NUMERICAL ANALYSIS OF A NONCONVEX VARIATIONAL PROBLEM RELATED TO SOLID-SOLID PHASE TRANSITIONS

By

Pierre-Alain Gremaud

IMA Preprint Series # 1001
July 1992
NUMERICAL ANALYSIS OF A NONCONVEX VARIATIONAL PROBLEM RELATED TO SOLID-SOLID PHASE TRANSITIONS*

Pierre-Alain Gremaud†

Abstract. The description of equilibria of shape memory alloys or other ordered materials gives rise to nonconvex variational problems. In this paper, we study a two-dimensional model of such materials. Due to the fact that the corresponding functional has two symmetry-related (martensitic) energy wells, the numerical approximation of the deformation gradient does not converge, but tends to oscillate between the two wells, as the size of the mesh is refined. These oscillations may be interpreted in terms of microstructures. Using a nonconforming P_1 finite element, we give an estimate for the rate of convergence of the probability for the approximated deformation to have its gradient “near” one of the two (martensitic) wells.

Key words. finite element method, rate of convergence, numerical approximation, nonconvex, variational problem.

AMS(MOS) subject classifications (1985 revision). 65N15, 65N30,35J20, 35J70, 73C60

1. Introduction

The goal of this paper is to study some numerical aspects of displacive phase transformations, i.e. solid-solid phase transformations which are accompanied by a change of shape. It is observed that for some crystals such a transformation does not occur uniformly but rather by different amounts (i.e. deformations) in different parts of the body. This “ununiformity” will be here referred to as microstructures of the material and may exhibit very complicated patterns.

From a physical point of view, the underlying assumptions are the following: we confine our attention to two-dimensional monocrysrtals undergoing displacive phase transformations. Let us remark that a fairly large class of metallic alloys can be studied within the above frame (see [j1]). We will here focus more specifically on one of the most simple examples of the above transformations, namely a cubic-tetragonal transformation. Examples of such materials are provided by some shape memory alloys as CuZn, CuAlNi, NiAl and InTl.

In the sequel $\Omega \subset \mathbb{R}^2$ is the reference configuration for the crystal. It corresponds to the undistored cubic symmetrical and so-called austenite phase. We consider a fixed

*This research was supported in part by the Fonds National Suisse pour la Recherche Scientifique.
†School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
temperature at which the low symmetry tetragonal phase –the so-called martensite phase– can possibly appear.

If \(y : \Omega \rightarrow \mathbb{R}^2 \) denotes the deformation, the bulk energy is given by:

\[
\int_{\Omega} \Phi(\nabla y(x)) \, dx
\]

where \(\Phi \) is the energy density. We consider the following Ericksen-James energy density

(1.1) \[
\Phi(F) = k_1(\text{Tr} C - 2)^2 + k_2 C_{12}^2 + k_3 \left(\frac{(C_{11} - C_{22})^2}{2} - \varepsilon^2 \right)^2,
\]

where \(F = \nabla y \) and \(C = F^t F \) is the (right) Cauchy-Green strain tensor, \(k_i, i = 1, 2, 3 \) are constant elastic moduli and \(\varepsilon \) is the transformation strain (in the case of indium-thallium the moduli are modeled by \(k_1 = 10, k_2 = 3, k_3 = 1, \varepsilon = 0.1 \), see [cl1]).

The equilibrium configurations are those which minimize the functional

(1.2) \[
\int_{\Omega} \Phi(\nabla y) \, dx
\]

over the space \(V = \{ v \in H^1(\Omega)^2; v - f \in H^1_0(\Omega)^2 \} \) where \(f \) is a given Dirichlet type data to be specified later and where \(H^1(\Omega) \) is the usual Sobolev space. As a consequence of the serious lack of convexity of the above functional (it has two wells corresponding to the martensitic states), there is no minimizer. This is due to the fact that the lowest energy states –those corresponding to the wells– cannot match the boundary conditions. We are led to consider minimizing sequences instead of minimizers. The lowest level of energy is obtained by organizing oscillations between the wells in order to satisfy “in the mean” the boundary condition, possibly giving rise to a twinned martensitic phase (i.e. which consists of fine bands of the different variants of the martensite). Many theoretical papers have been published on these questions. The reader may for instance refer to [bj1], [bj2] or [ck1].

The outline of the paper is as follows. In section 2, we construct a minimizing sequence using the “classical” \(P_1 \)-nonconforming finite element. We give the rate of convergence of the (discrete) energy to zero with respect to the size of the mesh. The oscillations of the minimizing sequences are analyzed in section 3. Namely, we show what is the probability with which the gradients of the minimizing sequence take their values in the vicinity of the wells. These results extend those obtained in [ckl1] and [cl2] in the one-dimensional case and in [cc1] and [c1] in the “two-dimensional scalar” case (i.e. \(\Omega \subset \mathbb{R}^2 \) and \(y : \Omega \rightarrow \mathbb{R} \)). Finally, let us point out that we are not aware of any other convergence results in the genuinely two or multi-dimensional problem.
2. Construction of a minimizing sequence

In this section, we construct, via the finite element method, a minimizing sequence. In order to produce, on a given triangulation, a piecewise polynomial function with the lowest possible level of energy and which verifies "in some sense" the boundary conditions, we are led to get rid of some of the continuity requirements of the traditional finite elements. We use here the P_1-nonconforming element (see e.g. [cr1]). We prove that the corresponding discrete energy tends to zero like h^2 as the size of the mesh h tends to zero.

Let us first recall some elementary properties of the energy density Φ.

Lemma 2.1. Let Φ be the Ericksen-James energy density given in (1.1). The following properties hold

Φ is frame-indifferent : $\Phi(RF) = \Phi(F) \quad \forall R \in SO_2$,

Φ has the symmetry group of the square : $\Phi(FR) = \Phi(F) \quad \forall R \in D_8$,

where D_8 is the dihedral group of order 8. Moreover Φ has two minima ($\Phi = 0$) at the Cauchy-Green strains

$$C_0 = \begin{pmatrix} 1 - \varepsilon & 0 \\ 0 & 1 + \varepsilon \end{pmatrix}, \quad C_1 = \begin{pmatrix} 1 + \varepsilon & 0 \\ 0 & 1 - \varepsilon \end{pmatrix}.$$

Some remarks are now in order.

The values C_0 and C_1 of the Cauchy-Green strain are characteristic of the two variants of the martensitic phase.

Let y be a stable (i.e. ∇y minimizes Φ almost everywhere) continuous and piecewise differentiable deformation. We assume that on the two different regions ∇y has two different constant values corresponding to the two above variants of the martensite, namely

$$F_0 = C_0^{1/2} = \begin{pmatrix} \sqrt{1 - \varepsilon} & 0 \\ 0 & \sqrt{1 + \varepsilon} \end{pmatrix} \quad \text{and} \quad \tilde{RF}_1,$$

where $F_1 = C_1^{1/2} = \begin{pmatrix} \sqrt{1 + \varepsilon} & 0 \\ 0 & \sqrt{1 - \varepsilon} \end{pmatrix}$, with $\tilde{R} \in SO_2$.

The continuity requirement implies that the interface which separates the two regions is a straight line (with unit normal n) and for some nonzero vector a, we must have

$$\tilde{RF}_1 - F_0 = a \otimes n. \quad (2.1)$$

A solution of equation (2.1) is given by

$$\tilde{R} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \quad \text{with} \quad \sin \alpha = -\varepsilon, \ a = \sqrt{2}\varepsilon \begin{pmatrix} \delta^- \\ -\delta^+ \end{pmatrix}, \ n = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$
where we have set $\delta^- = \sqrt{1 - \varepsilon}$ and $\delta^+ = \sqrt{1 + \varepsilon}$.

Let $\mathcal{M} = \{ A \in M^{2 \times 2}; \Phi(A) = 0 \}$. By lemma 2.1, \mathcal{M} is invariant under the left action of SO_2, i.e.

$$SO_2 \mathcal{M} = \mathcal{M}.$$

In our case, \mathcal{M} consists in two distinct orbits

$$\mathcal{M} = SO_2 F_0 \cup SO_2 F_1.$$

Let us now return to the variational problem (1.2). As remarked in [ckl1], problem (1.2) may have many solutions not only because of nonuniqueness of limits of minimizing sequences but also because the possible associated Young measure may be not unique. In order to select a unique Young measure (see e.g. [bj2]), we consider another formulation of problem (1.2) given in the following lemma.

Lemma 2.2. Let $V = \{ v \in H^1(\Omega)^2; v - f \in H^1_0(\Omega)^2 \}$. If f is affine (i.e. $f(x) \equiv Bx + b$, $B \in M^{2 \times 2}$, $b \in \mathbb{R}^2$), then we have

$$\inf_{y \in V} \int_\Omega \Phi(\nabla y) \, dx = \inf_{y \in V} \mathcal{E}(y),$$

where $\mathcal{E}(y) = \int_\Omega (\Phi(\nabla y) + |y - f|^2) \, dx$.

Proof. See [bm1], p.239. □

For the sake of simplicity, we assume

$$\Omega = (0,1)^2 \quad \text{and} \quad f(x) = \frac{1}{2}(F_0 + \tilde{R}F_1)x.$$

Remark 2.1. The very special boundary conditions we consider is particular to the material we study. This choice leads to a unique pattern of microstructure. More precisely the Young measure associated to any minimizing sequence is unique and is equal to the Young measure corresponding to a single laminate constructed from the matrices F_0 and $\tilde{R}F_1$ (see [bj2]). In more general situations no uniqueness results are expected. □

Therefore, the problem is the following

Find $u \in V = \{ v \in H^1(\Omega)^2; v - f \in H^1_0(\Omega)^2 \}$ such that

$$\mathcal{E}(u) = \inf_{y \in V} \mathcal{E}(y),$$

where $\mathcal{E}(y) = \int_\Omega (\Phi(\nabla y) + |y - f|^2) \, dx$.

4
Let us now consider the following family of triangulations of $\bar{\Omega}$

$$\mathcal{T}_h = \{K_{l,m,p}, 1 \leq l, m \leq M, p = 1, 2\},$$

where $K_{l,m,1}$ (resp. $K_{l,m,2}$) is the triangle with vertices $(lh, (m - 1)h)$, $((l - 1)h, mh)$ and $((l - 1)h, (m - 1)h)$ (resp. (lh, mh)); h stands for the mesh size, $\frac{1}{h} \in \mathbb{N}$. The set \mathcal{T}_h is clearly a decomposition of $\bar{\Omega}$. Let $\{m_i\}$ be the set of the midpoints along the edges of all triangles $K \in \mathcal{T}_h$.

We consider the \mathcal{P}_1-nonconforming element (see [cr1]). The degrees of freedom are given by the values at the midpoints and the space of approximation is \mathcal{P}_1 (space of polynomials of degree 1). The discrete space V_h is defined as follows

$$V_h = \{u : \Omega \to \mathbb{R}^2; u|_K \in \mathcal{P}_1(K)^2, \forall K \in \mathcal{T}_h,$$
$$u \text{ is continuous at } m, \forall m \in \{m_i\},$$
$$u(m) = f(m), \forall m \in \{m_i\} \cap \partial \Omega\}.$$

In the way of nonconforming methods, we now define a numerical approximation $u_h \in V_h$ by

$$\mathcal{E}_h(u_h) = \inf_{y_h \in V_h} \mathcal{E}_h(y_h) \equiv E_h,$$

where $\mathcal{E}_h(y_h) = \sum_{K \in \mathcal{T}_h} \int_{K} (\Phi(\nabla y_h) + |y_h - f|^2) dx$.

As usual in the case of nonconforming methods, the difference between \mathcal{E} and \mathcal{E}_h lies in the fact that we a priori ignore the Dirac distributions at the element boundaries generated by the discontinuity of functions in V_h. Such a method will be justified later (see section 3). Now, let us prove that the approximated problem (2.4) admits a solution.

Lemma 2.3. There exists $u_h \in V_h$ such that

$$\mathcal{E}_h(u_h) = \inf_{y_h \in V_h} \mathcal{E}_h(y_h).$$

Proof. A function $v_h \in V_h$ is completely determined by its value at the nodes $\{m_i\}$. Given an ordering of the triangles, we denote by ξ the vector of the values of the degrees of freedom of v_h at the nodes which do not belong to $\partial \Omega$.

Let $\Xi(\xi) = \mathcal{E}_h(v_h)$. By definition of \mathcal{E}_h, Ξ is a continuous function of ξ which has to be minimized over \mathbb{R}^d where d is the number of nodes not on $\partial \Omega$. We remark that

$$\Xi(\xi) \to +\infty \quad \text{when} \quad |\xi| \to +\infty.$$
Indeed if $|\xi| \to +\infty$, then at least one component of ξ tends to infinity. By definition of the degrees of freedom and by definition of \mathcal{E}_h, this leads to the latter relation. Now, let $\hat{\xi} \in \mathbb{R}^d$ be such that $\Xi(\hat{\xi}) < \infty$ and let $X = \{\xi \in \mathbb{R}^d; \Xi(\xi) \leq \Xi(\hat{\xi})\}$. By continuity of Ξ, X is a compact set in \mathbb{R}^d. Therefore our problem consists in minimizing a continuous function over a compact set in \mathbb{R}^d and consequently admits one solution. \square

Let us now establish an upper bound of the discrete energy with respect to h. The idea consists here in trying to “mimic” the twinning planes.

Lemma 2.4.

$$E_h = \inf_{y_h \in V_h} \mathcal{E}_h(y_h) \leq \frac{1}{24} \varepsilon^2 h^2.$$

Proof. Let $y_h \in V_h$ be such that

$$y_h(m) = f(m) \quad \forall m \in \{m_i\} \cap \partial \Omega,$$
$$\nabla y_h|_{K_{l,m,p}} = F_0 \quad \text{if } l + m + p \text{ is odd},$$
$$\nabla y_h|_{K_{l,m,p}} = \overline{R} F_1 \quad \text{if } l + m + p \text{ is even},$$

(see figure 1 below).

![Figure 1. Gradient of y_h.](image)

Easy (but somewhat tedious) calculations show that such a construction is possible.
Moreover, we have
\[\Phi(\nabla y_h) = 0 \quad \text{a.e. in } \Omega, \]
and thus
\[E_h(y_h) = \int_{\Omega} |y_h - f|^2 \, dx = \sum_{K \in T_h} \int_K |y_h - f|^2 \, dx. \]
By simple calculations we prove that for any \(K \in T_h \)
\[\int_K |y_h - f|^2 \, dx = \frac{\varepsilon^2 h^4}{48}. \]
Therefore, since there are \([2/h^2]\) triangles, we get
\[E_h \leq E_h(y_h) = \frac{\varepsilon^2 h^2}{24}, \]
which proves the lemma. \(\square \)

Remark 2.2. It is not possible to consider the same construction as in the previous proof using “classical” finite elements such as the \(P_1 \)-conforming finite element (since then the boundary condition cannot be matched). However, we can construct a function \(\tilde{y}_h \) in a \(P_1 \)-conforming space having the same properties as \(y_h \) in the above demonstration except in a \(h \)-width boundary layer along \(\partial \Omega \). In doing this, we can prove
\[E(\tilde{y}_h) = O(h), \]
establishing in this way that the infimum of the energy for the continuous problem is actually zero. \(\square \)

3. Convergence in measure
In this section, we give an estimate for the rate of convergence of the probability for \(u_h \) to have its gradients “near” one of the two martensitic states. Hereafter \(c \) denotes various constants independent of \(h \).

Let us first define the following projection operator
\[\Pi : M^{2 \times 2} \rightarrow \mathcal{M}, \]
\[F \mapsto \Pi F, \]
where \(\Pi F \) is such that \(\| F - \Pi F \| = \min(\inf_{\xi \in SO_2} \| F - \xi \|, \inf_{\xi \in SO_2} \| F - \xi \|), \) where \(\| \cdot \| \) stands for the \(\ell_2 \)-norm. Since \(\mathcal{M} \) is compact in \(M^{2 \times 2} \), and since the distance \(d(F, \cdot) \) is continuous on \(\mathcal{M} \), there exists, for any \(F \) in \(M^{2 \times 2} \), at least one \(\Pi F \).
We now remark that there exists $\lambda > 0$ and $\alpha > 0$ such that

$$\Phi(F) \geq \lambda \| F - \Pi F \|^\alpha.$$

In order to prove this result, it is useful to analyze some geometrical properties of the wells $\mathcal{M}_0 = SO_2 F_0$ and $\mathcal{M}_1 = SO_2 F_1$.

In \mathbb{R}^4, these two wells may be viewed as two circles with center at the origin and with radius $\sqrt{2}$. As we already know, these circles do not intersect each other. Easy calculations show that if $d(\mathcal{M}_0, \mathcal{M}_1)$ is the distance between the two wells, we have

$$d(\mathcal{M}_0, \mathcal{M}_1) = 2(1 - \sqrt{1 - \varepsilon^2})^{1/2}.$$

Lemma 3.1. Let $\Phi : M^{2 \times 2} \to \mathbb{R}$ be the energy density given in (1.1). There exists a constant $\lambda > 0$ such that

$$\Phi(F) \geq \lambda \| F - \Pi F \|^2 \quad \forall F \in M^{2 \times 2}.$$

Proof. We first remark that it suffices to prove the relation "at infinity" on the one hand, and in a neighborhood of each well on the other hand.

The first part is not difficult to check since by definition of Φ, for any given F, $\| F \| \geq d$, where d is an arbitrary number, $d \gg d(\mathcal{M}_0, \mathcal{M}_1)$, and for any α, $0 \leq \alpha \leq 8$, there clearly exists a positive number λ such that

$$\Phi(F) \geq \lambda \| F - \Pi F \|^\alpha.$$

Let us consider what happens in a collar neighborhood of a well, say \mathcal{M}_0. Developing Φ in a neighborhood of an arbitrary point belonging to \mathcal{M}_0, say F_0, we get after a few calculations

$$\Phi(F) = \frac{1}{2} (\nabla^2 \Phi(F_0) (F - F_0), F - F_0) + \mathcal{O}(\| F - F_0 \|^3),$$

where

$$\nabla^2 \Phi(F_0) (F - F_0), F - F_0) = 8k_1 (\text{Tr } F_0^t (F - F_0))^2$$
$$+ 2k_2 [F_0^t (F - F_0) + (F - F_0)^t F_0]_{12}^2$$
$$+ 32k_3 \varepsilon^2 ([F_0^t (F - F_0)]_{11} - [F_0^t (F - F_0)]_{22})^2.$$

Therefore, we have to prove that there exists $\lambda > 0$ such that for any F belonging to the three dimensional hyperplane through F_0, orthogonal to \mathcal{M}_0 in \mathbb{R}^4, we have

$$\nabla^2 \Phi(F_0) (F - F_0), F - F_0) \geq \lambda \| F - F_0 \|^2.$$

8
Since the equation of the two dimensional plane perpendicular to M_0 is
\[
\{ v \in \mathbb{R}^4; v' = (g\delta^+ + \delta^-, h\delta^-, h\delta^+, -g\delta^- + \delta^+), \quad h, g \in \mathbb{R} \},
\]
the generic expression of F is
\[
F = \begin{pmatrix}
g\delta^+ + \delta^- & h\delta^- \\
h\delta^+ & -g\delta^- + \delta^+
\end{pmatrix} + f \begin{pmatrix}
\delta^- & 0 \\
0 & \delta^+
\end{pmatrix}
\quad f, g, h \in \mathbb{R}.
\]
Consequently since $\| F - F_0 \|^2 = 2(f^2 + g^2 + h^2)$, we have to prove that for some $\lambda > 0$
\[
(\nabla^2 \Phi(F_0)(F - F_0), F - F_0) \geq \lambda(f^2 + g^2 + h^2).
\]
Direct calculations yield
\[
(\nabla^2 \Phi(F_0)(F - F_0), F - F_0) = 32k_1 f^2 + 8k_2 h^2 \\
+ 128\varepsilon^2 k_3 \left((1 - \varepsilon^2)g^2 + \varepsilon^2 f^2 - 2\varepsilon \delta^+ \delta^- g f \right),
\]
and thus by Young inequality
\[
(\nabla^2 \Phi(F_0)(F - F_0), F - F_0) \geq 32k_1 f^2 + 8k_2 h^2 \\
+ 128\varepsilon^2 k_3 \left(g^2(1 - \varepsilon^2)(1 - \eta) + \varepsilon^2 f^2(1 - \frac{1}{\eta}) \right) \quad \eta > 0.
\]
Now if η is chosen such that $1 > \eta > \frac{1}{1 + \frac{1}{4\varepsilon^4 k_3}}$, we obtain that there exist three positive numbers a, b, c (depending on ε, k_1, k_2 and k_3) which verify
\[
(\nabla^2 \Phi(F_0)(F - F_0), F - F_0) \geq af^2 + bg^2 + ch^2,
\]
proving the lemma. \square

Let us now turn to the analysis of the approximate solution u_h.

Lemma 3.2. There exists a constant c, independent of h, such that
\[
\| \nabla u_h(x) \| \leq c \quad \text{a.e. } x \in \Omega.
\]

Proof. By lemma 2.4, we have
\[
\sum_{K \in T_h} \int_K \Phi(\nabla u_h) dx = \sum_{K \in T_h} |K| \Phi(\nabla u_h(p_K)) = \mathcal{O}(h^2),
\]
and thus
\[
\sum_{K \in T_h} \Phi(\nabla u_h(p_K)) = \mathcal{O}(1),
\]
where p_K is some point belonging to the interior of K. If ∇u_h was not bounded, then there would be at least one sequence of elements $\{K_h^*\}_{h > 0} \subset T_h$ and a corresponding sequence of points $\{p_{K_h^*}\}_{h > 0}$ such that $\nabla u_h(p_{K_h^*})$ would tend to infinity as h tends to zero. This is in contradiction with (3.1) and the fact that $\Phi(v) \to +\infty$ as $\|v\| \to +\infty$. \square

9
Remark 3.1. We notice that, in the case of the P_1-conforming finite element, the convergence rate of order 1 for the energy discussed in remark 2.2 is not sufficient to obtain an a priori bound for the deformation gradients as in the previous lemma (since then relation (3.1) does not hold any more).

Now, let ω be any Lipschitz domain such that $\omega \subset \Omega$. We define

$$\omega_h = \bigcup_{K \in T_h} K.$$

Due to the particular triangulation we consider, we have

$$\forall x \in \partial \omega_h \quad d(x, \partial \omega) \leq c h,$$

where $d(x, \partial \omega)$ is the distance between x and $\partial \omega$ and c is a constant which depends only on $\partial \omega$. If $| \cdot |$ denotes the Lebesgue measure, it follows that

$$|\omega - \omega_h| = O(h).$$

Let us introduce

$$T_h(\omega) = \{ K \cap \bar{\omega}; K \in T_h \}.$$

We remark that in general $T_h(\omega)$ does not only contain triangles $K \in T_h$, but also truncated triangles.

Lemma 3.3. For any Lipschitz domain $\omega \subset \Omega$, we have

$$\sum_{K \in T_h(\omega)} \int_K \| \nabla u_h - \Pi \nabla u_h \| dx = O(h).$$

Proof. We have

$$\sum_{K \in T_h(\omega)} \int_K \| \nabla u_h - \Pi \nabla u_h \| dx = \sum_{K \in T_h(\omega_h)} \int_K \| \nabla u_h - \Pi \nabla u_h \| dx$$

$$+ \sum_{K \in T_h(\omega) - T_h(\omega_h)} \int_K \| \nabla u_h - \Pi \nabla u_h \| dx,$$

and thus by Cauchy-Schwarz inequality and lemma 3.2

$$\sum_{K \in T_h(\omega)} \int_K \| \nabla u_h - \Pi \nabla u_h \| dx \leq |\omega_h|^{1/2} \left(\sum_{K \in T_h(\omega_h)} \int_K \| \nabla u_h - \Pi \nabla u_h \|^2 dx \right)^{1/2} + c|\omega - \omega_h|.$$
Since by definition $|\omega_h| \leq |\omega|$, lemma 3.1 and relation 3.2 lead to

$$\sum_{K \in T_h(\omega)} \int_K \|\nabla u_h - \Pi \nabla u_h\| \, dx \leq |\omega|^{1/2} \left(\frac{E_h}{\lambda} \right)^{1/2} + ch.$$

The result is then a direct consequence of lemma 2.4. \qed

Let us introduce the following notation

$$\Sigma_h = \text{set of the "edges of } T_h\text{"},$$
$$\Sigma_h(\omega) = \Sigma_h \cap \tilde{\omega},$$
$$\omega^R = \{ x \in \omega - \Sigma_h(\omega) : \|\nabla u_h - \Pi \nabla u_h\| < R \},$$
$$\omega_i^R = \{ x \in \omega - \Sigma_h(\omega) : \Pi \nabla u_h \in M_i, \|\nabla u_h - \Pi \nabla u_h\| < R \}, \; i = 0, 1$$
$$\omega^R_{e} = \omega - \omega^R = \tilde{\omega}^R \cup \Sigma_h(\omega),$$

where $\tilde{\omega}^R = \{ x \in \omega - \Sigma_h(\omega) : \|\nabla u_h - \Pi \nabla u_h\| \geq R \}$ and where R is a given positive number.

In the next lemma, we establish that the measure of the set ω^R_{e} (which, roughly speaking, consists of the points at which the gradient of the approximated deformation u_h is not in a "neighborhood" of a martensitic state) tends to zero like h as $h > 0$ tends to zero.

Lemma 3.4. For any Lipschitz domain $\omega \subset \Omega$, we have

$$|\omega^R_{e}| = O(h).$$

Proof. Since the two-dimensional measure of $\Sigma_h(\omega)$ is zero for any $h > 0$, we have

$$|\omega^R_{e}| = \int_{\omega^R_{e}} dx + |\Sigma_h(\omega)| \leq \frac{1}{R} \sum_{K \in T_h(\tilde{\omega}^R)} \int_K \|\nabla u_h - \Pi \nabla u_h\| \, dx.$$

We conclude by lemma 3.3, since this latter result holds for any Lipschitz subdomain of Ω. \qed

We can now prove that, as a consequence of the estimate on the energy obtained in lemma 2.4, the average of the deformation gradients are "close" to the average of the gradients of the function f which defines the boundary condition.

Lemma 3.5. For any Lipschitz domain $\omega \subset \Omega$, we have

$$\| \sum_{K \in T_h(\omega)} \int_K (\nabla u_h - \nabla f) \, dx \| = O(h^{1/3}).$$
Proof. We have

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega)} \int_K (\nabla u_h - \nabla f) \, dx \right\| \leq \left\| \sum_{K \in \mathcal{T}_h(\omega)} \int_K (\nabla u_h - \nabla f) \, dx \right\| \\
+ \left\| \sum_{K \in \mathcal{T}_h(\omega) - \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\|.
\end{equation}

By lemma 3.2 and relation (3.2), we remark that the second term on the right-hand side of (3.3) verifies

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega) - \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\| \leq c|\omega - \omega_h| \leq ch.
\end{equation}

On the other hand, by the divergence theorem, we have

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\| = \left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} (u_h - f) \otimes n \, d\sigma \right\|,
\end{equation}

where n is the unit outer normal to K. Along each edge $u_h \otimes n$ is a polynomial of degree 1. Since the value of this function for two adjacent triangles is the same at the midpoint of the common edge, we get that, in the previous expression, integrals along the interior edges vanish. This leads to

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\| = \left\| \sum_{\Gamma \in \partial \omega_h \cap \partial \mathcal{K}} \int_{\Gamma} (u_h - f) \otimes n \, d\sigma \right\|.
\end{equation}

Hölder’s inequality yields

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\| \leq |\partial \omega_h|^{1/r'} \left(\sum_{\Gamma \in \partial \omega_h \cap \partial \mathcal{K}} \int_{\Gamma} \|u_h - f\|^r \, d\sigma \right)^{1/r},
\end{equation}

where $\frac{1}{r} + \frac{1}{r'} = 1$. We observe that, since ω is Lipschitz, then $|\partial \omega_h|$ is bounded regardless of h, and thus for any r, $1 \leq r \leq \infty$

\begin{equation}
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) \, dx \right\| \leq c \left(\sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^r \, d\sigma \right)^{1/r}.
\end{equation}

Now, it is known (see e.g. [ne], p.84) that for any function $v \in W^{1,1}(K)$, we have

\begin{equation}
\|v\|_{L^1(\partial K)} \leq \bar{c}(K)(\|v\|_{L^1(K)} + \|\nabla v\|_{L^1(K)}),
\end{equation}

12
where \(\tilde{c}(K) \) depends only on \(K \). We apply this relation to \(v = \|u_h - f\|^r \). In this case, i.e. if \(v = p^r \) where \(p \) is a polynomial of degree 1, it is easily checked that there exists a constant \(c \), independent of \(h \), which verifies

\[
\|v\|_{L^1(\partial K)} \leq \frac{c}{h} (\|v\|_{L^1(K)} + \|\nabla v\|_{L^1(K)}),
\]

(see appendix for a general demonstration). It follows that

\[
(3.6) \quad \sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^r d\sigma \leq c h^{-1} \sum_{K \in \mathcal{T}_h} \int_K \left(\|u_h - f\|^r + \|\nabla (u_h - f)^r\| \right) dx.
\]

We observe

\[
\int_K \|\nabla (u_h - f)^r\| dx = \frac{r}{2} \int_K \|u_h - f\|^{r-2} \|\nabla (u_h - f)^2\| dx
\]

\[
= \frac{r}{2} \int_K \|u_h - f\|^{r-2} \left(\sum_{i=1}^2 \left(\sum_{j=1}^2 \frac{\partial}{\partial x_i} (u_{h_j} - f_j)^2 \right) \right)^{1/2} dx,
\]

and thus, by the Cauchy-Schwarz inequality

\[
\int_K \|\nabla (u_h - f)^r\| dx \leq r \int_K \|u_h - f\|^{r-1} \left(\sum_{i=1}^2 \left(\sum_{j=1}^2 \frac{\partial}{\partial x_i} (u_{h_j} - f_j)^2 \right) \right)^{1/2} dx.
\]

Relation (3.6) then yields

\[
\sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^r d\sigma \leq c h^{-1} \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K \left(\|u_h - f\|^{r-1} \|u_h - f\|^{r-1}
\]

\[
+ r \|u_h - f\|^{r-1} \|\nabla (u_h - \nabla f)\| dx,
\]

and thus using once again Hölder’s inequality

\[
\sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^r d\sigma \leq c h^{-1} r \sum_{K \in \mathcal{T}_h(\omega_h)} \left[\left(\int_K \|u_h - f\|^{(r-1)s'} dx \right)^{1/s'}
\]

\[
\left(\left(\int_K \|u_h - f\|^s dx \right)^{1/s} + \left(\int_K \|\nabla (u_h - \nabla f)\|^s dx \right)^{1/s} \right) \right]
\]

where \(\frac{1}{s} + \frac{1}{s'} = 1 \).

By setting \((r-1)s' = 2 \), we obtain

\[
\sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^r d\sigma \leq c h^{-1} \sum_{K \in \mathcal{T}_h(\omega_h)} \left(\int_K \|u_h - f\|^2 \right)^{1/s'} \|u_h - f\|_{W^{1,s}(K)},
\]

13
which yields
\[
\sum_{K \in \mathcal{T}_h(\omega_h)} \int_{\partial K} \|u_h - f\|^s d\sigma \leq ch^{-1} \left(\sum_{K \in \mathcal{T}_h(\omega_h)} \int_K \|u_h - f\|^2 dx \right)^{1/s'} \left(\sum_{K \in \mathcal{T}_h(\omega_h)} \|u_h - f\|^s_{W^{1,s}(K)} \right)^{1/s}.
\]

It then follows from relation (3.5) that
\[
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) dx \right\| \leq ch^{\frac{s'}{s' + 1}} \left(\sum_{K \in \mathcal{T}_h(\omega_h)} \int_K \|u_h - f\|^2 dx \right)^{\frac{1}{s' + 1}} \left(\sum_{K \in \mathcal{T}_h(\omega_h)} \|u_h - f\|^s_{W^{1,s}(K)} \right)^{\frac{s' - 1}{s' + 1}}.
\]

By lemma 3.2, the second term of the right-hand side in the previous relation is bounded; therefore lemma 2.4 leads to
\[
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) dx \right\| \leq ch^{\frac{s'}{s' + 1}},
\]
and thus if \(s' = 1 \)
\[
\left\| \sum_{K \in \mathcal{T}_h(\omega_h)} \int_K (\nabla u_h - \nabla f) dx \right\| \leq ch^{1/3}.
\]

The lemma is then a direct consequence of (3.3), (3.4) and the latter relation.

Let us now state and prove our main result. Namely, we give an estimate for the rate of convergence of the probability for \(u_h \) to have its gradient in either of the two martensitic states.

Theorem 3.1. For any Lipschitz domain \(\omega \subset \Omega \), we have
\[
\frac{|\omega_i^R|}{2} = O(h^{1/3}) \quad i = 0, 1.
\]

Proof. We have
\[
\sum_{K \in \mathcal{T}_h(\omega_0^R) \cup \mathcal{T}_h(\omega_1^R)} \int_K \nabla u_h dx = \sum_{K \in \mathcal{T}_h(\omega)} \int_K \nabla u_h dx - \sum_{K \in \mathcal{T}_h(\omega_0^R)} \int_K \nabla u_h dx
\]
\[
= \sum_{K \in \mathcal{T}_h(\omega)} \int_K (\nabla u_h - \nabla f) dx + \sum_{K \in \mathcal{T}_h(\omega)} \int_K \nabla f dx
\]
\[
- \sum_{K \in \mathcal{T}_h(\omega - \omega)} \int_K \nabla u_h dx - \sum_{K \in \mathcal{T}_h(\omega_0^R)} \int_K \nabla u_h dx.
\]

14
Taking into account the fact that \(f \) is affine and introducing \(\Pi\nabla u_h \), we obtain
\[
\sum_{K \in \mathcal{T}_h(\omega_0^R)} \int_K \Pi\nabla u_h \, dx + \sum_{K \in \mathcal{T}_h(\omega_1^R)} \Pi\nabla u_h \, dx - |\omega| \nabla f = - \sum_{K \in \mathcal{T}_h(\omega_R^R)} \int_K (\nabla u_h - \Pi\nabla u_h) \, dx
\]
\[+ \sum_{K \in \mathcal{T}_h(\omega)} \int_K (\nabla u_h - \nabla f) \, dx - \sum_{K \in \mathcal{T}_h(\omega - \omega_h)} \int_K \nabla u_h \, dx - \sum_{K \in \mathcal{T}_h(\omega_R^R)} \int_K \nabla u_h \, dx.
\]

Now by lemma 3.2, 3.3, 3.4 and relation (3.2), it follows that
\[
\sum_{K \in \mathcal{T}_h(\omega_0^R)} \int_K \Pi\nabla u_h \, dx + \sum_{K \in \mathcal{T}_h(\omega_1^R)} \int_K \Pi\nabla u_h \, dx - |\omega| \nabla f = \mathcal{O}(h^{1/3}),
\]
where \(\mathcal{O}(h^{1/3}) \in M^{2 \times 2} \) and is such that there exists a constant \(c \), independent of \(h \), which verifies \(||\mathcal{O}(h^{1/3})|| \leq ch^{1/3} \). We get by the definitions of \(\Pi \) and \(f \)
\[
\sum_{K \in \mathcal{T}_h(\omega_0^R)} |K|R_K F_0 + \sum_{K \in \mathcal{T}_h(\omega_1^R)} |K|R_K \bar{R} F_1 - \frac{|\omega|}{2} (F_0 + \bar{R} F_1) = \mathcal{O}(h^{1/3}),
\]
where we have used the fact that the rotations \(R_K \in SO_2, K \in \mathcal{T}_h(\omega_0^R) \) or \(\mathcal{T}_h(\omega_1^R) \), do not depend on \(x \in K \). It is possible to rewrite the above equation as follows
\[(3.7)\]
\[AF_0 + B \bar{R} F_1 = \mathcal{O}(h^{1/3}),\]
where \(A = \sum_{K \in \mathcal{T}_h(\omega_0^R)} |K|R_K - \frac{|\omega|}{2} \) and \(B = \sum_{K \in \mathcal{T}_h(\omega_1^R)} |K|R_K - \frac{|\omega|}{2} \). We remark that both \(A \) and \(B \) have to tend to zero. Indeed, taking into account the structure of these matrices (i.e. \(A = \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix} \) and \(B = \begin{pmatrix} b_1 & -b_2 \\ b_2 & b_1 \end{pmatrix} \), \(a_1, a_2, b_1, b_2 \in \mathbb{R} \)), equation (3.7) may be rewritten as
\[
M \begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix} = \mathcal{O}(h^{1/3}) \quad \text{where} \quad M = \begin{pmatrix} \delta^- & 0 & (1 + \varepsilon)\delta^- & \varepsilon\delta^+ \\ 0 & -\delta^+ & \varepsilon\delta^- & -(1 - \varepsilon)\delta^+ \\ 0 & -\varepsilon\delta^+ & (1 + \varepsilon)\delta^- & \varepsilon\delta^- \\ \delta^+ & 0 & (1 - \varepsilon)\delta^+ & \varepsilon\delta^- \end{pmatrix},
\]
and where \(\mathcal{O}(h^{1/3}) \in \mathbb{R}^4 \), with \(||\mathcal{O}(h^{1/3})|| \leq ch^{1/3} \).

It is easy to verify that \(M \) is a non-singular matrix, and thus, we get
\[
a_1^2 + a_2^2 + b_1^2 + b_2^2 = \mathcal{O}(h^{2/3}).
\]
We have in particular

\[(3.8) \quad \sum_{K \in T_h(\omega^R_i)} |K| |\cos \theta_K - \frac{|\omega|}{2}| = \mathcal{O}(h^{1/3}), \quad i = 0, 1,\]

where \(\theta_K\) is the angle corresponding to the rotation \(R_K\).

On the other hand, we have by definition \(|\omega^R_0| + |\omega^R_1| = |\omega| - |\omega^R_e|\), and thus by lemma 3.4

\[(3.9) \quad ||\omega^R_0| + |\omega^R_1| - |\omega|| = \mathcal{O}(h^{1/3}).\]

Now by (3.8), we have

\[(3.10) \quad ||\omega^R_i| + |K| \sum_{K \in T_h(\omega^R_i)} (\cos \theta_K - 1) - \frac{|\omega|}{2}| = \mathcal{O}(h^{1/3}) \quad i = 0, 1.\]

If we add these two relations, we get

\[||\omega^R_0| + |\omega^R_1| + |K| \sum_{K \in T_h(\omega^R_0)} (\cos \theta_K - 1) + |K| \sum_{K \in T_h(\omega^R_1)} (\cos \theta_K - 1) - |\omega|| = \mathcal{O}(h^{1/3}).\]

Relation (3.9) implies then

\[||K| \sum_{K \in T_h(\omega^R_0)} (\cos \theta_K - 1) + |K| \sum_{K \in T_h(\omega^R_1)} (\cos \theta_K - 1)| = \mathcal{O}(h^{1/3}),\]

and thus, since both terms in the latter expression have the same sign

\[||K| \sum_{K \in T_h(\omega^R_i)} (\cos \theta_K - 1)| = \mathcal{O}(h^{1/3}) \quad i = 0, 1.\]

These relations together with (3.10) prove the theorem. \(\square\)

Let us remark that in the case \(\omega = \Omega\), it is possible to improve the order of convergence. In what follows \(\Omega^R, \Omega^R_i\) and \(\Omega^R_e\) are defined according to \(\omega^R, \omega^R_i\) and \(\omega^R_e, i = 0, 1.\)

Corollary.

\[||\Omega^R_i| - \frac{|\Omega|}{2}| = \mathcal{O}(h) \quad i = 0, 1.\]

Proof. We first remark that

\[(3.11) \quad \sum_{K \in T_h} \int_K \nabla u_h dx = \int_{\Omega} \nabla f dx.\]
Indeed, by the divergence theorem, we have
\[\sum_{K \in T_h} \int_K \nabla u_h \, dx = \sum_{K \in T_h} \int_{\partial K} u_h \otimes n \, d\sigma, \]
where \(n \) is the unit outer normal to \(K \). By the same argument as in the previous proof, it follows that
\[\sum_{K \in T_h} \int_K \nabla u_h \, dx = \sum_{\Gamma \in \partial \Omega \cap K} \int_{\Gamma} u_h \otimes n \, d\sigma. \]
However at any midpoint \(m \in \{ m_i \} \) which belongs to \(\partial \Omega \), we have \(u_h(m) = f(m) \), and thus, using once again the same argument, together with the fact that \(f \) is affine, we get
\[\sum_{K \in T_h} \int_K \nabla u_h \, dx = \sum_{\Gamma \in \partial \Omega \cap K} \int_{\Gamma} f \otimes n \, d\sigma. \]
We conclude by the divergence theorem.
Therefore, we obtain
\[\sum_{K \in T_h(\Omega_R^\delta)} \int_K \nabla u_h \, dx + \sum_{K \in T_h(\Omega_R^\delta)} \int_K \nabla u_h \, dx = \sum_{K \in T_h} \int_K \nabla u_h \, dx - \sum_{K \in T_h(\tilde{\Omega}_h^R)} \int_K \nabla u_h \, dx. \]
By introducing \(\Pi \nabla u_h \) and taking (3.11) into account, we get
\[\sum_{K \in T_h(\Omega_R^\delta)} \int_K \Pi \nabla u_h \, dx + \sum_{K \in T_h(\Omega_R^\delta)} \int_K \Pi \nabla u_h \, dx - |\Omega| \nabla f = \]
\[- \sum_{K \in T_h(\Omega_R^\delta)} \int_K (\nabla u_h - \Pi \nabla u_h) \, dx - \sum_{K \in T_h(\tilde{\Omega}_h^R)} \int_K \nabla u_h \, dx. \]
Now, by lemma 3.3 and 3.4 in the case \(\omega = \Omega \), we obtain
\[\sum_{T_h(\Omega_R^\delta)} |K| R_K F_0 + \sum_{T_h(\Omega_R^\delta)} |K| R_K \tilde{R} F_1 - \frac{|\Omega|}{2} (F_0 + \tilde{R} F_1) = O(h), \]
and we conclude as in the previous demonstration. \(\Box \)

Concluding remarks. The use of a non-conforming element seems to be essential in our demonstration. We have not been able to prove a similar result for, say, the \(P_1 \) or \(Q_1 \) conforming finite elements. The reader can refer to [cl1] for numerical results using the continuous, bilinear \(Q_1 \) element. In that case, the numerical order of convergence corresponding to theorem 3.1 is approximately one (see [cl1] or [c2]), and thus our results seem to be reasonable, and the order 1 obtained in the corollary is probably optimal.
As a conclusion, let us consider some possible further developments. Apart from the fact that we consider a particular domain and triangulation (which we regard as a "minor loss of generality"), the next challenging question seems to be the numerical analysis of the three dimensional problem (see [bj2] for an extensive theoretical analysis of this problem).

Finally, the model we consider leads to microstructures of infinitely small size (in [cl1] the computed microstructures are of the smallest possible size, i.e. the size of the mesh). However, typical twin band spacings are of the order of 10μm in InTl for instance. In order to take this into account, more sophisticated models should be considered (see [bj2] and the references quoted therein for remarks in that direction).

ACKNOWLEDGMENTS

The author would like to thank Mitchell Luskin for having brought this problem to his attention, as well as for useful remarks and criticisms on an earlier version of this work.

References

Appendix: some remarks on a “sharp” trace theorem.

We are interested in the trace theorem in $W^{1,1}(K)$, where K is a simple two-dimensional domain.

In the proof of lemma 3.5, we claimed that, for any function $v \in W^{1,1}(K)$, K being a triangle

$$
\|v\|_{L^1(\partial K)} \leq \tilde{C}(K)(\|v\|_{L^1(K)} + \|\nabla v\|_{L^1(K)}),
$$

where, for any h small enough, $\tilde{C}(K) \leq C/h$, C being independent of h.

This result is certainly well known (see e.g. [ne]), but we have been unable to find a precise description of the constant $\tilde{C}(K)$ in the literature. We give here an estimate of this constant in the case where K is the triangle with vertices $(0,0)$, $(h,0)$, $(0,h)$.

Let us first prove the following lemma.

Lemma A. Let $R = [a_1, b_1] \times [a_2, b_2]$, $a_i < b_i$, $i = 1, 2$. Then for any $v \in W^{1,1}(R)$, we have

$$
\int_{a_1}^{b_1} |v(x_1, \xi)| dx_1 \leq \frac{1}{b_2 - a_2} \|v\|_{L^1(R)} + \|\nabla v\|_{L^1(R)},
$$

for any $\xi \in [a_2, b_2]$.

Proof. Since $C^\infty(R)$ is dense in $W^{1,1}(R)$, it is sufficient to prove the result for $v \in C^\infty([a_2, b_2])$. Therefore by the mean value theorem, we have

$$
\|v\|_{L^1(R)} = \int_{a_2}^{b_2} dx_2 \int_{a_1}^{b_1} dx_1 |v(x_1, x_2)| = (b_2 - a_2) \int_{a_1}^{b_1} |v(x_1, \sigma)| dx_1,
$$

where $\sigma \in [a_2, b_2]$. Now, let $\xi \in [a_2, b_2]$, we have

$$
|v(x_1, \xi)| = |v(x_1, \sigma)| + \int_{\sigma}^{\xi} \frac{\partial}{\partial x_2} v(x_1, y) dy \leq |v(x_1, \sigma)| + \int_{a_2}^{b_2} \frac{\partial}{\partial x_2} v(x_1, y) dy.
$$

After integration, we get

$$
\int_{a_1}^{b_1} |v(x_1, \xi)| dx_1 \leq \int_{a_1}^{b_1} |v(x_1, \sigma)| dx_1 + \|\frac{\partial}{\partial x_2} v\|_{L^1(R)}
$$

and thus

$$
\int_{a_1}^{b_1} |v(x_1, \xi)| dx_1 \leq \frac{1}{b_2 - a_2} \|v\|_{L^1(R)} + \|\nabla v\|_{L^1(R)}.
$$

In order to apply the above technical result to the case of a triangle K, we consider the following well known result related to the extension of a function by reflection.

Lemma B. Let K be the triangle with vertices $(0,0)$, $(h,0)$, $(0,h)$ and let \tilde{Q} and \tilde{Q} be respectively $[0, h]^2$ and the rectangle with vertices $(h,0)$, $(0,0)$, $(-\sqrt{2}h, \sqrt{2}h)$ and $(\sqrt{2}h, -\sqrt{2}h)$.

*If for any $u \in W^{1,1}(K)$, we define \bar{u}, extension of u to \tilde{Q} by reflection with respect to the segment $(h,0)$, $(0,h)$ and \bar{u}, extension of u to \tilde{Q} by reflections with respect to the segment $(0,0)$, $(h,0)$ on one hand, and $(0,0), (0,h)$ on the other hand, then we have $\bar{u} \in W^{1,1}(\tilde{Q})$ and $\bar{u} \in W^{1,1}(\tilde{Q})$; moreover

$$
\|\bar{u}\|_{L^1(\tilde{Q})} \leq 2\|u\|_{L^1(K)}, \quad \|\nabla \bar{u}\|_{L^1(\tilde{Q})} \leq 2\|\nabla u\|_{L^1(K)},
$$

$$
\|\bar{u}\|_{L^1(\tilde{Q})} \leq 2\|u\|_{L^1(K)}, \quad \|\nabla \bar{u}\|_{L^1(\tilde{Q})} \leq 2\|\nabla u\|_{L^1(K)}.
$$

Proof. See e.g. [br], lemme IX.2.

We now state and prove the main result of the appendix.
THEOREM. For any $v \in W^{1,1}(K)$ where K is the triangle with vertices $(0, 0)$, $(h, 0)$ and $(0, h)$, we have

$$\|v\|_{L^1(\partial K)} \leq (1 + \frac{1}{\sqrt{2}}) \frac{4}{h} \|v\|_{L^1(K)} + 6\|\nabla v\|_{L^1(K)}.$$

Proof. Let us first consider $\int_0^h |v(x_1, 0)|dx_1$. By lemma A, we have

$$\int_0^h |v(x_1, 0)|dx_1 \leq \frac{1}{h} \|\tilde{v}\|_{L^1(Q)} + \|\tilde{v}^h\|_{L^1(Q)},$$

and thus by lemma B,

$$\int_0^h |v(x_1, 0)|dx_1 \leq \frac{2}{h} \|v\|_{L^1(K)} + 2\|\nabla v\|_{L^1(K)}.$$

(a.1)

In the same way, we get

$$\int_0^h |v(0, x_2)|dx_2 \leq \frac{2}{h} \|v\|_{L^1(K)} + 2\|\nabla v\|_{L^1(K)}.$$

(a.2)

Using again lemma A, we also have

$$\int_0^1 |v(ht, h(1 - t))|\sqrt{2h}dt \leq \frac{2}{\sqrt{2h}} \|\tilde{v}\|_{L^1(\hat{Q})} + \|\tilde{v}^h\|_{L^1(\hat{Q})},$$

which yields by lemma B,

$$\int_0^1 |v(ht, h(1 - t))|\sqrt{2h}dt \leq \frac{4}{\sqrt{2h}} \|v\|_{L^1(K)} + 2\|\nabla v\|_{L^1(K)}.$$

(a.3)

The theorem is then a direct consequence of (a.1)–(a.3). □

Finally, let us remark that the above result is sharp, since the inequality in the theorem is an equality if $v \equiv C$ a.e. in K, $C \in \mathbb{R}$.

20
Richard A. Bruald and Bryan L. Shader, Strong hall matrices
Håkan Wennström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability
Shmuil Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multipartite Tournament Matrices with Constant Team Size
Richard A. Bruald and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Bruald and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinikler and A. Ruehl, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration
F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick’s Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains
Nicholas J. Higham, Perturbation theory and backward error for $AX - XB = C$
Z. Strakoš and A. Greenbaum, Open questions in the convergence analysis of the lanczos process for the real symmetric eigenvalue problem
Zhaojun Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem
Pierre-Alain Gremaud, On an elliptic-parabolic problem related to phase transitions in shape memory alloys
Bojan Mohar and Neil Robertson, Disjoint essential circuits in toroidal maps
Bojan Mohar, Convex representations of maps on the torus and other flat surfaces
Bojan Mohar and Svatošluk Poljak, Eigenvalues in combinatorial optimization
Richard A. Bruald, Keith L. Chavey and Bryan L. Shader, Conditional sign-solvability
Roger Fosdick and Ying Zhang, The torsion problem for a nonconvex stored energy function
René Ferland and Gaston Giroux, An unbounded mean-field intensity model:
Propagation of the convergence of the empirical laws and compactness of the fluctuations
Wei-Ming Ni and Izumi Takagi, Spike-layers in semilinear elliptic singular Perturbation Problems
Henk A. Van der Vorst and Gerard G.L. Sleijpen, The effect of incomplete decomposition preconditioning on the convergence of conjugate gradients
S.P. Hastings and L.A. Peletier, On the decay of turbulent bursts
Apostolos Hadjidimos and Robert J. Plemmons, Analysis of p-cyclic iterations for Markov chains
Áljörek, H. Park and L. Eldén, Accurate downdating of least squares solutions
E.G. Kalnins, Willard Miller, Jr. and G.C. Williams, Recent advances in the use of separation of variables methods in general relativity
G.W. Stewart, On the perturbation of LU, Cholesky and QR factorizations
G.W. Stewart, Gaussian elimination, perturbation theory and Markov chains
G.W. Stewart, On a new way of solving the linear equations that arise in the method of least squares
G.W. Stewart, On the early history of the singular value decomposition
G.W. Stewart, On the perturbation of Markov chains with nearly transient states
Umberto Mosco, Composite media and asymptotic dirichlet forms
Walter F. Mascarenhas, The structure of the eigenvectors of sparse matrices
Walter F. Mascarenhas, A note on Jacobi being more accurate than QR
Raymond H. Chan, James G. Nagy and Robert J. Plemmons, FFT-based preconditioners for Toeplitz-Block least squares problems
Zhaojun Bai, The CSD, GSVD, their applications and computations
D.A. Gregory, S.J. Kirkland and N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank
Richard A. Brualdi, Shmuel Friedland and Alex Pothen, Sparse bases, elementary vectors and nonzero minors of compound matrices
J.W. Demmel, Open problems in numerical linear algebra
James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic matrices
James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR
J.J.L. Velázquez, Estimates on the $(N - 1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation
David C. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation
C.J. van Duijn and Joseph D. Fehribach, Analysis of planar model for the molten carbonate fuel cell
Yongzhi Xu, T. Craig Poling and Trent Brundage, Source localization in a waveguide with unknown large inclusions
J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations
E.G. Kalnins and Willard Miller, Jr., Separable coordinates, integrability and the Niven equations
John M. Chadam and Hong-Ming Yin, A diffusion equation with localized chemical reactions
A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms
Bei Hu, A free boundary problem arising in smoulder combustion
C.M. Elliott and A.M. Stuart, The global dynamics of discrete semilinear parabolic equations
Avner Friedman and Jianhua Zhang, Swelling of a rubber ball in the presence of good solvent
Avner Friedman and Juan J.L. Velázquez, A time-dependence free boundary problem modeling the visual image in electrophotography
Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr., On the poset of all posets on n elements
Ricardo D. Fierro and James R. Bunch, Multicollinearity and total least squares
Adam W. Bojanczycy, James G. Nagy and Robert J. Plemmons, Row householder transformations for rank-k Cholesky inverse modifications
Chaoceng Huang, An age-dependent population model with nonlinear diffusion in R^n
Emad Fatemi and Faroukh Odeh, Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices
Esmond G. Ng and Barry W. Peyton, A tight and explicit representation of Q in sparse QR factorization
Robert J. Plemmons, A proposal for FFT-based fast recursive least-squares
Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces
Alan Edelman and G.W. Stewart, Scaling for orthogonality
G.W. Stewart, Note on a generalized sylvester equation
G.W. Stewart, Updating URV decompositions in parallel
Angelika Bunse-Gerstner, volker Mehrmann and Nancy K. Nichols, Numerical methods for the regularization of descriptor systems by output feedback
Ralph Byers and N.K. Nichols, On the stability radius of generalized state-space systems
David C. Dobson, Designing periodic structures with specified low frequency scattered in far-field data
C.-T. Pan and Kermit Sigmon, A bottom-up inductive proof of the singular value decomposition
Ricardo D. Fierro and James R. Bunch, Orthogonal projection and total least squares
Chiou-Ming Huang and Dianne P. O'Leary, A Krylov multisplitting algorithm for solving linear systems of equations
A.C.M Ran and L. Rodman, Factorization of matrix polynomials with symmetries
Mike Boyle, Symbolic dynamics and matrices
A. Novick-Cohen and L.A. Peletier, Steady states of the one-dimensional Cahn-Hilliard spaces
Zhangxin Chen, Large-scale averaging analysis of single phase flow in fractured reservoirs
Boris Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis
Yongzhi Xu, CW mode structure and constraint beamforming in a waveguide with unknown large inclusions
R.P. Gilbert and Yongzhi Xu, Acoustic waves and far-field patterns in two dimensional oceans with porous-elastic seabeds
M.A. Herrero and J.J.L. Velázquez, Some results on blow up for semilinear parabolic problems
Pierre-Alain Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions
Izchak Lewkowicz, Stability robustness of state space systems inter-relations between the continuous and discrete time cases
Kenneth R. Diressel and Wasin So, Linear operators on matrices: Preserving spectrum and displacement structure