + \alpha_3 u_t = - \text{div}(\rho(|\nabla u|^2) \nabla u),$$

where u is the velocity potential. Implementing the code onto the parallel systems, one has to avoid the sequential updating and this requirement calls for introducing the term u_{tt} (see Jameson, Keller [6]). Further comments on the time-dependent approach can be found in Zanetti et al. [7], on the pseudo-unsteady methods in Veuilhot, Vivian [51]. All the indications show that the time-dependent or pseudo-time-dependent approaches to the Transonic Flow Problems have the advantages from the point of view of the physical approach, mathematical model and implementation. Though it is not clear whereas there is uniqueness or not in the original stationary problem (Steinhoff, Jameson [9]), we can use these models to capture the steady-state.

Here, we deal with a similar situation. We start from the assumption of adiabatic, isentropic, nonviscous, irrational steady flow, we introduce an artificial time coordinate and we add the damping

$$u_{tt} - \Delta u_t,$$

into the original equation. In such a way we solve the quasilinear parabolic equation. We expect to obtain a solution which converges to the entropic solution of the original stationary problem, if time goes to infinity.

1991 Mathematics Subject Classification. 76H05, 35K55, 35D10.

Key words and phrases. Full Potential Equation, Quasilinear parabolic equation, Entropic solution, Asymptotic solution, Generic solution.

This work was done as a part of the author's Ph.D. program while at the Mathematical Institute of Charles University at Prague

Typeset by AMS-TEX
1. Formulation of the problem

Prior to the further development of the theory we briefly mention the formulation of the problem and results from [1].

We consider the steady, inviscid, irrotational, adiabatic and isentropic flow of an ideal gas in two or three dimensions. This situation is covered by the following system of equations:

\(\nabla \cdot (\rho \cdot \vec{v}) = 0,\) \hspace{1cm} \text{conservation of mass}, \hspace{1cm} (1.1)

\(\vec{v} \cdot (\nabla \vec{v}) = -\frac{1}{\rho} \nabla p,\) \hspace{1cm} \text{conservation of momentum}, \hspace{1cm} (1.2)

\(\frac{p}{p_0} = \left(\frac{\rho}{\rho_0}\right)^\kappa,\) \hspace{1cm} \text{adiabatic, isentropic, ideal gas flow}, \hspace{1cm} (1.3)

\(\nabla \times \vec{v} = 0\) \hspace{1cm} \text{and irrotationality.} \hspace{1cm} (1.4)

Here \(\vec{v}\) is the velocity vector, \(\rho\) the density, \(p\) the pressure and \(\kappa\) the heat conductivity \((\kappa = 1.4\ \text{for air})\) and \(p_0, \rho_0\) are the stagnation values of the density and pressure.

We will consider the system to be in a bounded domain \(\Omega \subset \mathbb{R}^n, \ n = 2, 3\). We assume, that the boundary \(\partial \Omega\) is smooth enough and thus there exists a function \(u \in C^2(\Omega)\) such that \(\nabla u = \vec{v}\) which is called velocity potential. From (1.2)-(1.4) we can obtain the density as the function of the velocity potential

\(\rho = \rho_0 \left(1 - \frac{\kappa - 1}{2a_0^2} |\nabla u|^2\right)^{\frac{1}{\kappa - 1}},\) \hspace{1cm} (1.5)

where \(a\) is the local speed of sound and \(a_0\) corresponds to the stagnation values of \(\rho\) and \(p\). The density \(\rho(s)\) is defined for \((s \equiv |\nabla u|^2)\)

\(0 \leq s \leq \frac{2a_0^2}{\kappa - 1}.\) \hspace{1cm} (1.6)

Here, we will consider the density to be extended smoothly to all of \(\mathbb{R}^+,\) such that the following conditions hold

\(0 < \rho_1 \leq \rho(s) \leq \rho_2 < \infty,\) \hspace{1cm} (1.7)

\(\rho'(s) \leq 0,\) \hspace{1cm} (1.8)

\(-\rho'(s)s \leq C_E < \infty.\) \hspace{1cm} (1.9)

Equation (1.1) with the density (1.5), in two dimensions can also be written as

\((a^2 - u_x^2)u_{xx} - 2u_xu_yu_{xy} + (a^2 - u_y^2)u_{yy} = 0,\) \hspace{1cm} (1.10)

(the indexes \(x\) and \(y\) denote the derivatives with respect to \(x\) - and \(y\) - direction), has clearly the elliptic/hyperbolic character. The equation is elliptic (and the flow subsonic) in a region \(\Omega_1 \subset \Omega,\) if

\(|\nabla u|^2 < \frac{2a_0^2}{\kappa + 1},\) \hspace{1cm} \text{in } \Omega_1,\) \hspace{1cm} (1.11)
and hyperbolic (and the flow transonic) in a region $\Omega_2 \subset \Omega$, if

\begin{equation}
|\nabla u|^2 > \frac{2a_0^2}{\kappa + 1}, \quad \text{in } \Omega_2.
\end{equation}

To keep in mind the physical origin of the problem, we usually have to restrict ourselves to the class of the solutions for which there exists a certain constant, say C_{ph}, that

\begin{equation}
|\nabla u|^2 \leq C_{ph} < \infty.
\end{equation}

This condition ensures that the norm of the solution can be only in that part of \mathcal{R}^+, for which the density is naturally defined. We do not apply this condition in the subsequent theory but it plays a very important role in numerical experiments.

2. Method of Stabilization

Instead of the steady state velocity potential $u = u(x)$, we will consider a time dependent function

\begin{equation}
u = u(x, t), \quad x \in \Omega, \quad t \in [0, T].\end{equation}

We perturbate the equation (1.12) to obtain its regularized parabolic counterpart

\begin{equation}
\dddot{u} - \Delta \dot{u} - \text{div}(\rho(|\nabla u|^2)\nabla u) = 0.
\end{equation}

For this equation, we formulate the initial-boundary-value problem.

Let Ω be a bounded domain in \mathcal{R}^n, $n = 2, 3$, with C^2 boundary $\partial \Omega$; for any $T > 0$ we set

\begin{align*}
\Omega_T &= \{(x, T) \mid x \in \Omega\} \quad \text{and} \\
Q_T &= \{(x, t) \mid x \in \Omega, t \in [0, T]\}.
\end{align*}

Let us consider the equation (2.2) in Q_T, with the initial conditions

\begin{align*}
u(x, 0) &= u_0(x), \quad \text{for } x \in \Omega, \\
\dot{u}(x, 0) &= u_1(x), \quad \text{for } x \in \Omega,
\end{align*}

and the boundary condition

\begin{equation}
\frac{\partial \dot{u}}{\partial n}(x, t) + \rho(|\nabla u(x, t)|^2)\frac{\partial u}{\partial n}(x, t) = g(x), \quad \text{for } x \in \partial \Omega, \quad t \in [0, T].
\end{equation}

Here $\frac{\partial}{\partial n}$ denotes the differentiation with respect to the outer normal of $\partial \Omega$. We assume that

\begin{align*}
\|g(x)\| \leq \text{const.} < \infty, \quad \text{for } x \in \partial \Omega \quad \text{and} \\
\int_{\partial \Omega} g(x) \, dS &= 0.
\end{align*}

The last requirement is natural; it corresponds to the conservation of mass.
3. Weak formulation of the problem

Definition 3.1. A function \(\dot{u} \) is called a weak solution to (2.2)-(2.5) if

\[
\begin{align*}
\dot{u} &\in L^\infty([0, T], W^{1,2}(\Omega)), \\
\bar{u} &\in L^2(Q_T)
\end{align*}
\]

and (2.2)-(2.5) are satisfied in the following sense

\[
\int_0^T \int_{Q_T} (\bar{u} \cdot \varphi + \nabla \dot{u} \cdot \nabla \varphi + \rho(|\nabla u|^2) \nabla u \cdot \nabla \varphi) \, dx \, dt = \int_0^T \int_{\partial \Omega} g \varphi \, dS \, dt,
\]

for any \(\varphi \in L^2([0, T], W^{1,2}(\Omega)) \), and any \(T > 0 \).

Remark 3.2. We assume that

\[
u_0 \in W^{1,2}(\Omega), \, u_1 \in W^{1,2}(\Omega).
\]

We use the following notation. \(L^p([0, T], X) \) is a space of time dependent, \(X \)-valued functions, defined as follows:

\[
L^p([0, T], X) = \left\{ x: x(t) \in X \text{ a.e. on } [0, T], x \text{ is a measurable function of } t, \int_0^T \| x(t) \|_X^p \, dt < \infty \right\}.
\]

In the case \(p = \infty \), we replace the last condition in the above definition by

\[
\sup_{t \in [0, T]} \| x(t) \|_X < \infty.
\]

We identify \(L^p(Q_T) \) with \(L^p([0, T], L^p(\Omega)) \) and write \(u \in W^{k,p}_{\text{loc}}(\Omega) \), if \(u \in W^{k,p}(\Omega') \) for any compact subdomain \(\Omega' \) of \(\Omega \). By \(D(\Omega) \) we denote the set of all functions from \(C^\infty(\overline{\Omega}) \) with a compact support in \(\Omega \) and by \(D^+(\Omega) \), the functions from \(D(\Omega) \) which are positive.

We observe that from (3.1) that

\[
\dot{u} \in C([0, T], L^2(\Omega));
\]

thus \(u(., 0) \) and \(\dot{u}(., 0) \) are well defined.

4. Global existence and unicity of the Strong solution

The following theorems and lemmas can be found with detail proofs in [1].

Theorem 4.1. Assume that the conditions (1.7)-(1.9) for the density, the bounds (2.6), (2.7) for the boundary function \(g \) and the regularity requirements (3.3) for the initial values, are satisfied. Then, there exists a uniquely determined function \(\dot{u} \) which is the weak solution of (2.2)-(2.5), for any \(T > 0 \).
Theorem 4.2. Let Ω be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function g, the regularity requirements (3.3) for the initial values, be valid. Let $\tilde{u} \in L^\infty([0,T],W^{1,2}(\Omega))$ be the weak solution asserted by Theorem 4.1. Further, let σ be a smooth positive function, zero on the boundary of Ω. Then

$$
(4.1) \quad \iint_{Q_T} \left(\frac{\partial^2 \tilde{u}}{\partial x_i \partial x_j} - \sigma \right)^2 \, dx \, dt \leq C \left(\| \tilde{u} \|^2_{L^\infty([0,T],W^{1,2}(\Omega))} + \| \tilde{u} \|^2_{L^2(Q_T)} \right),
$$

for $1 \leq i, j \leq n$.

Under somewhat stronger assumptions (compare with those of Theorem 4.2, we can guarantee the global existence of the strong solution.

Lemma 4.3. Let all the assumptions of Theorem 4.2 be satisfied and, moreover, let

$$
(4.2) \quad \int_{\Omega} u(x,0) \, dx = \int_{\Omega} \tilde{u}(x,0) \, dx = 0.
$$

Then there exists a constant C which does not depend on T, such that

$$
(4.3) \quad \int_{\Omega_T} |\tilde{u}|^2 \, dx + \iint_{Q_T} |\nabla \tilde{u}|^2 \, dx \, dt + \int_{\Omega_T} |\nabla u|^2 \, dx \leq C < \infty.
$$

Lemma 4.4. Under the assumptions of the preceding Lemma 4.3, there exists a constant C which does not depend on T, such that

$$
(4.4) \quad \iint_{Q_T} |\tilde{u}|^2 \, dx \, dt + \int_{\Omega_T} |\nabla \tilde{u}|^2 \, dx \leq C < \infty.
$$

Theorem 4.5. Let Ω be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function g, be valid. Let, moreover, (4.2) and (3.3) for the initial solutions, be true. Then there exists the unique global strong solution of the problem (2.2)-(2.5).

5. Additional regularity of the weak solution

Using the lemmas of the preceding paragraph, we can derive additional regularity results.

Theorem 5.1. Let Ω be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function g, be valid. Let (4.2) for the initial solutions, be true. Let assume, moreover, that

$$
 u_0 \in W^{2,2}(\Omega), \quad u_1 \in W^{2,2}(\Omega).
$$

Then there exists a constant C which does not depend on T, such that

$$
(5.1) \quad \int_{\Omega_T} |\tilde{u}|^2 \, dx + \iint_{Q_T} |\nabla \tilde{u}|^2 \, dx \, dt \leq C.
$$
Proof. We approximate the initial values \(u_0 \) and \(u_1 \) by the smooth initial values \(u_0^\lambda, u_1^\lambda \), as \(\lambda \to 0 \), in \(C^2(\Omega) \). By a fixed point argument we can prove (since the density \(\rho \) is a smooth positive bounded function) that the problem (2.2)-(2.5) with the initial data \(u_0^\lambda, u_1^\lambda \) has a classical solution in \(Q_{T_*} \), if \(T_* \) is small enough. The strong solution, asserted by Theorem 4.5, has to coincide with the classical solution for any \(t < T_* \) and, as \(\lambda \to 0 \),

\[
(5.2) \quad u^\lambda \to u \quad \text{in} \quad C^1([0,T_*], W^{1,2}(\Omega)).
\]

We, now, work with finite differences in time. Let us denote

\[
(5.3) \quad \tilde{\partial}_t \tilde{u}(x,t) \equiv \frac{1}{\Delta t} (\tilde{u}(x,t + \Delta t) - \tilde{u}(x,t)).
\]

In the interval \([0, T - \Delta t]\) which is again written as \([0,T]\), we have the existence of the weak solution \(\tilde{\partial}_t u^\lambda \), for the initial values \(u_0^\lambda, u_1^\lambda \). Because the function \(g \) from the definition of the boundary condition (2.5) is constant in time, we have

\[
(5.4) \quad \iint_{Q_T} \tilde{\partial}_t \tilde{u}^\lambda \cdot \varphi \, dx \, dt + \iint_{Q_T} \nabla \tilde{\partial}_t \tilde{u}^\lambda \cdot \nabla \varphi \, dx \, dt + \iint_{Q_T} \tilde{\partial}_t (\rho(|\nabla u^\lambda|^2) \nabla u^\lambda) \cdot \nabla \varphi \, dx \, dt = 0,
\]

where \(\tilde{\partial}_t \rho(|\nabla u|^2) \nabla u = \frac{1}{\Delta t} \left((\rho(|\nabla u|^2) \nabla u)|_{t+\Delta t} - (\rho(|\nabla u|^2) \nabla u)|_t \right) \). We introduce

\[
(5.5) \quad w(\tau) = \tau u^\lambda(t + \Delta t) + (1 - \tau) u^\lambda(t)
\]

\[
(5.6) \quad \tilde{\xi}(\tau) = \rho(|\nabla w(\tau)|^2) \nabla w(\tau)
\]

In view of the above notation it holds

\[
\tilde{\partial}_t (\rho(|\nabla u^\lambda|^2) \nabla u^\lambda) = \frac{1}{\Delta t} \int_0^1 \frac{d}{d\tau} \tilde{\xi}(\tau) \, d\tau =
\]

\[
(5.7) \quad \int_0^1 \left((\rho(|\nabla w|^2) \tilde{\partial}_t \nabla u^\lambda + 2 \rho'(|\nabla w|^2) (\nabla w \cdot \tilde{\partial}_t u^\lambda) \nabla w \right) \, d\tau.
\]

Thus, we can rewrite (5.4), substituting \(\varphi = \tilde{\partial}_t \tilde{u}^\lambda \), as

\[
(5.8) \quad \frac{1}{2} \int_{\Omega_T} |\tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx + \iint_{Q_T} |\nabla \tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx \, dt = \frac{1}{2} \int_{\Omega_0} |\tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx -
\]

\[
\iint_{Q_T} \int_0^1 \left(\rho(|\nabla w|^2) \left(\nabla \tilde{\partial}_t u^\lambda \cdot \nabla \tilde{\partial}_t \tilde{u}^\lambda \right) + 2 \rho'(|\nabla w|^2) \left(\nabla w \cdot \nabla \tilde{\partial}_t u^\lambda \right) \left(\nabla w \cdot \nabla \tilde{\partial}_t \tilde{u}^\lambda \right) \right) \, d\tau \, dx \, dt.
\]

This yields

\[
(5.9) \quad \frac{1}{2} \int_{\Omega_T} |\tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx + (1 - C \cdot \varepsilon) \iint_{Q_T} |\nabla \tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx \, dt \leq
\]

\[
\frac{1}{2} \int_{\Omega_0} |\tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx + C \int_{Q_T} |\nabla \tilde{\partial}_t u^\lambda|^2 \, dx \, dt.
\]
As $\Delta t \to 0_+$, the right-hand side of (5.9) converges to

$$
\frac{1}{2} \int_{\Omega_0} |\tilde{u}^\lambda|^2 \, dx + C \int_Q |\nabla \tilde{u}^\lambda|^2 \, dx \, dt.
$$

In view of Lemma 4.3, the second term in (5.10) is bounded independently of T and therefore independently of λ. Since, in view of the assumptions for u_0, u_1, we can choose the approximations u_0^λ, u_1^λ such, that the first term in (5.10) is bounded independently of λ, it thus follows from (5.10), that

$$
\int_{\Omega_T} |\tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx + \int_Q |\nabla \tilde{\partial}_t \tilde{u}^\lambda|^2 \, dx \, dt \leq C
$$

and C does not depend on λ and T. That is

$$
\int_{\Omega_T} |\tilde{u}^\lambda|^2 \, dx \, dt + \int_Q |\nabla \tilde{u}^\lambda|^2 \, dx \, dt \leq C.
$$

Letting $\lambda \to 0_+$ and using (5.2) we get the assertion of this Theorem. \Box

Theorem 5.2. Let Ω be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function g, be valid. Let (4.2) for the initial solutions be true. Let as assume that $u_0 \in W^{2,2}(\Omega)$, $u_1 \in W^{2,2}(\Omega)$, and that the weak solution \tilde{u} satisfies

$$
||\nabla \tilde{u}||_{L^2(\Omega)}^2 \leq \text{const.} < \infty.
$$

Then there exists a constant C, which does not depend on T, such that

$$
\int_Q |\tilde{u}|^2 \, dx \, dt + \int_{\Omega_T} |\nabla \tilde{u}|^2 \, dx \leq C.
$$

Proof. If we use the weak formulation for the finite differences $\tilde{\partial}_t \tilde{u}$, introduced in (5.4) and substituting $\varphi = \tilde{\partial}_t \tilde{u}$, we end up with

$$
\int_{Q_T} |\tilde{\partial}_t \tilde{u}|^2 \, dx \, dt + \int_{Q_T} \nabla \tilde{\partial}_t \tilde{u} \cdot \nabla \tilde{\partial}_t \tilde{u} \, dx \, dt + \int_{Q_T} \tilde{\partial}_t (\rho(|\nabla u|^2) \nabla u) \nabla \tilde{\partial}_t \tilde{u} \, dx \, dt = 0.
$$

It holds

$$
\int_{Q_T} \nabla \tilde{\partial}_t \tilde{u} \cdot \nabla \tilde{\partial}_t \tilde{u} \, dx \, dt = \frac{1}{2} \int_{\Omega_T} |\nabla \tilde{\partial}_t \tilde{u}|^2 \, dx - \frac{1}{2} \int_{\Omega_0} |\nabla \tilde{\partial}_t \tilde{u}|^2 \, dx.
$$

We can write

$$
\int_{Q_T} \tilde{\partial}_t (\rho(|\nabla u|^2) \nabla u) \nabla \tilde{\partial}_t \tilde{u} \, dx \, dt =
$$

$$
\int_{Q_T} \frac{d}{dt} (\tilde{\partial}_t (\rho(|\nabla u|^2) \nabla u) \nabla \tilde{\partial}_t \tilde{u}) \, dx \, dt - \int_{Q_T} \frac{d}{dt} (\tilde{\partial}_t (\rho(|\nabla u|^2) \nabla u)) \nabla \tilde{\partial}_t \tilde{u} \, dx \, dt.
$$
Now, using $\bar{\xi}(\tau)$ defined in (5.6), we have
\[
\iint_{Q_T} \frac{d}{dt} \left(\partial_t \rho(|\nabla u|^2) \nabla u \right) \cdot \nabla \partial_t \dot{u} \, dx \, dt = \frac{1}{\Delta t} \iint_{Q_T} \frac{d}{d\tau} \iint_{0}^{1} \rho(\nabla w) \cdot |\nabla \partial_t \dot{u}|^2 \, d\tau \, dx \, dt + \\
\iint_{Q_T} \rho'(|\nabla w|^2) \frac{\partial w}{\partial x_j} \cdot \frac{\partial \dot{w}}{\partial x_i} \, d\tau \frac{\partial}{\partial x_j} \partial_t u \cdot \frac{\partial}{\partial x_i} \partial_t \dot{u} \, dx \, dt + \\
\iint_{Q_T} \rho'(|\nabla w|^2) \frac{\partial w}{\partial x_j} \cdot \frac{\partial w}{\partial x_i} \, d\tau \frac{\partial}{\partial x_j} \partial_t u \cdot \frac{\partial}{\partial x_i} \partial_t \dot{u} \, dx \, dt + \\
+ \iint_{Q_T} \rho'(|\nabla w|^2) \frac{\partial w}{\partial x_j} \cdot \frac{\partial \dot{w}}{\partial x_i} \, d\tau \frac{\partial}{\partial x_j} \partial_t u \cdot \frac{\partial}{\partial x_i} \partial_t \dot{u} \, dx \, dt + \\
\iint_{Q_T} \rho''(|\nabla w|^2) \frac{\partial w}{\partial x_k} \cdot \frac{\partial \dot{w}}{\partial x_j} \frac{\partial w}{\partial x_i} \frac{\partial \dot{w}}{\partial x_i} d\tau \frac{\partial}{\partial x_j} \partial_t u \cdot \frac{\partial}{\partial x_i} \partial_t \dot{u} \, dx \, dt.
\]

(5.17)

Using (5.15)-(5.17) and the inequality
\[
||\nabla \partial_t u||_{L^2(\Omega)} \leq ||\nabla \dot{u}||_{L^2(\Omega)},
\]
we get from the equation (5.17)
\[
\left| \iint_{Q_T} \frac{d}{dt} \left(\partial_t \rho(|\nabla u|^2) \nabla u \right) \cdot \nabla \partial_t \dot{u} \, dx \, dt \right| \leq \\
C \left(1 + \iint_{Q_T} |\nabla \partial_t \dot{u}| \, dx \, dt \right).
\]

(5.18)

Summing up (5.15),(5.17) and (5.18) we obtain
\[
\iint_{Q_T} \partial_t |\partial_t \dot{u}|^2 \, dx \, dt + \frac{1}{2} \int_{\Omega_T} |\nabla \partial_t \dot{u}|^2 \, dx \leq C \left(1 + \iint_{Q_T} |\nabla \partial_t \dot{u}|^2 \, dx \, dt \right) + \\
\frac{1}{2} \int_{\Omega_0} |\nabla \partial_t \dot{u}|^2 \, dx + \frac{1}{2} \int_{\Omega_0} \partial_t \left(\rho(|\nabla u|^2) \nabla u \right) \nabla \partial_t \dot{u} \, dx - \\
\frac{1}{2} \int_{\Omega_0} \partial_t \left(\rho(|\nabla u|^2) \nabla u \right) \nabla \partial_t \dot{u} \, dx \, dt.
\]

(5.19)
Also because

\[
\int_{\Omega_T} \partial_t (\rho(|\nabla u|^2) \nabla u) \nabla \partial_t \hat{u} \, dx =
\]

(5.20)

\[
\int_{\Omega_T} \int_0^1 (\rho(|\nabla w|^2) + 2\rho'(|\nabla w|^2) \frac{\partial w}{\partial x_i} \cdot \frac{\partial w}{\partial x_j}) \, d\tau \frac{\partial}{\partial x_j} \partial_t \hat{u} \cdot \frac{\partial}{\partial x_i} \partial_t \hat{u} \, dx \leq
\]

\[
C + \varepsilon \int_{\Omega_T} |\nabla \partial_t \hat{u}|^2 \, dx,
\]

we get from (5.19)

\[
\int_{Q_T} |\partial_t \hat{u}|^2 \, dx + \int_{\Omega_T} |\nabla \partial_t \hat{u}|^2 \, dx \leq
\]

(5.21)

\[
C \left(1 + \int_{Q_T} |\nabla \partial_t \hat{u}|^2 \, dx \right) +
\]

\[
\frac{1}{2} \int_{\Omega_0} |\nabla \partial_t \hat{u}|^2 \, dx + C \left(\int_{\Omega_0} |\nabla \partial_t u|^2 \, dx + \int_{\Omega_0} |\nabla \partial_t \hat{u}|^2 \, dx \right).
\]

Now, similarly as in the above theorem, we assume that \(u \equiv u^\lambda \) is considered as the weak solution of the initial-boundary value problem with the initial data \(u_0^\lambda, u_1^\lambda \in C^2(\Omega) \), as \(\lambda \to 0_+ \).

Considering again the short time interval \([0, T_*] \), we have (5.2) from the proof of the preceding theorem.

In fact, as \(\Delta t \to 0_+ \), the first bracket on the right-hand side of (5.21) converges to

(5.22)

\[
C \left(1 + \int_{Q_T} |\nabla \hat{u}^\lambda|^2 \, dx \right).
\]

We can choose \(u_0^\lambda \) and \(u_1^\lambda \) in such a way that, in view of Theorem 5.1 and Lemmas 4.3, 4.4, the other integrals in (5.21) are bounded independently of \(T \) and \(\lambda \).

As \(\Delta t \to 0_+ \), the last three integrals in (5.21) converge to

(5.23)

\[
C \left(\int_{\Omega_0} |\nabla \hat{u}^\lambda|^2 \, dx + \int_{\Omega_0} |\nabla \hat{u}^\lambda|^2 \, dx \right).
\]

Similarly as in the preceding proof, (5.22), (5.23) can be again bounded independently of \(\lambda \) and the assertion follows. □

6. **Generic Solution of the Transonic Flow Problems**

The following Definition and Theorem can be found in [1].
Definition 6.1. We say that a sequence \(\{u_m\}_{m=1}^{\infty} \) is a generic solution of the Transonic Flow Problem if there exist mappings \(F_m \in (W^{1,2}({\Omega}))^* \), such that

\[
\int_{\Omega} \rho(|\nabla u_m|^2) \nabla u_m \cdot \nabla \varphi \, dx = \int_{\partial \Omega} g \cdot \varphi \, dS + \langle F_m, \varphi \rangle,
\]

for all \(\varphi \in W^{1,2}(\Omega) \), and

\[
\|F_m\|_{(W^{1,2}({\Omega}))^*} \longrightarrow 0, \quad \text{as} \quad m \longrightarrow \infty.
\]

Here, \(\langle \cdot, \cdot \rangle \) denotes duality pairing.

Theorem 6.2. Let \(\Omega \) be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function \(g \), be valid. Let (3.3), (4.2) for the initial solutions be true. Then there exists a sequence \(\{t_m\}_{m=1}^{\infty} \), such that \(\{u(\cdot, t_m)\}_{m=1}^{\infty} \) forms a generic solution of the Transonic Flow Problem.

An immediate consequence of this theorem is the fact that the stable limit of \(u(t) \), as \(t \longrightarrow \infty \), is the solution of the Subsonic Flow, which is characterized by the inequality

\[
0 \leq |\nabla u|^2 \leq \frac{2a_0^2}{\kappa + 1}.
\]

This constrain implies (\(s \equiv |\nabla u|^2 \))

\[
\rho(s) + 2\rho'(s)s \geq \rho_3 > 0, \quad \text{for each} \quad s \in \left[0, \frac{2a_0^2}{\kappa + 1}\right].
\]

Theorem 6.3. Let \(\Omega \) be a bounded domain with a Lipschitz boundary and let the assumptions for the density (1.7)-(1.9) and (2.6),(2.7) for the boundary function \(g \), be valid. Let (3.3), (4.2) for the initial solutions be true. Let, moreover, (6.10) be true. Then there exists a function \(\bar{u} \in W^{1,2}(\Omega) \) such that

\[
u(t) \longrightarrow \bar{u} \quad \text{strongly in} \quad W^{1,2}(\Omega) \quad \text{as} \quad t \longrightarrow \infty
\]

and \(\bar{u} \) is the solution of the Subsonic Flow:

\[
\int_{\Omega} \rho(|\nabla \bar{u}|^2) \nabla \bar{u} \cdot \nabla \varphi \, dx = \int_{\partial \Omega} g \varphi \, dS \quad \forall \varphi \in W^{1,2}(\Omega).
\]

Proof. Using the estimates already obtained, we have

\[
u(t) \longrightarrow \bar{u} \quad \text{weakly in} \quad L^2(Q_\infty), \quad \text{as} \quad t \longrightarrow \infty \quad \text{and} \quad \nabla \nu(t) \longrightarrow \nabla \bar{u} \quad \text{weakly-star in} \quad L^\infty([0, \infty], L^2(\Omega)), \quad \text{as} \quad t \longrightarrow \infty.
\]

From Definition 3.1 of the weak solution with the test function \(\varphi = \nu(t) - \bar{u} \), we get

\[
\rho_3 \int_{\Omega} |\nabla(\nu(t) - \bar{u})|^2 \, dx \leq
\]

\[
\int_{\Omega} \bar{u}(\bar{u} - \nu(t)) \, dx + \int_{\Omega} \nabla \bar{u} \cdot \nabla(\bar{u} - \nu(t)) \, dx - \int_{\Omega} \rho(|\nabla \bar{u}|^2) \nabla \bar{u} \cdot \nabla(\nu(t) - \bar{u}) \, dx.
\]
Because of \(u(t) \to \bar{u} \) a.e. in \(\Omega \) and \(\bar{u} \in L^1([0, \infty), L^2(\Omega)) \), the right-hand side of (6.12) converges to zero, as \(t \to \infty \). Thus

\[
(6.6) \quad \nabla u(t) \to \nabla \bar{u} \quad \text{a.e. in } \Omega.
\]

Because of the continuity of the density function \(\rho \), we have

\[
\rho(|\nabla u(t)|^2) \to \rho(|\nabla \bar{u}|^2), \quad \text{a.e. in } \Omega \text{ for } t \to \infty.
\]

We know (Theorem 6.2) that there exists a sequence \(\{t_m\} \) such that \(\{u(t_m)\} \) forms the generic solution, thus the proof is complete. \(\Box \)

7. Existence of the entropic solution of the Transonic Flow Problems

We have already pointed out (in (1.11) and (1.12)) that, with respect to the value of the velocity, the domain of computation can be divided into two parts: \(\Omega_1 \) and \(\Omega_2 \). The boundary between these two subdomains - \(\Gamma_{\text{SHOCK}} \) - contains possible shocks with jumps in \(\vec{v}, \rho \) and \(p \), or equivalently: \(\vec{v}, \rho \) and \(p \) are not continuously differentiable across the ”shock/sonic line”.

It can be shown using the standard arguments that the following Rankine-Hugoniot conditions hold across the shock:

\[
(7.1) \quad \nabla u_- \cdot \vec{i} = \nabla u_+ \cdot \vec{i},
\]

\[
(7.2) \quad \rho(|\nabla u_-|^2)\nabla u_- \cdot \vec{n} = \rho(|\nabla u_+|^2)\nabla u_+ \cdot \vec{n},
\]

where +, - denotes the quantities in front of the shock and behind the shock, respectively, \(\vec{i}, \vec{n} \) are the tangential and normal vectors to the shock.

While these conditions are automatically satisfied by the weak solution, there is a so-called Entropy condition, which has to be satisfied by the resulting solution to be a physical one. It can be formulated (cf. Ladam-Lifschitz [10]) as follows:

\[
(7.3) \quad \rho(|\nabla u_-|^2) \leq \rho(|\nabla u_+|^2). \quad \text{on } \Gamma_{\text{SHOCK}}.
\]

This can be expressed as ”a compression shocks are the only acceptable ones”. In view of (7.1)-(7.3), this requirement can be also formulated as

\[
(7.4) \quad \nabla u_- \cdot \vec{n} > \nabla u_+ \cdot \vec{n} \quad \text{on } \Gamma_{\text{SHOCK}}.
\]

This condition is usually used in the weaker form (see Bristeau et. al [11]):

Definition 7.1. We say that \(u \in W^{1,2}(\Omega) \) satisfies the entropy condition if

\[
(7.5) \quad \forall \varphi \in D^+(\Omega) : \quad -\int_{\Omega} \nabla u \cdot \nabla \varphi \, dx \leq K \int_{\Omega} \varphi \, dx,
\]

where \(K \) is a positive fixed constant.

Remark. (i) If \(u \) satisfies the entropy condition (7.5), then it can be shown that \(u \) satisfies also (7.4), provided that \(u|_{\Omega_i} \in C^2(\Omega_i) \cap C^1(\bar{\Omega}_i), \quad i = 1, 2 \) and that the boundary \(\Gamma_{\text{SHOCK}} \) is smooth enough.

(ii) There is also another possibility to formulate the entropy condition:

\[
(7.6) \quad \forall \varphi \in D^+(\Omega) : \quad -\int_{\Omega} \rho'(|\nabla u|^2)|\nabla u|^2 \nabla u \cdot \nabla \varphi \, dx \leq K \int_{\Omega} \varphi \, dx,
\]
Theorem 7.2. Let us assume that there exists a constant \(C > 0 \) s.t. \(|\nabla u(t)|^2 \leq C \), for any \(t > 0 \) and assume that all the assumptions which guarantee the global existence of the strong solution are valid (assumptions of Theorem 4.5). Let \(u_0 \equiv u(\cdot, 0) \in C^2(\Omega) \) and, moreover,

\[
(7.7) \quad \int_0^T \left(\rho'(|\nabla u|^2) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j} \right)^- \, dt \rightarrow f(x) \quad \text{weakly in } L^2_{loc}(\Omega) \quad \text{as } T \rightarrow \infty.
\]

Then there exists a function \(\bar{u} \in W^{1,2}(\Omega) \) such that

\[
u(t) \rightarrow \bar{u}, \quad \text{strongly in } W^{1,2}(\Omega)
\]

and \(\bar{u} \) is the weak solution of transonic flow problem which is entropic in the sense

\[
\Delta \bar{u} \leq M_0 + f,
\]

where \(M_0 \) is a constant such that

\[
(7.8) \quad -\int_\Omega \nabla u_0 \cdot \nabla \varphi \, dx \leq M_0 \int_\Omega \varphi \, dx, \quad \forall \varphi \in \mathcal{D}^+(\Omega).
\]

Remark. In virtue of Theorem 4.2, we have \(\dot{u} \in L^2([0, \infty]; W^{2,2}_{loc}(\Omega)) \), thus

\[
u \in L^2([0, T]; W^{2,2}_{loc}(\Omega)), \quad \text{for any } T > 0.
\]

Proof. For the sake of simplicity we will assume that \(\dot{u}(0) = 0 \). We already know that

\[
(7.9) \quad \int_{\Omega_T} \dot{u} \varphi \, dx + \int_{\Omega_T} \nabla \dot{u} \cdot \nabla \varphi \, dx + \int_{\Omega_T} \rho(|\nabla u|^2) \nabla u \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in \mathcal{D}^+(\Omega).
\]

Integrating the above equation over the time interval \([0, T] \), we get

\[
(7.10) \quad \int_{\Omega_T} \dot{u} \varphi \, dx + \int_{\Omega_T} \nabla u \cdot \nabla \varphi \, dx + \int_{Q_T} \rho(|\nabla u|^2) \nabla u \cdot \nabla \varphi \, dx \, dt = \int_{\Omega_0} \nabla u \cdot \nabla \varphi \, dx, \quad \forall \varphi \in \mathcal{D}^+(\Omega).
\]

This yields the inequality \(\forall \varphi \in \mathcal{D}^+(\Omega) \)

\[
(7.11) \quad -\int_{\Omega_T} \nabla u \cdot \nabla \varphi \, dx \leq -\int_{\Omega_0} \nabla u \cdot \nabla \varphi \, dx + \int_{\Omega_T} \dot{u} \varphi \, dx + \int_{Q_T} \left(\frac{\partial}{\partial x_i} \left(\rho(|\nabla u|^2) \nabla u \right) \right)^- \cdot \varphi \, dx \, dt.
\]

Now, in view of Lemma 4.3 there exists a sequence \(\{t_m\}_{m=1}^{\infty} \), s.t.

\[
(7.12) \quad u(t_m) \rightarrow \bar{u} \quad \text{weakly in } W^{1,2}(\Omega), \quad \text{as } t_m \rightarrow \infty.
\]

Because of the bound of the gradient of \(u \), we get, by the application of the result of Mayers [12],

\[
(7.13) \quad \|u(t_m)\|_{W^{2,r}(\Omega)} \leq C \quad \text{for some } p > 2,
\]
and because a bounded, closed, convex set \(\{u(t_m) | t_m \geq 0\} \) is weakly closed, also
\[
\|\overline{u}\|_{W^{2,p}(\Omega)} \leq C
\]

Let us define \(G(T) \in (W^{1,2}_0(\Omega'))^* \) as
\[
< G(T), \varphi > \equiv - \int_{\Omega_0} \nabla u \cdot \nabla \varphi \, dx + \int_{\Omega_T} \dot{u} \varphi \, dx + 2 \int_{Q_T} \left(\frac{\partial}{\partial x_i} (\rho(|\nabla u|^2) \nabla u) \right) \cdot \varphi \, dx \, dt + \int_{\Omega_T} \nabla u \cdot \nabla \varphi \, dx,
\]
where \(\Omega' \equiv \Omega_h = \{x \in \Omega | \text{dist}(x, \partial \Omega) \geq h\} \). Now, we claim that there exists a sequence \(\{T_m\}_{m=1}^\infty \)

\[
\int_{\Omega_{T_m}} \hat{u} \varphi \, dx \longrightarrow 0, \quad T_m \longrightarrow \infty, \quad \forall \varphi \in D^+(\Omega).
\]

To show this, we estimate
\[
\int_{\Omega_{T_m}} \hat{u} \varphi \, dx \leq \|\varphi\|_{L^2(\Omega)} \cdot \|\hat{u}(T_m)\|_{L^2(\Omega)} \leq \|\varphi\|_{L^2(\Omega)} \cdot \|\nabla \hat{u}(T_m)\|_{L^2(\Omega)}.
\]

Using the result of Theorem 6.2 we get a subsequence of \(\{T_m\}_{m=1}^\infty \), s.t.
\[
|\nabla \hat{u}(T_{m_k})| \longrightarrow 0, \quad \text{as } T_{m_k} \longrightarrow \infty.
\]

Thus, if we define \(G \in \left(W^{1,2}_0(\Omega')\right)^* \)

\[
< G, \varphi > \equiv - \int_{\Omega_0} \nabla u \cdot \nabla \varphi \, dx + \int_{\Omega} f \cdot \varphi \, dx + \int_{\Omega} \nabla \overline{u} \cdot \nabla \varphi \, dx,
\]

we see that
\[
G(T) \longrightarrow G \quad \text{weakly in } (W^{1,2}_0(\Omega'))^* \quad \text{and}
\]
\[
< G(T), \varphi > \geq 0, \quad \forall \varphi \in D^+(\Omega).
\]

Using the stronger version of the Murat's theorem [13] (see Nečas [14]) we obtain
\[
G(T) \longrightarrow G \quad \text{strongly in } (W^{1,p}_0(\Omega'))^*.
\]

Let us denote \(w(t) = (u(t) - \overline{u})\sigma_h^2 \), with \(\sigma_h \) defined in (5.1)-(5.3). Then \(w(t) \in W^{1,p}_0(\Omega') \).

Moreover, we have
\[
|\nabla w(T)|^2 = < G(T), w(T) > - < G, w(T) > - \int_{\Omega_T} \hat{u} w \, dx + \int_{\Omega_T} f w \, dx - \int_{Q_T} \left(\frac{\partial}{\partial x_i} (\rho(|\nabla u|^2) \frac{\partial u}{\partial x_i}) \right) \cdot w \, dx \, dt.
\]

In view of the compact embedding of \(W^{1,2}(\Omega) \) into \(L^2(\Omega) \), (7.20) and (7.7), the right-hand side of (7.21) converges to zero. The continuity of the density function \(\rho \) and (5.1) give
\[
\rho(|\nabla u(T)|^2) \longrightarrow \rho(|\nabla \overline{u}|^2) \quad \text{a.e. in } \Omega \text{ as } T \longrightarrow \infty.
\]

We already know that there exists a sequence \(\{T_k\} \) so that \(\{u(T_k)\} \) is generic, thus the proof follows. \(\Box \)
References

206 CHURCH ST. SE, SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455 USA

Email: kloucek@math.umn.edu
Recent IMA Preprints

Title

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1135</td>
<td>Avner Friedman & J.L. Velázquez</td>
<td>The analysis of coating flows in a strip</td>
</tr>
<tr>
<td>1136</td>
<td>Eduardo D. Sontag</td>
<td>Control of systems without drift via generic loops</td>
</tr>
<tr>
<td>1137</td>
<td>Yuan Wang & Eduardo D. Sontag</td>
<td>Orders of input/output differential equations and state space dimensions</td>
</tr>
<tr>
<td>1138</td>
<td>Scott W. Hansen</td>
<td>Boundary control of a one-dimensional, linear, thermoelastic rod</td>
</tr>
<tr>
<td>1139</td>
<td>Robert Lipton & Bogdan Vernescu</td>
<td>Homogenization of two phase emulsions with surface tension effects</td>
</tr>
<tr>
<td>1140</td>
<td>Scott Hansen & Enrique Zuazua</td>
<td>Exact controllability and stabilization of a vibrating string with an interior point mass</td>
</tr>
<tr>
<td>1141</td>
<td>Bei Hu & Jiongmin Yong</td>
<td>Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints</td>
</tr>
<tr>
<td>1142</td>
<td>Mark H.A. Davis</td>
<td>A deterministic approach to optimal stopping with application to a prophet inequality</td>
</tr>
<tr>
<td>1143</td>
<td>M.H.A. Davis & M. Zervos</td>
<td>A problem of singular stochastic control with discretionary stopping</td>
</tr>
<tr>
<td>1144</td>
<td>Bernardo Cockburn & Pierre-Alain Gremaud</td>
<td>An error estimate for finite element methods for scalar conservation laws</td>
</tr>
<tr>
<td>1145</td>
<td>David C. Dobson & Fadil Santosa</td>
<td>An image enhancement technique for electrical impedance tomography</td>
</tr>
<tr>
<td>1146</td>
<td>Jin Ma, Philip Protter, & Jiongmin Yong</td>
<td>Solving forward-backward stochastic differential equations explicitly — a four step scheme</td>
</tr>
<tr>
<td>1147</td>
<td>Yong Liu</td>
<td>The equilibrium plasma subject to skin effect</td>
</tr>
<tr>
<td>1148</td>
<td>Ulrich Hornung</td>
<td>Models for flow and transport through porous media derived by homogenization</td>
</tr>
<tr>
<td>1149</td>
<td>Avner Friedman, Chaocheng Huang, & Jiongmin Yong</td>
<td>Effective permeability of the boundary of a domain</td>
</tr>
<tr>
<td>1150</td>
<td>Gang Bao</td>
<td>A uniqueness theorem for an inverse problem in periodic diffractive optics</td>
</tr>
<tr>
<td>1151</td>
<td>Angelo Favini, Mary Ann Horn, & Irena Lasiecka</td>
<td>Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1152</td>
<td>E.G. Kalnins & Willard Miller, Jr.</td>
<td>Models of q-algebra representations: q-integral transforms and “addition theorems”</td>
</tr>
<tr>
<td>1153</td>
<td>E.G. Kalnins, V.B. Kuznetsov & Willard Miller, Jr.</td>
<td>Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet</td>
</tr>
<tr>
<td>1154</td>
<td>A. Kersch, W. Morokoff & Chr. Werner</td>
<td>Selfconsistent simulation of sputtering with the DSMC method</td>
</tr>
<tr>
<td>1155</td>
<td>Bing-Yu Zhang</td>
<td>A remark on the Cauchy problem for the Korteweg-de Vries equation on a periodic domain</td>
</tr>
<tr>
<td>1156</td>
<td>Gang Bao</td>
<td>Finite element approximation of time harmonic waves in periodic structures</td>
</tr>
<tr>
<td>1157</td>
<td>Tao Lin & Hong Wang</td>
<td>Recovering the gradients of the solutions of second-order hyperbolic equations by interpolating the finite element solutions</td>
</tr>
<tr>
<td>1158</td>
<td>Zhangxin Chen</td>
<td>L^p-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems</td>
</tr>
<tr>
<td>1159</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>Homogenization of compositional flow in fractured porous media</td>
</tr>
<tr>
<td>1160</td>
<td>L. Qiu, B. Bernhardsson, A. Rantzler, E.J. Davison, P.M. Young & J.C. Doyle</td>
<td>A formula for computation of the real stability radius</td>
</tr>
<tr>
<td>1161</td>
<td>Maria Inés Troparevsky</td>
<td>Adaptive control of linear discrete time systems with external disturbances under inaccurate modelling: A case study</td>
</tr>
<tr>
<td>1162</td>
<td>Petr Klouček & Franz S. Rys</td>
<td>Stability of the fractional step Θ-scheme for the nonstationary Navier-Stokes equations</td>
</tr>
<tr>
<td>1163</td>
<td>Eduardo Casas, Luis A. Fernández & Jiongmin Yong</td>
<td>Optimal control of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1164</td>
<td>Darrell Duffie, Jin Ma & Jiongmin Yong</td>
<td>Black's consol rate conjecture</td>
</tr>
<tr>
<td>1165</td>
<td>D.G. Aronson & J.L. Vazquez</td>
<td>Anomalous exponents in nonlinear diffusion</td>
</tr>
<tr>
<td>1166</td>
<td>Ruben D. Spies</td>
<td>Local existence and regularity of solutions for a mathematical model of thermomechanical phase transitions in shape memory materials with Landau-Ginzburg free energy</td>
</tr>
<tr>
<td>1167</td>
<td>Pu Sun</td>
<td>On circular pipe Poiseuille flow instabilities</td>
</tr>
<tr>
<td>1168</td>
<td>Angelo Favini, Mary Ann Horn, Irena Lasiecka & Daniel Tataru</td>
<td>Global existence, uniqueness and regularity of solutions to a Von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1169</td>
<td>A. Dontchev, Tz. Donchev & I. Slavov</td>
<td>On the upper semicontinuity of the set of solutions of differential inclusions with a small parameter in the derivative</td>
</tr>
<tr>
<td>1170</td>
<td>Jin Ma & Jiongmin Yong</td>
<td>Regular-singular stochastic controls for higher dimensional diffusions — dynamic programming approach</td>
</tr>
<tr>
<td>1171</td>
<td>Alex Solomonoff</td>
<td>Bayes finite difference schemes</td>
</tr>
<tr>
<td>1172</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>On the implementation of mixed methods as nonconforming methods for second order elliptic problems</td>
</tr>
<tr>
<td>1173</td>
<td>Zhangxin Chen & Bernardo Cockburn</td>
<td>Convergence of a finite element method for the drift-diffusion semiconductor device equations: The multidimensional case</td>
</tr>
<tr>
<td>1174</td>
<td>Boris Mordukhovich</td>
<td>Optimization and finite difference approximations of nonconvex differential inclusions with free time</td>
</tr>
</tbody>
</table>
Avner Friedman, David S. Ross, and Jianhua Zhang, A Stefan problem for reaction-diffusion system
Alex Solomonoff, Fast algorithms for micromagnetic computations
Nikan B. Firoozye, Homogenization on lattices: Small parameter limits, H-measures, and discrete
Wigner measures
G. Yin, Adaptive filtering with averaging
Wlodzimierz Bryc and Amir Dembo, Large deviations for quadratic functionals of Gaussian processes
Ilja Schmelzer, 3D anisotropic grid generation with intersection-based geometry interface
Alex Solomonoff, Application of multipole methods to two matrix eigenproblems
A.M. Latypov, Numerical solution of steady euler equations in streamline-aligned orthogonal coordinates
Bei Hu & Hong-Ming Yin, Semilinear parabolic equations with prescribed energy
Bei Hu & Jianhua Zhang, Global existence for a class of Non-Fickian polymer-penetrant systems
Rongze Zhao & Thomas A. Posbergh, Robust stabilization of a uniformly rotating rigid body
Mary Ann Horn & Irena Lasiecka, Uniform decay of weak solutions to a von Kármán plate with nonlinear
boundary dissipation
Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions
to a von Kármán system with nonlinear dissipative boundary conditions
Mary Ann Horn, Nonlinear boundary stabilization of a von Kármán plate via bending moments only
Frank H. Shaw & Charles J. Geyer, Constrained covariance component models
Tomasz Luczaka, A greedy algorithm estimating the height of random trees
Timo Seppäläinen, Maximum entropy principles for disordered spins
Yuandan Lin, Eduardo D. Sontag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for
nonlinear stability
Svante Janson, Random regular graphs: Asymptotic distributions and contiguity
Rachid Ababou, Random porous media flow on large 3-D grids: Numerics, performance, & application to
homogenization
Moshe Fridman, Hidden Markov model regression
Petr Klouček, Bo Li & Mitchell Luskin, Analysis of a class of nonconforming finite elements for Crystalline
microstructures
Steven P. Lalley, Random series in inverse Pisot powers
Rudy Yaksick, Expected optimal exercise time of a perpetual American option: A closed-form solution
Rudy Yaksick, Valuation of an American put catastrophe insurance futures option: A Martingale approach
János Pach, Farhad Shahrokhi & Mario Szegedy, Application of the crossing number
Avner Friedman & Chaocheng Huang, Averaged motion of charged particles under their self-induced electric
field
Joel Spencer, The Erdős-Hanani conjecture via Talagrand’s inequality
Zhangxin Chen, Superconvergence results for Galerkin methods for wave propagation in various porous media
Russell Lyons, Robin Pemantle & Yuval Peres, When does a branching process grow like its mean? Conceptual
proofs of L log L criteria
Robin Pemantle, Maximum variation of total risk
Robin Pemantle & Yuval Peres, Galton-Watson trees with the same mean have the same polar sets
Robin Pemantle, A shuffle that mixes sets of any fixed size much faster than it mixes the whole deck
Itai Benjamini, Robin Pemantle & Yuval Peres, Martin capacity for Markov chains and random walks in
varying dimensions
Wlodzimierz Bryc & Amir Dembo, On large deviations of empirical measures for stationary Gaussian processes
Martin Hildebrand, Some random processes related to affine random walks
Alexander E. Mazel & Yuriii M. Suhov, Ground states of a Boson quantum lattice model
Roger L. Fosdick & Darren E. Mason, Single phase energy minimizers for materials with nonlocal spatial
dependence
Bruce Hajek, Load balancing in infinite networks
Petr Klouček, The transonic flow problems stability analysis and numerical results
Petr Klouček, On the existence of the entropic solutions for the transonic flow problem
David A. Schmidt & Chjan C. Lim, Full sign-invertibility and symplectic matrices
Piermarco Cannarsa & Maria Elisabetta Tessitore, Infinite dimensional Hamilton-Jacobi equations and
Dirichlet boundary control problems of parabolic type
Zhangxin Chen, Multigrid algorithms for mixed methods for second order elliptic problems
Zhangxin Chen, Expanded mixed finite element methods for linear second order elliptic problems I
Gang Bao, A note on the uniqueness for an inverse diffraction problem
Moshe Fridman, A two state capital asset pricing model
Paolo Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation
Carl Dou & Martin Hildebrand, Enumeration and random random walks on finite groups
Jaksa Cvitanic & Ioannis Karatzas, On portfolio optimization under “drawdown” constraints
Avner Friedman & Yong Liu, A free boundary problem arising in magnetohydrodynamic system