A FREE BOUNDARY PROBLEM ARISING FROM
SWELLING-CONTROLLED RELEASE PROCESSES

By

Jianhua Zhang

IMA Preprint Series # 1111
March 1993
A FREE BOUNDARY PROBLEM ARISING FROM SWELLING–CONTROLLED RELEASE PROCESSES

JIANHUA ZHANG

Abstract. In this paper, we study a mathematical model describing the diffusion of a penetrant solvent in a polymer which arises from swelling-controlled release processes. The model is formulated as a one-dimensional free boundary problem. Global existence, uniqueness and the regularity of free boundaries are established, as well as asymptotic behavior.

1. Introduction. In this paper, we study a model arising from swelling–controlled release processes. A slab of polymer matrix (which contains drug) is contacted with a slab of penetrant solvent. The matrix starts to swell immediately at the penetrant surface. There are two moving fronts (free boundaries). One, $X = L(t)$, separates the pure solvent from the swollen polymer and is caused to move towards pure solvent region by volume expansion of the polymer due to gradual swelling; and the other, $X = R(T)$, separates the the solvent–free polymer from the swollen polymer and is driven towards matrix region by the excess $C(X, T) - C^*$ at a finite rate, where $C(X, T)$ is the concentration of the solvent and C^* corresponds to its equilibrium or threshold value in the polymer. The release rate of drug is thus determined by the rate of diffusion of the solvent (according to Fick’s law) in the polymer as well as the rate of change of two moving fronts. In this paper we shall investigate the diffusion of the solvent and the free boundaries. We assume that initially the penetrant solvent occupies the region \(\{ X < 0 \} \) with the uniform concentration \(C_0 \) \((C_0 > C^*) \) while the matrix occupies the region \(\{ X > 0 \} \). Introduce dimensionless variables $u = (C - C^*)/(C_0 - C^*)$ and l, r, x, t as in [3], the problem can be formulated as follows [3]:

Problem 1. Find a triple \(\{ u(x, t), l(t), r(t) \} \) such that for any $0 < T < \infty$, $l(t), r(t) \in C^1[0, T], u(x, t) \in C^{2,1}(D_T) \cap C(D_T), D_T = \{(x, t) : l(t) < x < r(t), 0 < t < T\}, u_x$ is continuous up to $x = l(t)$ and $x = r(t)$, and such that

\[
\begin{align*}
(1.1) & \quad \varepsilon u_t = u_{xx} \text{ for } (x, t) \in D_T, \\
(1.2) & \quad u = 1 \text{ for } x = l(t), 0 < t < T, \\
(1.3) & \quad -u_x = (1 + \varepsilon u)\dot{r} \text{ for } x = r(t), 0 < t < T, \\
(1.4) & \quad \dot{r} = u^\mu \text{ for } x = r(t), 0 < t < T, \\
(1.5) & \quad -l(t) = \lambda \int_{l(t)}^{r(t)} (\mu + \varepsilon u)dx \text{ for } 0 < t < T,
\end{align*}
\]

* School of Mathematics, University of Minnesota, Minneapolis, MN 55455
Here $\varepsilon = (C_0 - C^*)/(C^* + K)$, $K = k_2/k_1$, k_1 and k_2 are two positive proportionality constants such that $\dot{R} = k_1(C - C^*)^n$ and $-C_2 - C \dot{R} = k_2(C - C^*)^n$ on $X = R(T)$, respectively, while $\mu = C^*/(C^* + K)$, and $\lambda = \overline{v} \cdot (C^* + K)$, where \overline{v} is the molar volume of the swelling agent (the solvent).

Equation (1.3) is a mass balance equation at $x = r(t)$, and equation (1.4) is n-th order law describing the swelling kinetics as an interface reaction. Typically, n takes value varying from 10^{-2} to 10^2. Equation (1.5) results from the volume balance. It says that, at time t, the total volume expanded due to swelling is equal to the volume occupied by penetrate in the swollen polymer region.

In a special case $\lambda = 0$, which corresponds to the controlled release without volume change, (1.1)–(1.6) with (1.5) replaced by $l(t) \equiv 0$ has been studied by several authors; see, [1] [2] [4] [6] and references therein.

The fact that in problem 1, the two free boundaries start at the same point $(0, 0)$ causes some difficulties. For this reason we shall first consider an auxiliary problem whereby instead of (1.6), we require that $l(0) < 0$ and $r(0) > 0$.

In section 2, we establish a local existence and uniqueness for the auxiliary problem; in section 3 we extend the solution to all times, and also prove the regularity of the solution u and of the free boundaries. In section 4, we prove the existence and uniqueness for Problem 1. Finally, the asymptotic behavior for $t \to \infty$ and $\lambda \to 0$ is studied in section 5.

We assume throughout this paper that

$$1 - \lambda(\mu + \varepsilon) > 0.$$

This is equivalent to

$$1 - C_0 \cdot \overline{v} > 0,$$

a condition which is satisfied in most cases [8].

2. An Auxiliary Problem. Differentiating (1.5) in t and using (1.1), (1.2), (1.3), we obtain

$$\dot{l}(t) = \beta [u_x(l(t), t) + (1 - \mu) \dot{r}(t)] \quad \text{for } t > 0,$$

where $\beta = \lambda/[1 - \lambda(\mu + \varepsilon)]$; notice that $\beta > 0$ by the condition (1.7). Conversely, (1.5) follows from equations (1.1)-(1.4), (1.6) and (2.1). It will be more convenient to work with (2.1) rather than (1.5).

As mentioned in the introduction we shall first study an auxiliary problem where the polymer matrix is initially penetrated, that is, at time $t = 0$, there is a swollen polymer region $(-b, b)$ for some constant $b > 0$:

Problem 2. Find a triple $\{u(x, t), l(t), r(t)\}$ such that for any $0 < T < \infty, l(t), r(t) \in C^1[0, T], u(x, t) \in C^2, 1(D_T) \cap C(\bar{D}_T), D_T = \{(x, t) : l(t) < x < r(t), 0 < t < T\}$, u_x is continuous up to $x = l(t)$ and $x = r(t)$, and such that (1.1) – (1.4)(2.1) hold and

\begin{align*}
(2.2) & \quad l(0) = -b, \quad r(0) = b, \\
(2.3) & \quad u(x, 0) = h(x) \quad \text{for} \quad x \in (-b, b).
\end{align*}

By a solution $\{u, l, r\}$ of Problem 2 we mean that the triple $\{u, l, r\}$ satisfies (1.1)–(1.4) (2.1)–(2.3) in the classical sense and has the following properties: $0 \leq u \leq 1$, $0 \leq -l, r \leq C$.

Theorem 2.1. Assume that $h(x) \in C^2[-b, b]$ with $h(-b) = 1, h'(-b) = -h_1 < 0$, $h(b) = c_0 > 0$, $h'(b) = -h_2 < 0$, and $h''(x) \leq 0$ for $-b \leq x \leq b$ such that $l_0 = \beta [-h_1 + (1 - \mu)c_0^\alpha] < 0$, and $h_2 = (1 + \varepsilon c_0)c_0^\alpha$. Then there exists a unique solution to Problem 2 for some small $T > 0$.

We shall need several lemmas.

Let B be the Banach space $C[0, T] \times C^1[0, T]$ with the norm

$$
\|\langle l(t), r(t)\rangle\|_B = \|l(t)\|_{C[0, T]} + \|r(t)\|_{C^1[0, T]}.
$$

Set

\begin{align*}
\mathcal{L}(T) &= \left\{ l(t) \in C[0, T] : l(0) = -b, 2l_0 \leq \frac{l(t_1) - l(t_2)}{t_1 - t_2} \leq l_0/2, \quad \forall \quad t_1, t_2 \in [0, T] \right\}, \\
\mathcal{R}(T) &= \left\{ r(t) \in C^1[0, T] : r(0) = b, c_0^\alpha/2 \leq \frac{r(t_1) - r(t_2)}{t_1 - t_2} \leq 1, \quad \forall \quad t_1, t_2 \in [0, T] \right\}.
\end{align*}

It is clear that $\mathcal{L}(T) \times \mathcal{R}(T)$ is a closed convex subset of B.

For each pair $\langle l(t), r(t)\rangle \in \mathcal{L}(T) \times \mathcal{R}(T)$, consider the following problem:

\begin{align*}
(2.4) & \quad \varepsilon w_t = w_{xx}, \quad \text{for} \quad l(t) < x < r(t), \quad 0 < t < T, \\
(2.5) & \quad w = 1 \quad \text{for} \quad x = l(t), \quad 0 < t < T,
\end{align*}
(2.6) \[-w_x = (1 + \varepsilon w)w^n \quad \text{for} \quad x = r(t), \quad 0 < t < T, \]
(2.7) \[w(x, 0) = h(x) \quad \text{for} \quad -b < x < b. \]

Lemma 2.2. There exists a unique solution $w(x, t)$ to problem (2.4) – (2.7). Moreover, there are positive constants α, C and T ($0 < \alpha < 1$), which depend on $h(x), c_0, l_0, b$, but not on $l(\cdot), r(\cdot)$, such that

(2.8) \[\|w\|_{C^{\alpha, \alpha/2}(\overline{Q}_T)} \leq C, \]

and

(2.9) \[\|w_x\|_{C^{\alpha, \alpha/2}(\overline{Q}_T \cap \{x \leq 0\})} \leq C, \]

where, $Q_T = \{(x, t) : l(t) < x < r(t), 0 \leq t < T\}$.

Proof. Introducing a new variable $y = (x - l(t))/(r(t) - l(t))$, and setting $v(y, t) = w(x, t) \equiv w(l(t) + y(r(t) - l(t)), t)$, we transform (2.4)–(2.7) into the following problem:

(2.10) \[\varepsilon v_t = \frac{v_{yy}}{(r - l)^2} + \frac{\dot{i} + y(\dot{r} - \dot{i})}{r - l} v_y \quad \text{for} \quad 0 < y < 1, 0 < t < T, \]
(2.11) \[v(0, t) = 1 \quad \text{for} \quad 0 < t < T, \]
(2.12) \[-v_y(1, t) = (r(t) - l(t))(1 + \varepsilon v(1, t))v^n(1, t) \quad \text{for} \quad 0 < t < T, \]
(2.13) \[v(y, 0) = h([2y - 1)b] \quad \text{for} \quad 0 < y < 1. \]

From a contraction fixed point argument, it follows that (2.10)–(2.13) admits a unique solution v; hence, there exists a unique solution w to (2.4)–(2.7) (see Theorem 2.5 in [6] for details). By the maximum principle,

(2.14) \[0 \leq w(x, t) \leq 1, \quad \text{for} \quad (x, t) \in \overline{Q}_T, \]
(2.15) \[-C \leq w_x(x, t) < 0, \quad \text{for} \quad (x, t) \in \overline{Q}_T; \]

here and in the sequel in this section C will denote a constant depending on $h(\cdot), b, l_0, c_0$, but not on $l(\cdot)$ and $r(\cdot)$.

Applying Hölder estimates and L^p estimates for parabolic PDEs to the Problem (2.10)–(2.13) [7], we have that

(2.16) \[\|v\|_{C^{\alpha, \alpha/2}(0, 1] \times [0, T]} \leq C, \]
(2.17) \[\|v\|_{W_2^{1,1}(0, 1/2] \times (0, T]} \leq C, \]

for some $0 < \alpha < 1$ and $p > 1$ independent of $l(\cdot)$ and $r(\cdot)$. Due to Sobolev’s embedding theorem, (2.17) implies that

\[\|v_y\|_{C^{\alpha, \alpha/2}(0, 1/2]) \times [0, T]} \leq C. \]
This inequality and (2.16) yield the assertions (2.8) and (2.9). □

We now define a map \mathcal{M} on $\mathcal{L}(T) \times \mathcal{R}(T)$ such that

$$
\mathcal{M}(l(t), r(t)) = (L(t), R(t)), \quad \text{for } (l(t), r(t)) \in \mathcal{L}(T) \times \mathcal{R}(T).
$$

where

$$
R(t) = b + \int_0^t w^n(r(\tau), \tau) d\tau,
$$

$$
L(t) = -b + \beta \int_0^t \left[w_x(l(\tau), \tau) + (1 - \mu) \hat{R}(\tau) \right] d\tau.
$$

Lemma 2.3. If T is small enough, then \mathcal{M} maps $\mathcal{L}(T) \times \mathcal{R}(T)$ into itself and the image is precompact.

Proof. We first compute

$$
w(r(t), t) = \left[w(r(0), 0) - w(r(0), 0) + w(r(t), t) \right]
\geq c_0 - C(|r(t) - b|^\alpha + t^{\alpha/2}) \quad \text{(by Lemma 2.2)}
\geq c_0/2^{1/n},
$$

for $0 \leq t \leq T$, provided T is small.

Therefore, by (2.14)

$$
c_0^{\alpha/2} \leq w(r(t), t) \leq 1 \quad \text{for } t \in [0, T],
$$

and then by (2.18),

$$
c_0^{\alpha/2} \leq \hat{R}(t) \leq 1 \quad \text{for } t \in [0, T] \quad \text{and} \quad R(0) = b,
$$

which implies $R(t) \in \mathcal{R}(T)$. Moreover,

$$
|\hat{R}(t_1) - \hat{R}(t_2)| = \left| w^n(r(t_1), t_1) - w^n(r(t_2), t_2) \right|
\leq N \left| w(r(t_1), t_1) - w(r(t_2), t_2) \right|
\leq NC(|r(t_1) - r(t_2)|^{\alpha} + |t_1 - t_2|^{\alpha/2}) \quad \text{(by Lemma 2.2)}
\leq 2NC|t_1 - t_2|^{\alpha/2}
$$

for any $t_1, t_2 \in [0, T]$ and $N = n$ (if $n \geq 1$) or $N = n(c_0^{\alpha}/2)^{n-1}$ (if $0 < n < 1$).

On the other hand, by (2.19), $L(0) = -b$, \(\hat{L}(0) = l_0 \), and

$$
\hat{L}(t) = \beta \left[w_x(l(t), t) + (1 - \mu) \hat{R}(t) \right]
= l_0 + \beta \left[w_x(l(t), t) - w_x(l(0), 0) + (1 - \mu)(\hat{R}(t) - \hat{R}(0)) \right]
\leq l_0 + \beta \left[C(|l(t) - l(0)|^{\alpha} + t^{\alpha/2}) + 2(1 - \mu)NCt^{\alpha/2} \right] \quad \text{(by Lemma 2.2)}
\leq l_0/2,
$$
provided \(T \) is small and \(t \in [0, T] \).

Similarly, \(\dot{L}(t) \geq 2l_0 \quad t \in [0, T] \) for small \(T \). Hence, \(L(t) \in L(T) \). Furthermore,

\[
|\dot{L}(t_1) - \dot{L}(t_2)| = \beta|w_x(l(t_1), t_1) - w_x(l(t_2), t_2) + (1 - \mu)(\dot{R}(t_1) - \dot{R}(t_2))|
\leq \beta \left[C(|l(t_1) - l(t_2)|^\alpha + |t_1 - t_2|^{\alpha/2}) + 2(1 - \mu)NC|t_1 - t_2|^{\alpha/2} \right]
\leq \beta C|t_1 - t_2|^{\alpha/2},
\]

where we again used Lemma 2.2. Since the embedding \(C^{1+\alpha/2}[0, T] \) into \(C^1[0, T] \) is compact, the proof is complete. \(\square \)

The following lemma is useful in proving the continuity of the map \(M \).

Lemma 2.4. If \(w(x, t) \) is the solution to (2.4) – (2.7), then there exists a constant \(C \) independent of \(r(\cdot) \) and \(l(\cdot) \) such that

\[
(2.20) \quad |w_{xx}(x, t)| \leq C \quad \text{for} \quad (x, t) \in (Q_T \cap \{x \geq 0\}),
\]

where \(T \) is small enough so that \(w(x, t) \geq c_0/2^{1/n} \).

Proof. To estimate the second derivative of \(w_{xx} \) near \(x = r(t) \), we first assume that \(r(t) \in C^2 \). Then \(w_{xxx} \) is continuous up to the free boundary \(r(t) \). Applying the Schauder estimates [5] we get

\[
|w_{xx}(0, t)| \leq C, \quad \text{for} \quad 0 \leq t \leq T.
\]

Differentiating (2.6) along \(x = r(t) \) and setting \(\varphi = w_{xx} \), we deduce that

\[
(2.21) \quad \varphi_x + (\dot{r} + \varepsilon(n + 1)w^n + nw^{n-1})\varphi = ((n + 1)\varepsilon w^n + nw^{n-1})w_x \dot{r} \quad \text{for} \quad x = r(t).
\]

Set \(\xi(x, t) = \varphi(x, t) - C \), where

\[
C = \max \{ ||w_{xx}(0, \cdot)||_{L^\infty[0, T]}, ||h_{xx}||_{L^\infty[-b, b]}, \varepsilon(2\varepsilon + n)||w_x||_{L^\infty(Q_T)}/\delta \},
\]

and \(\delta \) is the positive lower bound on \([\dot{r} + \varepsilon(n + 1)w^n + nw^{n-1}] \) for \(x = r(t), t \in [0, T] \). It is clear that \(\xi(x, t) \) satisfies:

\[
\begin{align*}
\varepsilon \xi_t & = \xi_{xx} \quad \text{for} \quad (x, t) \in (Q_T \cap \{x > 0\}), \\
\xi(0, t) & = w_{xx}(0, t) - C \leq 0 \quad \text{for} \quad t \in [0, T], \\
\xi(x, 0) & = h_{xx} - C \leq 0 \quad \text{for} \quad x \in [0, b], \\
\xi_x + (\dot{r} + \varepsilon(n + 1)w^n + nw^{n-1})\xi & = \\
\varepsilon(2\varepsilon w^n + nw^{n-1})w_x \dot{r} - C(\dot{r} + \varepsilon(n + 1)w^n + nw^{n-1}) & \leq 0 \quad \text{for} \quad x = r(t), t \in [0, T].
\end{align*}
\]
By maximum principle, \(\xi \leq 0 \) for \((x, t) \in (Q_T \cap \{x \geq 0\})\); that is,
\[
\varphi(x, t) = w_{xx}(x, t) \leq C \quad \text{for} \quad (x, t) \in (Q_T \cap \{x \geq 0\}).
\]
Similarly,
\[
-\varphi(x, t) = -w_{xx}(x, t) \leq C \quad \text{for} \quad (x, t) \in (Q_T \cap \{x \geq 0\}).
\]
Therefore, the conclusion (2.20) follows under the assumption that \(r(t) \in C^2 \). For general \(r(t) \) in \(C^1 \), we approximate it by functions \(r_k(t) \in C^2[0, T] \cap \mathcal{R}(T) \) in \(C^1 \) topology, and apply the previous method to the convergent sequence \(r_k's \).

We now investigate the continuity of \(M \) as a map from \(B \) into \(B \). Let \((l_i(t), r_i(t)) \in \mathcal{L}(T) \times \mathcal{R}(T)(i = 1, 2)\), and \(w_i(x, t)(i = 1, 2)\), be corresponding solutions to (2.4)–(2.7), and let \(M(l_i(t), r_i(t)) = (L_i(t), R_i(t))(i = 1, 2)\).

Lemma 2.5. If \(T \) is sufficiently small, then the map \(M \) is Lipschitz continuous on \(\mathcal{L}(T) \times \mathcal{R}(T) \) under the norm of \(B \).

Proof. Let
\[
p(t) = \max(l_1(t), l_2(t)),
\]
\[
q(t) = \min(r_1(t), r_2(t))
\]
and
\[
D^* \equiv \{(x, t) : p(t) < x < q(t), 0 < t < T\}.
\]
Set \(v(x, t) = w_1(x, t) - w_2(x, t) \). It is clear that
\[
v(p(t), t) = w_1(p(t), t) - w_2(p(t), t) \\
\leq C|l_1(t) - l_2(t)| \quad \text{(by (2.15))}.
\]
Without loss of generality, we may assume that \(q(t) = r_1(t) \). Let \(f(w) = (1 + \varepsilon w)w^n \).

Then
\[
v_x(q(t), t) = w_{1x}(q(t), t) - w_{2x}(q(t), t) \\
= w_{1x}(r_1(t), t) - w_{2x}(r_2(t), t) + w_{2x}(r_2(t), t) - w_{2x}(r_1(t), t) \\
= f(w_2(r_2(t), t)) - f(w_1(r_1(t), t)) + w_{2x}(r_2(t), t) - w_{2x}(r_1(t), t)(\text{by (2.6)}) \\
\leq \int_0^1 f'[w_1(t) + \theta(w_2(t) - w_1(t))]d\theta \cdot (w_2(r_2(t), t) - w_1(r_1(t), t)) \\
+ C|r_1(t) - r_2(t)| \quad \text{(by (2.20))} \\
\leq -\int_0^1 f'[w_1(t) + \theta(w_2(t) - w_1(t))]d\theta \cdot v(q(t), t) + C|r_1(t) - r_2(t)|,
\]
here we used (2.14) and (2.15) to get the last inequality. From the last inequality we obtain
\[v_x(q(t), t) + \int_0^1 f'[w_1(t) + \theta(w_2(t) - w_1(t))] d\theta \cdot v(q(t), t) \leq C|R_1(t) - R_2(t)|. \]

It now follows that \(v(x, t) \) is dominated in \(D^* \) by the solution \(V(x, t) \) of
\[\epsilon V_t = V_{xx} \quad \text{for} \quad (x, t) \in D^*, \]
\[V(p(t), t) = C\|l_1 - l_2\|_{C[0, T)}, \quad \text{for} \quad 0 < t < T, \]
\[V_x(q(t), t) + \int_0^1 f'[w_1(t) + \theta(w_2(t) - w_1(t))] d\theta \cdot V(q(t), t) \]
\[= C\|r_1 - r_2\|_{C[0, T]}, \quad \text{for} \quad 0 < t < T, \]
\[V(x, 0) = 0, \quad \text{for} \quad -b < x < b. \]

By maximum principle (the argument is similar to that used in Lemma 2.4),
\[0 \leq V(x, t) \leq C(\|l_1 - l_2\|_{C[0, T]} + \|r_1 - r_2\|_{C[0, T]}) \quad \text{for} \quad (x, t) \in D^*. \]

Since also \(w_1(x, t) - w_2(x, t) = v(x, t) \leq V(x, t) \) for \((x, t) \in \overline{D}^* \),
\[w_1(x, t) - w_2(x, t) \leq C(\|l_1 - l_2\|_{C[0, T]} + \|r_1 - r_2\|_{C[0, T]}) \quad \text{for} \quad (x, t) \in \overline{D}^*. \]

Switching \(w_1 \) and \(w_2 \), we actually have
\[w_1(x, t) - w_2(x, t) \leq C(\|l_1 - l_2\|_{C[0, T]} + \|r_1 - r_2\|_{C[0, T]}) \quad \text{for} \quad (x, t) \in \overline{D}^*. \]

By (2.15), (2.18) and (2.22),
\[|\dot{R}_1(t) - \dot{R}_2(t)| = |w_1(r_1(t), t) - w_2(r_2(t), t)| \]
\[\leq |w_1(r_1(t), t) - w_1(q(t), t)| + |w_1(q(t), t) - w_2(q(t), t)| \]
\[+ |w_2(q(t), t) - w_2(r_2(t), t)| \]
\[\leq C(\|l_1 - l_2\|_{C[0, T]} + \|r_1 - r_2\|_{C[0, T]}). \]

To derive an estimate on \(\|L_1 - L_2\|_{C[0, T]} \), we shall use a representation of \(L(t) \). Let \(w(x, t) \) be the solution of (2.4)–(2.6). Then
\[0 = \iiint_{Q_T} (w_{xx} - \epsilon w_t) dxdt \]
\[= \int_{\partial Q_T} w_{xx} dt + \epsilon wdx \]
\[= \int_b^b \epsilon hdx + \int_0^t [w_x + \epsilon w\tau]_{x=r(t)} d\tau - \int_0^t \epsilon wdx - \int_0^t [w_x + \epsilon w\tau]_{x=l(t)} d\tau \]
\[= \int_b^b \epsilon hdx + \int_0^t [-\epsilon w(x) w^n + \epsilon w\tau]_{x=r(t)} d\tau \]
\[- \int_0^t \epsilon wdx - \int_0^t w_x((l(t), \tau)d\tau - \epsilon(l(t) + b). \]
Therefore,

\begin{equation}
\int_0^t w_x(l(\tau), \tau) d\tau = \int_0^t [\epsilon w(1 + \epsilon w)w^n]_{x = r(\tau)} d\tau - \int_{l(t)}^{r(t)} \epsilon w dx + \int_b^b \epsilon h dx - \epsilon (l(t) + b).
\end{equation}

Combining (2.19) and (2.24), we deduce that

\begin{align*}
L(t) = b & + \beta (1 - \mu) (R(t) - b) \\
& + \beta \int_0^t [\epsilon w r(\tau) - (1 + \epsilon w)w^n]_{x = r(\tau)} d\tau \\
& - \beta \int_{l(t)}^{r(t)} \epsilon w dx + \beta \int_b^b \epsilon h dx - \beta \epsilon (l(t) + b).
\end{align*}

Hence, by (2.22), (2.23),

\begin{align*}
|L_1(t) - L_2(t)| &= \beta \left| \int_0^t [\epsilon w_1(r_1(\tau), \tau) r_1(\tau) - (1 + \epsilon w_1(r_1(\tau), \tau)) w_1^n(r_1(\tau), \tau)] d\tau \\
& - \int_0^t [\epsilon w_2(r_2(\tau), \tau) r_2(\tau) - (1 + \epsilon w_2(r_2(\tau), \tau)) w_2^n(r_2(\tau), \tau)] d\tau \\
& + \int_{l_1(t)}^{r_1(t)} \epsilon w_1(x, t) dx - \int_{l_2(t)}^{r_2(t)} \epsilon w_2(x, t) dx \\
& + \epsilon (l_1(t) - l_2(t)) + (1 - \mu) (R_1(t) - R_2(t)) \right| \\
& \leq C(||l_1 - l_2||_{C[0, T]} + ||r_1 - r_2||_{C^1[0, T]}).
\end{align*}

(2.25)

It now follows from (2.23) and (2.25) that

\begin{equation}
||L_1 - L_2||_{C[0, T]} + ||R_1 - R_2||_{C^1[0, T]} \leq C(||l_1 - l_2||_{C[0, T]} + ||r_1 - r_2||_{C^1[0, T]}),
\end{equation}

which proves Lemma 2.5. \qed

Proof of Theorem 2.2. In view of Lemma 2.3 and Lemma 2.5, we can apply the Schauder fixed point Theorem to deduce that the map \mathcal{M} has a fixed point on $\mathcal{L}(T) \times \mathcal{R}(T)$. Clearly every fixed point $(l(t), r(t))$ of \mathcal{M} determines the solution (u, l, r) of the Problem 2, where u is obtained by solving (2.4)-(2.7) with the $(l(t), r(t))$.

To prove uniqueness, suppose that \{u_i, l_i, r_i\} \((i = 1, 2)\), are two solutions to Problem 2. Using (1.5), we deduce that

\begin{align*}
l_1(t) - l_2(t) &= \lambda \left[\int_{l_2(t)}^{r_2(t)} (\mu + \epsilon u_2) dx - \int_{l_1(t)}^{r_1(t)} (\mu + \epsilon u_1) dx \right] \\
& = \lambda \mu (l_1(t) - l_2(t)) + \lambda \mu (r_2(t) - r_1(t)) \\
& + \lambda \epsilon \left[\int_{l_2(t)}^{r_2(t)} u_2 dx - \int_{l_1(t)}^{r_1(t)} u_1 dx \right],
\end{align*}
By (2.22),
\begin{align*}
|l_1(t) - l_2(t)| & \leq \lambda(\mu + \varepsilon)\|l_1 - l_2\|_{C[0,T]} \\
& + CT(\|l_1 - l_2\|_{C[0,T]} + \|r_1 - r_2\|_{C[0,T]}) \\
& + \lambda(\mu + \varepsilon)\|r_1 - r_2\|_{C[0,T]},
\end{align*}
(2.26)

Recalling (1.7) and (2.23), we find from (2.26) that for any \(T > 0 \)
\[\|l_1 - l_2\|_{C[0,T]} + \|r_1 - r_2\|_{C[0,T]} \leq CT(\|l_1 - l_2\|_{C[0,T]} + \|r_1 - r_2\|_{C[0,T]}), \]
for some constant \(C \) independent of \(T \). This implies uniqueness for small \(T \). Uniqueness for general \(T \) follows by a standard step-by-step argument. \(\square \)

Remark 2.1. Let \(u(x,t), l(t), r(t) \) be the solution constructed in Theorem 2.1. Then we have \(l(t), r(t) \in C^{1+\alpha/2}[0,T] \). In addition, by parabolic Schauder estimates [5], we have that \(u(x,t) \in C^{2+\alpha,1+\alpha/2} \) near the conner of \((b,0)\), which implies \(r(t) \in C^{2+\alpha/2}[0,T] \).

3. Global existence for the auxiliary problem. Before we establish the global existence, we shall obtain an a priori estimate on the solutions of Problem 2.

Theorem 3.1. Assume that \(\{u, l, r\} \) solve the Problem 2 for a given \(T < \infty \). Then, there exist constants \(\bar{c}_0 = \bar{c}_0(T) \) and \(C \), both positive, such that
\begin{align*}
(3.1) \quad \bar{c}_0 < u(x,t) < 1, \quad -C < u_x(x,t) < 0 \quad \text{for } (x,t) \in Q_T.
\end{align*}

Proof. If \(u(x,t) \) attains the value 0 (necessarily at \(x = r(t) \)) for the first time at some point \((r(t_0), t_0)\), then we have \(u_x(r(t_0), t_0) = 0 \), contradicting the maximum principle. Hence, there exists a \(\bar{c}_0 \) such that \(u(x,t) \geq \bar{c}_0 \). By maximum principle again, it follows that \(u < 1 \) and \(-C < u_x < 0 \) for \((x,t) \in Q_T \). \(\square \)

The next Theorem establishes the regularity of the solution.

Theorem 3.2. Let \(\{u, l, r\} \) be the solution of Problem 2 for \(0 < t < T \leq \infty \). Then \(u, l, r \in C^\infty \) for \(0 < t < T \).

Proof. Recalling Remark 2.1, we see that \(l, r \in C^{1+\alpha/2}[0,T] \). By the Schauder estimates [5], we immediately have
\[u(x,t) \in C^{2+\alpha,1+\alpha/2}(\overline{D^T_\delta}), \]
for any \(\delta > 0 \), where \(D^T_\delta = \{(x,t) : l(t) < x < r(t), \delta < t < T\} \). This further implies that
\begin{align*}
\dot{r}(t) &= u^n(r(t), t) \in C^{1+\alpha/2}[\delta, T], \\
\dot{l}(t) &= \beta[u_x(l(t), t) + (1 - \mu)\dot{r}(t)] \in C^{(1+\alpha)/2}[\delta, T],
\end{align*}

for any \(\delta > 0 \). The next Theorem shows the existence of solutions up to \(T = \infty \).
that is, \(r(t) \in C^{2+\alpha/2}([\delta, T]) \) and \(l(t) \in C^{(3+\alpha)/2}([\delta, T]) \).

By the Schauder estimates again, \(u(x, t) \in C^{3+\alpha, (3+\alpha)/2}(\overline{D}_T^\delta) \), and by a "bootstrap" technique, \(u, l, r \in C^\infty \) for \(t > 0 \). □

We now proceed to prove the strict monotonicity of the free boundaries.

Theorem 3.3. Assume the \(\{u, l, r\} \) is the solution of Problem 2 with \(h_{xx} \leq 0 \) and \(\dot{i} \leq 0 \). Then

\[
\dot{r}(t) < 0 \quad \text{for} \quad 0 \leq t \leq T,
\]

and

\[
\dot{i}(t) < 0 \quad \text{for} \quad 0 \leq t \leq T.
\]

Proof. Introduce a function \(v(x, t) = [\ln(1 + \varepsilon u)]_{xx} \), as in [4]. A direct calculation shows that

\[
\varepsilon v_t - v_{xx} - 2[\ln(1 + \varepsilon u)]_{xx}v_x - 2v^2 = 0 \quad \text{for} \quad (x, t) \in Q_T,
\]

\[
v(l(t), t) = \frac{\varepsilon^2}{1 + \varepsilon}[-u_x l - u_x^2/(1 + \varepsilon)] < 0 \quad \text{for} \quad 0 \leq t \leq T \quad (\dot{l} \leq 0),
\]

\[
v(r(t), t) = \frac{\varepsilon^2}{1 + \varepsilon} \cdot \frac{\ddot{r}}{nu^{n-1}} \quad \text{for} \quad 0 \leq t \leq T,
\]

\[
v(x, 0) = \frac{\varepsilon h_{xx}}{1 + \varepsilon h} - \frac{\varepsilon^2 h_x^2}{(1 + \varepsilon h)^2} < 0 \quad \text{for} \quad -b < x < b.
\]

On the other hand,

\[
v_x(r(t), t) = -\ddot{r} \left[\frac{\varepsilon^2}{1 + \varepsilon} (1 + (1 + 1/n)\varepsilon u) - \frac{2\varepsilon^3 u}{n(1 + \varepsilon u)} \right].
\]

Differentiating (1.4) along \(x = r(t) \), and recalling Remark 2.1, we find that

\[
\ddot{r}(0) = nc_0^{n-1}[\varepsilon h_{xx}(b) - c_0^n h_2] < 0.
\]

If there exists a \(t_0 > 0 \) such that \(\ddot{r}(t) < 0 \), for \(0 \leq t < t_0 \), but \(\ddot{r}(t_0) = 0 \), then \(v(x, t) \) assumes maximum value 0 at \((r(t_0), t_0) \), and then by maximum principle, \(v_x(r(t_0), t_0) > 0 \). Since the last inequality contradicts (3.8), the assertion (3.2) follows.

To show (3.3), we consider the function

\[
w(x, t) = u_x(x, t) + (1 - \mu)\ddot{r}.
\]

It is clear that \(w(x, t) \) satisfies following equations:

\[
\varepsilon w_t - w_{xx} = \varepsilon(1 - \mu)\ddot{r} < 0 \quad \text{for} \quad (x, t) \in Q_T,
\]

\[
w(l(t), t) = \dot{l}(t)/\beta \quad \text{for} \quad t \in [0, T],
\]

\[
w(r(t), t) = -(\mu + \varepsilon u)\ddot{r} < 0 \quad \text{for} \quad t \in [0, T],
\]

\[
w(x, 0) = h_x + (1 - \mu)c_0^n < -h_1 + (1 - \mu)c_0^n < 0 \quad \text{for} \quad x \in [-b, b].
\]
Notice that \(\dot{l}(0) = l_0 < 0 \), if there exists a \(t_0 > 0 \) such that \(\dot{l}(t) < 0 \), for \(0 \leq t < t_0 \) but \(\dot{l}(t_0) = 0 \), then \(w(x, t) \) assumes maximum value 0 at \((l(t_0), t_0) \), hence, maximum principle implies \(w_x(l(t_0), t_0) < 0 \). But in fact, \(w_x(l(t_0), t_0) = u_{xx}(l(t_0), t_0) = \varepsilon u_t(l(t_0), t_0) = -\varepsilon u_x(l(t_0), t_0) \dot{l}(t_0) = 0 \), which is a contradiction. \(\square \)

Theorem 3.4. Problem 2 admits a unique solution for any \(T > 0 \).

Proof. Suppose that we can continue the local solution \(\{u, l, r\} \) up to \(T^* < \infty \). Since \(0 < \dot{r}(t) < 1, \dot{r}(t) < 0 \) for \(0 < t < T^* \), both \(\lim_{t \to T^*} r(t) \) and \(\lim_{t \to T^*} \dot{r}(t) \) exist. Recalling Lemma 2.2, we see that \(\|u_x\|_{C^{0,\alpha/2}(Q_T \cap \{x \geq 0\})} \leq C \) uniformly in \(T < T^* \). Therefore, \(\lim_{t \to T^*} u_x(l(t), t) \) exists, and then so does \(\lim_{t \to T^*} \dot{l}(t) \) by (2.1). It is clear that \(\lim_{t \to T^*} l(t) \) also exists by (3.3). At this point, we can extend the solution \(\{u, l, r\} \) up to \(t = T^* \). Furthermore, by (3.1) and Theorem 3.3, it is easy to see that \(\{u, l, r\} \) satisfy the following inequalities: \(\dot{l}(T^*) < 0 \) and \(\dot{r}(T^*) = w^n(r(T^*), T^*) > 0 \), which enable us to continue the solution \(\{u, l, r\} \) beyond \(t = T^* \) by Theorem 2.1. Finally, uniqueness follows from Theorem 2.1. \(\square \)

4. Global existence and uniqueness for Problem 1.

In this section, we prove our main result. By a solution \(\{u, l, r\} \) of Problem 1 we mean that the triple \(\{u, l, r\} \) satisfies (1.1)-(1.6) in the classical sense and has the following properties: \(0 \leq u \leq 1 \), \(0 \leq -\dot{l}, \dot{r} \leq C \).

Theorem 4.1. There exists one unique solution to Problem 1 for any \(T > 0 \).

We begin with an approximate problem of Problem 1. For each \(b > 0 \), consider the following system:

\[(4.1) \quad \varepsilon u_t = u_{xx} \quad \text{for } Q_T,\]
\[(4.2) \quad u = 1 \quad \text{for } x = l(t), 0 < t < T,\]
\[(4.3) \quad -u_x = (1 + g(b) + \varepsilon u) \dot{r} \quad \text{for } x = r(t), 0 < t < T,\]
\[(4.4) \quad \dot{r} = u^n \quad \text{for } x = r(t), 0 < t < T,\]
\[(4.5) \quad \dot{l} = \beta[u_x + (1 - \mu) \dot{r}] \quad \text{for } x = l(t), 0 < t < T,\]
\[(4.6) \quad u(x, 0) = h_b(x) \quad \text{for } -b < x < b, \quad l(0) = -b, \quad r(0) = b,\]

here \(h_b(x) = A + Bx + Cx^2 \) and

\[
A = 1 - (1 + \varepsilon)b - \frac{3\varepsilon(1 + \varepsilon)sb^2}{2(1 - 2\varepsilon sb)},
\]
\[
B = -(1 + \varepsilon) \left[1 + \frac{\varepsilon sb}{1 - 2\varepsilon sb} \right],
\]
\[C = \frac{\varepsilon(1 + \varepsilon)s}{2(1 - 2\varepsilon sb)} < 0, \]

and \(s \) is a parameter in the interval \([-2\beta(\mu + \varepsilon), \beta(\mu + \varepsilon)/2]\), \(g(b) = (1 + \varepsilon)/h_b^n(b) - (1 + \varepsilon h_b(b)) \), \(Q_T = \{(x, t) : l(t) < x < r(t), t \geq 0\} \).

For \(b \) small enough, a direct calculation shows that

\[
\begin{align*}
 h_b(-b) &= 1, & h_{bx}(b) &= -(1 + \varepsilon), \\
 h_{bx}(-b) &= -(1 + \varepsilon) - 2\varepsilon(1 + \varepsilon) sb/(1 - 2\varepsilon sb), \\
 h_b(b) &= 1 - 2(1 + \varepsilon)b - 2\varepsilon(1 + \varepsilon) s b^2/(1 - 2\varepsilon sb), \\
 l_0 &= \beta[h_{bx}(-b) + (1 - \mu)h_b^n(b)] < 0, \\
 -h_{bx}(b) &= (1 + g(b) + \varepsilon h_b(b))h_b^n(b), \\
 0 < g(b) &\to 0, \quad \text{as} \quad b \to 0, \\
 h_{bx} &= 2C < 0 \quad \text{for} \quad -b \leq x \leq b.
\end{align*}
\]

Hence, by essentially following the proof of Theorem 3.4 we have:

Lemma 4.1. For any \(T > 0 \), there exists a unique solution \(\{u_b(x, t), l_b(t), r_b(t)\} \) to the system (4.1) – (4.6).

Next, we shall obtain uniform estimates on \(\{u_b(x, t), l_b(t), r_b(t)\} \) for all small positive \(b \). By Theorem 3.1,

\[0 < u_b(x, t) < 1 \quad \text{for} \quad (x, t) \in \overline{Q}_T, \tag{4.7} \]

and

\[-C \leq u_{bx}(x, t) < 0 \quad \text{for} \quad (x, t) \in \overline{Q}_T, \tag{4.8} \]

where \(C \) is a positive constant independent of \(b \).

By (1.4) (4.7),

\[0 < \dot{r}_b(t) \leq 1 \quad \text{for} \quad 0 \leq t \leq T, \tag{4.9} \]

and by (2.1) (4.8),

\[-C \leq \dot{\dot{r}}_b(t) < \beta(1 - \mu) \quad \text{for} \quad 0 \leq t \leq T. \tag{4.10} \]

Moreover, since \(\dot{\dot{r}}_b(0) = \beta[h_{bx}(-b) + (1 - \mu)h_b^n(b)] = l_0 \), which uniformly goes to \(-\beta(\mu + \varepsilon)\) as \(b \to 0 \) for all \(s \in [-2\beta(\mu + \varepsilon), -\beta(\mu + \varepsilon)/2] \), a simple calculation shows that, for each \(b \) \((0 < b \leq b_0 \text{ provided } b_0 \text{ is small}) \), we can always take one \(s \) from the
interval \([-2\beta(\mu + \epsilon), -\beta(\mu + \epsilon)/2]\) such that \(s = \hat{l}_b(0)\). It is then easy to check that first order compatibility condition is satisfied at \((-b, 0)\) for the system (4.1)-(4.6), and this fact implies that \(u_b(x, t) \in C^{2+\alpha,1+\alpha/2}(\overline{Q}_T)\) for some \(\alpha \in (0,1)\) by the standard theory of parabolic PDEs [5]. The regularity of \(u_b\) yields \(r_b \in C^2\), which in turn implies that \(u_{bxx}\) is continuous up to the boundary \(x = r_b(t)\). Now we set \(\varphi = u_{bxx}\). Since \(\varphi = -\epsilon u_{bxx}\hat{l}_b(t)\) on \(x = l_b(t)\) and

\[
\varphi_x + (\hat{r} + \epsilon(n + 1)w^n + n(1 + g(b))w^{n-1})\varphi
= ((n + 1)\epsilon w^n + n(1 + g(b))w^{n-1})w_x \hat{r}
\]
on \(x = r_b(t)\), it follows then by the maximum principle that \(|\varphi(x, t)| \leq C\) with \(C\) independent of \(b\) (cf. Lemma 2.4.), that is,

(4.11) \[|u_{bxx}(x, t)| \leq C \quad \text{for} \quad (x, t) \in \overline{Q}_T.\]

This yields, by (1.1),

(4.12) \[|u_{bt}(x, t)| \leq C \quad \text{for} \quad (x, t) \in \overline{Q}_T.\]

Proof of Theorem 4.1. By (4.7), (4.8), (4.9), (4.10), (4.11) and (4.12), we can pass to the limit as \(b \to 0\) (if necessary, take a subsequence from \(\{u_b, l_b, r_b\}\)) to get a solution \(\{u, l, r\}\) to Problem 1. Then global existence follows.

Uniqueness is proved by the argument used in the proof of Theorem 2.1. \(\square\)

Theorem 4.3. Let \(\{u(x, t), l(t), r(t)\}\) be the unique solution of Problem 1. Then \(u(x, t) \in C^{2,1}(\overline{D}_T) \cap C^\infty(D_T)\) and \(l(t) \in C[0, T] \cap C^\infty(0, T), r(t) \in C^2[0, T] \cap C^\infty(0, T).\) Moreover, \(\hat{l}(t) < 0\) and \(\hat{r}(t) < 0\) for \(t \in [0, T].\)

Proof. It follows from (4.11) and (4.12) that \(u(x, t) \in C^{2,1}(\overline{D}_T).\) Notice that

(4.13) \[\hat{r}(t) = nu^{n-1}(u_x(r(t), t) + u_t(r(t), t)).\]

Combining (4.8) and (4.12) yields the assertion \(\hat{r}(t) \in C^2[0, T].\) The remaining conclusions of the theorem can be derived in the same way as done for Theorem 3.2 and Theorem 3.3. \(\square\)

Remark 4.2. It is clear that our methods apply to the case \(\lambda = 0.\) Hence we have given a different proof of the global existence and uniqueness theorems for one free boundary problem considered in [4]; their methods seem not work for Problem 1.
5. Asymptotic behavior of the solution. Let \(\{u(x, t), l(t), r(t)\} \) be the solution to Problem 1 for any \(T > 0 \). Then by Green's identity [4],

\[
0 = \int_{D_1} \int_{D_t} x(u_{xx} - \varepsilon u_t)dx\,d\tau = \int_{\partial D_t} [(xu_x - \varepsilon u)\,d\tau + \varepsilon xudx] \quad \text{for} \ t > 0.
\]

By (1.2), (1.3) and (2.1), equation (5.1) yields

\[
(5.2) \quad \frac{1}{2} \left[r^2(t) + (\varepsilon + \frac{1}{\beta}) l^2(t) \right] = \varepsilon t - \int_0^t \varepsilon u(r(\tau), r(\tau))d\tau \\
+ \int_0^t l(\tau)(1 - \mu) \dot{r}(\tau) - \varepsilon \int_{l(t)}^{r(t)} xudx, \quad \text{for} \ t > 0.
\]

Theorem 5.1. There hold:

\[
(5.3) \quad \lim_{t \to \infty} l(t) = -\infty \quad \text{and} \quad \lim_{t \to \infty} r(t) = +\infty.
\]

Proof. The existence of both limits is a consequence of monotonicity of \(l(t) \) and \(r(t) \). To find the limit values, we first recall (1.5) and the fact that \(0 \leq u \leq 1 \) to get

\[
(5.4) \quad \frac{\lambda \mu}{1 - \lambda \mu} r(t) \leq -l(t) \leq \frac{\lambda(\mu + \varepsilon)}{1 - \lambda(\mu + \varepsilon)} r(t) \quad \text{for} \ t > 0,
\]

and then deduce from (5.2) and \(\dot{l}(t) < 0, u(x, t) \leq 1 \) that

\[
(5.5) \quad \frac{1}{2} \left[r^2(t) + (\varepsilon + \frac{1}{\beta}) l^2(t) \right] \\
\geq \varepsilon t(1 - \frac{1}{t} \int_0^t u(r(\tau), r(\tau))d\tau) \\
+ l(t)(1 - \mu)r(t) - \frac{\varepsilon}{2}(r^2(t) - l^2(t)).
\]

Notice that \(\lim_{t \to \infty} \frac{1}{t} \int_0^t u(r(\tau), r(\tau))d\tau \) is zero, if the integral is bounded in \(t \); and, otherwise, is equal to \(\lim_{t \to \infty} u(r(t), t) = \lim_{t \to \infty} (\dot{r}(t))^{1/n} = c_1 \) such that \(0 \leq c_1 < 1 \) due to \(\dot{r}(t) < 0 \). Now if \(\lim_{t \to \infty} r(t) \) is finite, then both \(r(t) \) and \(l(t) \) are bounded because of (5.4), and we get a contradiction by letting \(t \) go to infinity on both sides of (5.5). Therefore, \(\lim_{t \to \infty} r(t) = \infty \), and \(\lim_{t \to \infty} l(t) = -\infty. \)

Theorem 5.2. There hold:

\[
(5.6) \quad \lim_{t \to \infty} \dot{r}(t) = 0,
\]

and

\[
(5.7) \quad c_2(t - \sigma(t))^{1/2} \leq -l(t), r(t) \leq (2\varepsilon)^{1/2} t^{1/2} \quad \text{for} \ t > 0,
\]
for some positive constant c_2 and some function $\sigma(t)$ which goes to 0 as $t \to \infty$.

Proof. Since $\bar{r}(t) < 0$, the limit $\lim_{t \to \infty} \bar{r}(t)$ exists. Dividing (5.2) by t^2 both sides and using the fact that the right hand side of (5.2) is less than εt, we obtain that

$$\lim_{t \to \infty} \frac{1}{t^2} \left[\frac{r^2(t)}{t^2} + \left(\varepsilon + \frac{1}{\beta} \right) \frac{r^2(t)}{t^2} \right] \leq 0.$$

Hence, $\lim_{t \to \infty} r^2(t)/t^2 = 0$, $\lim_{t \to \infty} r^2(t)/t^2 = 0$. On the other hand, by (5.3),

$$\lim_{t \to \infty} \frac{r^2(t)}{t^2} = \lim_{t \to \infty} \frac{r(t)}{t} \bar{r}(t) = \left(\lim_{t \to \infty} \bar{r}(t) \right)^2.$$

The conclusion (5.6) then follows. In view of the fact that the right hand side of (5.2) is less than εt again, the upper bound of $-l(t), r(t)$ in (5.7) follows from (5.2) and (5.4). Let $\sigma(t) = \frac{1}{t} \int_0^t u(r(\tau), \tau) d\tau$. Then we can deduce the lower bound of $-l(t), r(t)$ in (5.7) by (5.4) (5.5). Moreover, (5.6) implies that $\lim_{t \to \infty} \sigma(t) = 0$. The proof is complete. \blacksquare

Finally, we investigate the asymptotic behavior of the solution $\{u(x, t), l(t), r(t)\}$ as $\lambda \to 0$. Let $\{U(x, t), R(t)\}$ be the unique solution of following free boundary problem for arbitrarily given $T < \infty$.

$$\begin{align*}
(5.8) & \quad \varepsilon u_t = u_{xx} \quad \text{for } 0 < x < r(t), \quad 0 < t < T, \\
(5.9) & \quad u = 1 \quad \text{for } 0 < t < T, \\
(5.10) & \quad -u_x = (1 + \varepsilon u)u^n \quad \text{for } x = r(t), \quad 0 < t < T, \\
(5.11) & \quad \bar{r} = u^n \quad \text{for } x = r(t), \quad 0 < t < T, \\
(5.12) & \quad r(0) = 0.
\end{align*}$$

Then we have

Theorem 5.3. Assume that $\{u_\lambda, l_\lambda, r_\lambda\}$ solves the Problem 1 for each $\lambda > 0$. Then $\{u_\lambda(x, t), l_\lambda(t), r_\lambda(t)\} \to \{U(x, t, 0, R(t)\}$ as $\lambda \to 0$ uniformly in $t \in [0, T]$.

Proof. Since by the maximum principle $0 < u_\lambda(x, t) \leq 1$ and $-(1 + \varepsilon) \leq u_{\lambda xx}(x, t) < 0$, we immediately have that $l_\lambda(t) \to 0$ as $\lambda \to 0$ (due to (2.1) and (1.4)). Moreover, it is easy to check that $|u_{\lambda x}|$ and $|u_{\lambda xx}|$ are uniformly bounded in $\lambda, l_\lambda(t) < x < r_\lambda(t), t \in [0, T]$ (cf. section 4), which further implies that the $\bar{r}_\lambda(t)$ are uniformly bounded by (4.13). Therefore, we can take a subsequence of $\{u_\lambda(x, t), r_\lambda(t)\}$, say $\{u_\lambda(x, t), r_\lambda(t)\}$, such that $\{u_\lambda(x, t), r_\lambda(t)\}$ converges to a solution of (5.8)-(5.12) as $\lambda' \to 0$. By the uniqueness, the entire family $\{u_\lambda(x, t), r_\lambda(t)\}$ is convergent to $\{U(x, t), R(t)\}$ as $\lambda \to 0$. \blacksquare

Remark 5.1. The method of this paper can be extended to the case of more
general driving force on the free boundary $x = r(t)$: $\dot{r}(t) = \varphi(u(r(t), t))$ with $\varphi \in C^1(0, 1], \varphi'(u) > 0$ for $u \in (0, 1]$ and $\varphi(0) = 0$.

Acknowledgment
The author would like to thank Professor Avner Friedman for his constant encouragement and many helpful comments.

REFERENCES
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1041</td>
<td>Neerchal K. Nagaraj and Wayne A. Fuller</td>
<td>Least squares estimation of the linear model with autoregressive errors</td>
</tr>
<tr>
<td>1042</td>
<td>H.J. Sussmann & W. Liu</td>
<td>A characterization of continuous dependence of trajectories with respect to the input for control-affine systems</td>
</tr>
<tr>
<td>1043</td>
<td>Karen Rudie & W. Murray Wonham</td>
<td>Protocol verification using discrete-event systems</td>
</tr>
<tr>
<td>1044</td>
<td>Rohan Abeyaratne & James K. Knowles</td>
<td>Nucleation, kinetics and admissibility criteria for propagating phase boundaries</td>
</tr>
<tr>
<td>1045</td>
<td>Gang Bao & William W. Symes</td>
<td>Computation of pseudo-differential operators</td>
</tr>
<tr>
<td>1046</td>
<td>Srdjan Stojanovic</td>
<td>Nonsmooth analysis and shape optimization in flow problem</td>
</tr>
<tr>
<td>1047</td>
<td>Miroslav Tuma</td>
<td>Row ordering in sparse QR decomposition</td>
</tr>
<tr>
<td>1048</td>
<td>Onur Toker & Hitay Özbay</td>
<td>On the computation of suboptimal H^∞ controllers for unstable infinite dimensional systems</td>
</tr>
<tr>
<td>1049</td>
<td>Hitay Özbay</td>
<td>H^∞ optimal controller design for a class of distributed parameter systems</td>
</tr>
<tr>
<td>1050</td>
<td>J.E. Dunn & Roger Fosdick</td>
<td>The Weierstrass condition for a special class of elastic materials</td>
</tr>
<tr>
<td>1051</td>
<td>Bei Hu & Jianhua Zhang</td>
<td>A free boundary problem arising in the modeling of internal oxidation of binary alloys</td>
</tr>
<tr>
<td>1052</td>
<td>Eduard Feireisl & Enrique Zuazua</td>
<td>Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent</td>
</tr>
<tr>
<td>1053</td>
<td>I-Heng McComb & Chjan C. Lim</td>
<td>Stability of equilibria for a class of time-reversible, $D_n\times O(2)$-symmetric homogeneous vector fields</td>
</tr>
<tr>
<td>1054</td>
<td>Ruben D. Spies</td>
<td>A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials</td>
</tr>
<tr>
<td>1055</td>
<td>H.S. Dumas, F. Golse, and P. Lochak</td>
<td>Multiphase averaging for generalized flows on manifolds</td>
</tr>
<tr>
<td>1056</td>
<td>Bei Hu & Hong-Ming Yin</td>
<td>Global solutions and quenching to a class of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1057</td>
<td>Zhangxin Chen</td>
<td>Projection finite element methods for semiconductor device equations</td>
</tr>
<tr>
<td>1058</td>
<td>Peter Guttorp</td>
<td>Statistical analysis of biological monitoring data</td>
</tr>
<tr>
<td>1059</td>
<td>Wensheng Liu & Héctor J. Sussmann</td>
<td>Abnormal sub-Riemannian minimizers</td>
</tr>
<tr>
<td>1060</td>
<td>Chjan C. Lim</td>
<td>A combinatorial perturbation method and Arnold’s whiskered Tori in vortex dynamics</td>
</tr>
<tr>
<td>1061</td>
<td>Yong Liu</td>
<td>Axially symmetric jet flows arising from high speed fiber coating</td>
</tr>
<tr>
<td>1062</td>
<td>Li Qiu & Tongwen Chen</td>
<td>H_2 and H_∞ designs of multivariate sampled-data systems</td>
</tr>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jiongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jiongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with logistic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion equations</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrike Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>A diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu</td>
<td>Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string equation</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermoosyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnans & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control problems</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin</td>
<td>L^2-estimates for parabolic equations and applications</td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.R. Rajagopal</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary</td>
</tr>
</tbody>
</table>
feedback acting via bending moments only
Mary Ann Horn & Irena Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback
Vilmos Komornik, Decay estimates for a petroviski system with a nonlinear distributed feedback
Jesse L. Barlow, Perturbation results for nearly uncoupled Markov chains with applications to iterative methods
Jong-Shenq Guo, Large time behavior of solutions of a fast diffusion equation with source
Tongwen Chen & Li Qiu, H_{∞} design of general multirate sampled-data control systems
Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II
Nahum Shimkin, Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies
Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua, On the density of the range of the semigroup for semilinear heat equations
Robert F. Stengel, Laura R. Ray & Christopher I. Marrison, Probabilistic evaluation of control system robustness
H.O. Fattorini & S.S. Sritharan, Optimal chattering controls for viscous flow
Kathryn E. Lenz, Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs
Gang Bao & David C. Dobson, Second harmonic generation in nonlinear optical films
Avner Friedman & Chaocheng Huang, Diffusion in network
Xinfu Chen, Avner Friedman & Tsuyoshi Kimura, Nonstationary filtration in partially saturated porous media
Walter Littman & Baisheng Yan, Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder
Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II
Nahum Shimkin, Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing
A. Narain, Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation
Andrew Teel & Laurent Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback
Karen Rudie & Jan C. Willems, The computational complexity of decentralized discrete-event control problems
John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys
Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part
Lawrence Markus, A brief history of control
Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strongly sign-singular matrices
A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods
Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes
Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control
Srdjan Stojarovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis
Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback
Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions
Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition
Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations
Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion
Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations
Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations
Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality
M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate
Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model
Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure
Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string
Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology
H.J. Sussmann, A continuation method for nonholonomic path-finding problems