ROBUST STABILIZATION OF SYSTEMS
GOVERNED BY SINGULAR
INTEGRO-DIFFERENTIAL EQUATIONS

By

Hitay Özbay and Janos Turi

IMA Preprint Series # 674
July 1990
Robust Stabilization of Systems Governed by Singular Integro-Differential Equations

Hitay Özbay
Department of Electrical Engineering
University of Rhode Island
Kingston, RI 02881

Janos Turi*
Department of Mathematical Sciences
Worcester Polytechnic Institute
Worcester, MA 01609

June 18, 1990

Abstract

In this paper we consider the problem of stabilization of systems described by a class of singular integro-differential equations. Systems of this type appear, for example, in the modelling of certain aeroelastic control problems. We show the existence of finite dimensional stabilizing controllers for the above systems and provide a procedure for their construction. The main idea is to represent the original distributed plant as an H^∞ coprime factor perturbation of a finite dimensional system and to use the theory of robustness optimization in the gap metric.

*The work of this author was supported in part by the National Science Foundation under grant DMS-8907019. Parts of this research were carried out while this author was a visitor at the Institute for Mathematics and its Applications (IMA) and was supported by IMA with funds provided by the National Science Foundation.
1 Introduction

In this paper we are interested in the control of systems described by the following integro-differential equations:

\[
\frac{d}{dt} x_1(t) = Ax_1(t) + b_1 x_2(t) + b_2 \int_{-\infty}^{0} \kappa_2(\tau)x_2(\tau + t) d\tau + bu(t) \tag{1.1}
\]

\[
\frac{d}{dt} \int_{-\infty}^{0} \kappa_1(\tau)x_2(\tau + t) d\tau = c_0 x_1(t) \tag{1.2}
\]

where \(x_1(t) \in \mathbb{R}^n \) and \(x_2(t) \in \mathbb{R}, t \geq 0 \), and \(A, b, b_1, b_2, c_0 \) are appropriate size matrices. We want to find a command signal \(u(t) \in \mathbb{R}, t \geq 0 \), such that the system is stable (in the sense defined below). Given all the matrices \(A, b, b_1, b_2, c_0 \), and the kernels \(\kappa_1(t), \kappa_2(t), t < 0 \) we can find the solution to (1.1)-(1.2) from the initial conditions \(x_1(0), x_2(t) \ t < 0 \), and the input \(u(t), t \geq 0 \). The above system is a linear time invariant system whose “state space” is infinite dimensional. In this paper we will use frequency domain methods to analyze the system and synthesize a controller generating \(u \). We will not discuss the state space realizations of the plant.

Note that if we define \(k_i(t) = \kappa_i(-t), t > 0, i = 1, 2, \) then we have

\[
\int_{-\infty}^{0} \kappa_i(\tau)x_2(\tau + t) d\tau = \int_{0}^{\infty} k_i(t)x_2(t - \tau) dt = (k_i \ast x_2)(t)
\]

where \(\ast \) denotes the usual convolution operator. Assuming zero initial conditions \((x_2(t) = 0, t \leq 0) \) and taking the Laplace transform of both sides of (1.2) we obtain

\[
s\hat{k}_1(s)\hat{x}_2(s) = c_0\hat{x}_1(s) \tag{1.3}
\]

where \(s \) is the Laplace transform variable and \(\hat{\cdot} \) denotes the Laplace transform of a time signal, e.g.

\[
\hat{k}_i(s) = \int_{0}^{\infty} e^{-st}k_i(t) dt, \quad i = 1, 2,
\]

we assume that the right hand side converges in a half plane \(\text{Re } s \geq \sigma \) for some \(\sigma \in \mathbb{R} \).

Consequently, we can express \(\hat{x}_2(s) \) in terms of \(\hat{x}_1(s) \):

\[
\hat{x}_2(s) = \frac{1}{s\hat{k}_1(s)} c_0 \hat{x}_1(s). \tag{1.4}
\]
Similarly, taking the Laplace transform of (1.1) we obtain (assuming $x_1(0) = 0$)

$$s \hat{x}_1(s) = A\hat{x}_1(s) + b_1\hat{x}_2(s) + b_2k_2(s)\hat{x}_2(s) + b\hat{u}(s).$$

(1.5)

Substituting (1.4) into (1.5) we obtain an expression relating the input, $\hat{u}(s)$, to the “states” $\hat{x}_1(s)$, and $\hat{x}_2(s)$:

$$\hat{x}_1(s) = \left(sI - A - \frac{b_1c_0 + b_2c_0k_2(s)}{sk_1(s)} \right)^{-1} b\hat{u}(s)$$

(1.6a)

$$\hat{x}_2(s) = \frac{1}{sk_1(s)}c_0\hat{x}_1(s).$$

(1.6b)

Equations (1.6a-b) will be used to find a “stabilizing” controller which generates an appropriate command signal $\hat{u}(s)$.

In our synthesis we will consider a feedback control scheme which is shown in Figure 1.

![Figure 1](image)

In this configuration y represents the output of the plant P, whose dynamics are described by (1.6a-b); y is a measured physical quantity, usually a combination of the states, x_1 and x_2. The signal u is the command input to the plant, d is the disturbance, r is the reference input, and e is the measured error between the reference and the output. The controller (to be designed) is represented by the block C.

According to our zero initial conditions assumption the plant P responds to u only, and the closed loop system has two exogenous inputs, namely r and d. We will consider finite energy reference and and disturbance signals, i.e. $r, d \in L^2[0, \infty)$.

2
Definition 1.1 The closed loop system shown in Figure 1 is stable if all external inputs \(r, d \in L^2[0, \infty) \) give rise to signals \(e, u, y \in L^2[0, \infty) \), (i.e. finite energy inputs generate finite energy outputs), and the maximum energy amplification in the system is finite, i.e.

\[
\max \left\{ \sup_{0 \neq r \in L^2} \frac{\|e\|_2 + \|u\|_2}{\|r\|_2} \mid d = 0; \sup_{0 \neq d \in L^2} \frac{\|e\|_2 + \|u\|_2}{\|d\|_2} \right\} < \infty.
\]

It is well known that this definition of the closed loop stability is equivalent to having the entries of the transfer function from \(\begin{bmatrix} r \\ d \end{bmatrix} \) to \(\begin{bmatrix} e \\ u \end{bmatrix} \):

\[
T_{(P,C)} := \begin{bmatrix} (I + PC)^{-1} & -P(I + CP)^{-1} \\ C(I + PC)^{-1} & (I + CP)^{-1} \end{bmatrix}
\]

in \(H^\infty \), i.e. analytic in the right half plane \(\text{Re } s > 0 \) and bounded on the extended imaginary axis: \(\{j\omega : \omega \in \mathbb{R}\} \cup \{\infty\} \). All these transfer functions relate Laplace transforms of the inputs to the Laplace transforms of the outputs, so they are functions of the complex variable \(s \).

An important point to remark here is that the plant transfer function \(P(s) \) (which gives the output \(\hat{y}(s) \) as \(P(s) \hat{u}(s) \)) need not be a rational function. It was shown that (cf. [22]) the plant is stabilizable (i.e. there exists a controller \(C \), whose entries are in the quotient field of \(H^\infty \), satisfying the above definition of the stability) if and only if there exists strongly left and right coprime factorizations for \(P \) in \(H^\infty \), i.e. \(P = NM^{-1} = \tilde{M}^{-1}\tilde{N} \), for some appropriate size matrices \(N, M, \tilde{N}, \tilde{M} \) with entries in \(H^\infty \) and \(\begin{bmatrix} M \\ N \end{bmatrix} \) (resp. \([M \quad \tilde{N}] \)) has a left (resp. right) inverse whose entries are in \(H^\infty \). From now on we write \(N \in H^\infty \), if a matrix \(N \) has entries in \(H^\infty \). If the plant is stabilizable then there exist (cf. [22]) appropriate size \(U, V, \tilde{U}, \tilde{V} \in H^\infty \) such that

\[
\begin{bmatrix} \tilde{V} & -\tilde{U} \\ -\tilde{N} & \tilde{M} \end{bmatrix} \begin{bmatrix} V \\ -N \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \tag{1.7}
\]

and the set of all stabilizing controllers is given by

\[
\{ C = (U - MQ)(V + NQ)^{-1} : Q \in H^\infty \} = \{ C = (\tilde{V} + Q\tilde{N})^{-1}(\tilde{U} - Q\tilde{M}) : Q \in H^\infty \}.
\]
For the system described by (1.6a-b) we will assume that the output of the plant P consists of a combination of the "states" x_1 and x_2: $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ where $y_1 = c_1 x_1$ and $y_2 = c_2 x_2$ with $c_1 : 1 \times n$ non-zero constant vector and c_2 is a non-zero scalar. For simplicity we assume $c_1 = c_0$, i.e. the right hand side of (1.2) is the measured output y_1. Then, the plant transfer function is of the form $P(s) = \begin{bmatrix} P_1(s) \\ P_2(s) \end{bmatrix}$ where

$$P_1(s) := c_1 \left(sI - A - \frac{b_1 c_1 + b_2 c_1 \hat{k}_2(s)}{s \hat{k}_1(s)} \right)^{-1} b$$

$$P_2(s) := \frac{c_2}{s \hat{k}_1(s)} P_1(s).$$

To obtain a simplified expression for $P_1(s)$ we define

$$F(s) = \left(sI - A - \frac{b_2 c_1 \hat{k}_2(s)}{s \hat{k}_1(s)} \right)^{-1}.$$

Then simple calculations lead to $P_1(s) = c_1 \left(I - \frac{F(s) b_1 c_1}{s \hat{k}_1(s)} \right)^{-1} F(s) b$. Applying the matrix inversion lemma (see e.g. [19], p.19) to $F(s)$ and to $\left(I - \frac{F(s) b_1 c_1}{s \hat{k}_1(s)} \right)^{-1}$ we see that

$$F(s) = \left(sI - A \right)^{-1} + \frac{\left(sI - A \right)^{-1} b_2 c_1 \left(sI - A \right)^{-1}}{s \hat{k}_1(s) / \hat{k}_2(s) - c_1 \left(sI - A \right)^{-1} b_2}$$

and, after simplifications,

$$P_1(s) = \frac{c_1 \left(sI - A \right)^{-1} b}{1 - \left(1/s \hat{k}_1(s) \right) \left(\hat{k}_2(s) c_1 \left(sI - A \right)^{-1} b_2 - c_1 \left(sI - A \right)^{-1} b_1 \right)}, \quad (1.8a)$$

and hence

$$P_2(s) = \frac{c_2}{s \hat{k}_1(s)} \frac{c_1 \left(sI - A \right)^{-1} b}{1 - \left(1/s \hat{k}_1(s) \right) \left(\hat{k}_2(s) c_1 \left(sI - A \right)^{-1} b_2 - c_1 \left(sI - A \right)^{-1} b_1 \right)}. \quad (1.8b)$$

Note that the transfer function from u to $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ contains strictly proper rational terms $c_1 \left(sI - A \right)^{-1} b$, $c_1 \left(sI - A \right)^{-1} b_1$ and $c_1 \left(sI - A \right)^{-1} b_2$, along with the terms $\frac{1}{s \hat{k}_1(s)}$ and $\hat{k}_2(s)$ which may be irrational. Therefore, depending on the kernels $k_i(t)$, $t > 0$, the plant transfer function $P(s)$ will, possibly, be a non-rational function of s. This illustrates the infinite dimensionality
of the plant. Our objective is to find a finite dimensional controller, (i.e. \(C(s) \) rational), stabilizing this infinite dimensional plant.

Before going into details we want to summarize the idea briefly. First of all in order to find such a controller the plant \(P(s) \) must be stabilizable. This means that we should be able to find strongly coprime factorizations \(P(s) = N(s)M(s)^{-1} = \tilde{M}(s)^{-1}\tilde{N}(s) \) for some \(N, M, \tilde{N}, \tilde{M} \in H^\infty \) and \((N, M) \) and \((\tilde{M}, \tilde{N}) \) strongly coprime. This is equivalent to having (see [20] pp. 292–295)

\[
\lambda := \inf\limits_{\text{Re } s > 0} \sigma_{\text{min}} \left[\begin{array}{c} N(s) \\ M(s) \end{array} \right] > 0,
\]

and

\[
\tilde{\lambda} := \inf\limits_{\text{Re } s > 0} \sigma_{\text{min}}[\tilde{N}(s) \quad \tilde{M}(s)] > 0,
\]

where \(\sigma_{\text{min}}(\cdot) \) denotes the minimum singular value. Then, we will approximate the plant by a finite dimensional system (a rational transfer function); i.e. given arbitrarily small number \(\epsilon > 0 \) we will find two rational matrices \(N_f(s) \) and \(M_f(s) \) with entries in \(H^\infty \) and coprime satisfying \(N = N_f + \Delta_N, M = M_f + \Delta_M \) and \(\| \begin{bmatrix} \Delta_N \\ \Delta_M \end{bmatrix} \|_\infty < \epsilon. \) So the underlying assumptions on \(k_i \)'s are such that this kind of approximation of the plant is possible. Then, we know that by choosing \(\epsilon > 0 \) sufficiently small we can guarantee the existence of a rational controller stabilizing \(P_f = N_fM_f^{-1} \) as well as \(P = NM^{-1} \). This controller can be computed from the theory of robustness optimization in the gap metric, and using standard techniques of \(H^\infty \) optimal control, the details of this argument are given in Section 3.

We conclude this section with a few remarks to put our work here in perspective for the reader. The system described by (1.1) and (1.2) has been proposed by several authors (see e.g. [3], [2], [4], [5]) to model the elastic motions of three degrees of freedom thin airfoils in two dimensional unsteady flows. Our zero initial conditions assumption corresponds to the so-called indicial problem (cf. [3] p. 291). For the sake of completeness we want to mention some relevant work on the finite delay version of the system (1.1)-(1.2) (the integrals are taken from a finite time, say \(-r\) to 0, instead of \(-\infty\) to 0). For example well-posedness of these type of systems in different state spaces are studied in [5], [6], [14]. Approximation and
control issues are discussed in detail in [16], [17] using semigroup framework and non-zero initial conditions. Also, recently a well-posedness result for scalar equations of the type (1.2), in weighted L^1 spaces, is obtained in [15].

The remaining part of this paper is organized as follows. In Section 2 we provide a brief discussion of the aeroelastic control problem that motivates the study of the singular integro-differential system (1.1)-(1.2). Section 3 contains the existence result (Theorem 3.3) for the finite dimensional stabilizing controllers; in Section 4 we summarize an algorithm for construction of these controllers. In Section 5 we make some remarks on the stability definition used in this paper and relations to the "boundedness" of the components of x_1 and x_2; also in the same section we discuss the assumptions used in Section 3 and their relations to the aeroelastic model described in Section 2. Finally in the last section we draw our conclusions.

2 An Aeroelastic System

Consider the thin airfoil (typical cross-section) shown in Figure 2.

![Figure 2](image)

We assume that the airfoil is placed in an incompressible, inviscid two-dimensional flow. The
basic equations for the pitching, plunging and flap motions (see e.g. [4]) can be written as

$$M \frac{d^2 z(t)}{dt^2} + B \frac{dz(t)}{dt} + K z(t) = \frac{1}{m} F(t) + G u(t)$$

(2.1)

where $z(t) = [h(t), \alpha(t), \beta(t)]^T$ represents the plunging, pitching and flap motions of the airfoil, $u(t)$ is a control torque on the flap hinge line, $F(t) = [L(t), M_\alpha(t), M_\beta(t)]^T$ is the vector of aerodynamic loads corresponding to lift, pitching moment and flap moment, respectively, M, B, and K are constant matrices and m is a constant. Let U denote the undisturbed stream velocity, $\phi(t, x, y)$ the disturbance velocity potential and define the downwash function $w_a(t, x)$ by

$$w_a(t, x) = \left\{ \begin{array}{ll} -\frac{d}{dt} h(t) - (x - a) \frac{d}{dx} \alpha(t) - U \alpha(t); & -1 < x < c \\
-\frac{d}{dt} h(t) - (x - a) \frac{d}{dx} \alpha(t) - U \alpha(t) - (x - c) \frac{d}{dx} \beta(t) - U \beta(t) & c < x < 1. \end{array} \right.$$

(2.2)

(The downwash function represents the vertical velocity component of the airfoil.)

The disturbance velocity is given by the gradient of the potential function ϕ which in turn satisfies Laplace’s equation

$$\frac{\partial^2}{\partial x^2} \phi(t, x, y) + \frac{\partial^2}{\partial y^2} \phi(t, x, y) = 0; \quad t > 0$$

(2.3)

with boundary conditions

$$\frac{\partial}{\partial y} \phi(t, x, 0^+) = w_a(t, x), \quad -1 < x < 1, \quad t > 0$$

(2.4)

$$\frac{\partial}{\partial y} \phi(t, x, 0^+) + U \frac{\partial}{\partial t} \phi(t, x, 0^+) = 0, \quad |x| \geq 1, \quad t > 0;$$

(2.5)

$$\frac{\partial}{\partial t} \phi(t, 1^-, 0^+) + U \frac{\partial}{\partial x} \phi(t, 1^-, 0^+) = 0, \quad t > 0.$$

(2.6)

To derive a model (appropriate for control design) one seeks a solution of (2.3)-(2.6) of the form

$$\phi(t, x, y) = -\frac{1}{2\pi} \int_{-1}^{\infty} \gamma(t, \zeta) \tan^{-1}(\frac{y}{x - \zeta}) d\zeta,$$

(2.7)

where the integral is taken in the Cauchy sense and the function $\gamma(t, x), t > 0, \quad -1 < x < \infty$, represents the circulation per unit distance, and it is decomposed into

$$\gamma(t, x) = \left\{ \begin{array}{ll} \gamma_a(t, x) & -1 \leq x \leq 1, \quad t > 0 \\
\gamma_w(t, x) & 1 < x < +\infty, \quad t > 0; \end{array} \right.$$

(2.8)
moreover it is assumed that the function \(t \rightarrow \int_{-1}^{1} \gamma_a(t, x) dx \) is continuously differentiable for \(t > 0 \). Given an “initial wake history” \(q = (\eta, \phi(\cdot)) \in \mathbb{R} \times L^1(\mathbb{R}) \) (\(q \) is assumed to be zero in this paper, this problem is called the indicial problem), define the extended total airfoil circulation, \(\Gamma_q : (-\infty, \infty) \rightarrow \mathbb{R} \), by

\[
\Gamma_q(t) = \begin{cases}
\int_{-\infty}^{t} \phi(\tau) d\tau, & t < 0 \\
\eta + \int_{0}^{t} \frac{\partial}{\partial \tau} \Gamma_q(\tau, \zeta) d\zeta d\tau, & t \geq 0.
\end{cases}
\] (2.9)

It can be shown that the aerodynamic loads, \(F(t) \), can be represented as “functionals” of \(\Gamma_q \) and its history. In particular (see [4]) one has

\[
L(t) = \frac{d}{dt} \int_{-\infty}^{0} c_1(\tau) \Gamma_q^\prime(\tau + t) d\tau + c_1 \left[\frac{d}{dt} z(t) \right],
\] (2.10)

where \(c_1(\tau) = -\rho \sqrt{U} \tau^2 - 2U \tau \) (\(\rho \) is the fluid density), \(c_1 \) is a \(1 \times 6 \) vector of constants, and \(\Gamma_q^\prime(t + \tau) := \frac{d}{dt} \Gamma_q(t + \tau) \).

Likewise, it can be shown that \(M_\alpha(t) \) and \(M_\beta(t) \) have the form

\[
M_\alpha(t) = D_0 \left[\frac{\Gamma_q^\prime(t)}{\Gamma_q(t)} \right] + \int_{-\infty}^{0} D_0(\tau) \Gamma_q^\prime(t + \tau) d\tau + D_1 \left[\frac{z(t)}{\frac{d}{dt} z(t)} \right] + \frac{d}{dt} \int_{-\infty}^{0} D_1(\tau) \Gamma_q^\prime(t + \tau) d\tau \] (2.11)

and

\[
M_\beta(t) = E_0 \left[\frac{\Gamma_q^\prime(t)}{\Gamma_q(t)} \right] + \int_{-\infty}^{0} E_0(\tau) \Gamma_q^\prime(t + \tau) d\tau + E_1 \left[\frac{z(t)}{\frac{d}{dt} z(t)} \right] + \frac{d}{dt} \int_{-\infty}^{0} E_1(\tau) \Gamma_q^\prime(t + \tau) d\tau. \] (2.12)

Equations (2.10)-(2.12) provide “constitutive” equations relating the aerodynamic loads to the circulation function \(\Gamma_q(t) \). All that remains is to derive an equation of evolution for \(\Gamma_q(t) \). Following the procedure found in [4] one obtains the equation

\[
-\frac{1}{2\pi} \int_{-1}^{1} \frac{\gamma_a(t, \zeta)}{(x - \zeta)} d\zeta = w_a(t, x) - \frac{1}{2\pi} \int_{-\infty}^{0} \Gamma_q^\prime(t + \tau) \left(\frac{1}{x - 1 + U\tau} \right) d\tau
\] (2.13)

that is “inverted” by using the Söhnge inversion formula (see [14] for the details). In particular (2.13) can be solved for \(\gamma_a(t, x) \) giving

\[
\gamma_a(t, x) = \frac{2}{\pi} \sqrt{\frac{1 - x}{1 + x}} \left(\int_{-1}^{1} \frac{1 + y}{1 - y} \left(\frac{w_a(t, y)}{x - y} + \int_{-\infty}^{0} \Gamma_q^\prime(t + \tau) \left(\frac{1}{y - 1 + U\tau} \right) d\tau \right) dy \right).
\] (2.14)
Integrating (2.14) one obtains
\[
\Gamma_q(t) = \int_{-1}^{1} \gamma_a(t, x) = 2 \int_{-1}^{1} \sqrt{\frac{1 + y}{1 - y}} w_a(t, y) dy - \frac{1}{2\pi} \int_{-\infty}^{0} H(\tau) \Gamma'_q(t + \tau) d\tau,
\]
(2.15)
where \(H(\tau) = 2\pi \left(\sqrt{\frac{U_T^2 - 2}{U_T^2}} - 1 \right) \). Equation (2.15) can be reduced to the form
\[
\int_{-\infty}^{0} K(\tau) \Gamma'_q(t + \tau) d\tau = \left(\int_{-\infty}^{0} \phi(\tau)d\tau - \eta \right) + B \left[\frac{z(t)}{dt} \right],
\]
(2.16)
where \(K(\tau) = \sqrt{\frac{U_T^2 - 2}{U_T^2}} \). Note that (2.16) provides the basic evolution equation for \(\Gamma_q(t) \). The model is completed by differentiating (2.16) to obtain
\[
\frac{d}{dt} \int_{-\infty}^{0} K(\tau) \Gamma'_q(t + \tau) d\tau = B \left[\frac{z(t)}{dt} \right]
\]
(2.17)
and augmenting (2.17) to (2.1). The constitutive relations (2.10)-(2.12) relate \(F(t) \) to \(\Gamma_q(t) \). Thus, if one defines
\[
x_1(t) = [h(t), \alpha(t), \beta(t), \frac{dh(t)}{dt}, \frac{d\alpha(t)}{dt}, \frac{d\beta(t)}{dt}, \Gamma_q(t)]^T
\]
(2.18)
and
\[
x_2(t) = \Gamma'_q(t) = \frac{d}{dt} \Gamma_q(t),
\]
(2.19)
the resulting equations can be written as
\[
\frac{d}{dt} \left(A_1 \dot{x}_1(t) + \int_{-\infty}^{0} A_1(\tau) x_2(t + \tau)d\tau \right) = B_1 \dot{x}_1(t) + B_2 x_2(t) + \int_{-\infty}^{0} B_1(\tau) x_2(t + \tau)d\tau + Gu(t)
\]
(2.20)
and
\[
\frac{d}{dt} \int_{-\infty}^{0} K(\tau) x_2(t + \tau)d\tau = C_2 \dot{x}_1(t)
\]
(2.21)
where \(A_1, B_1, B_2, C_2 \) and \(A_1(\tau), B_1(\tau) \) are appropriate size constant matrices and matrix valued functions respectively, and \(K(\tau) = \sqrt{\frac{U_T^2 - 2}{U_T^2}} \). Furthermore, since \(A_1 \) is nonsingular it can be taken to the right hand side of (2.20), also since \(A_1(\tau) \) is smooth, the term \(\frac{d}{dt} \int_{-\infty}^{0} A_1(\tau) x_2(t + \tau)d\tau \) can be taken to the left hand side of (2.20) and it can be combined with the term involving \(B_1(\tau) \). Thus (2.20)-(2.21) can be represented in the form (1.1)-(1.2).
with \(b_2 \kappa_2(\tau) \) of (1.1) being a \(1 \times n \) valued function obtained from (2.20) using above arguments. In order to have a relatively simpler model we assume that \(b_2 \) is a \(1 \times n \) constant vector and \(\kappa_2(\tau) \) is a scalar function.

It seems that (1.1) and (1.2) is a “feasible” mathematical model to study various control problems associated with the aeroelastic systems, where the motions of the structure are coupled to the motion of the fluid. Here we consider the indicial problem (zero wake history, in other words the unsteady motion begins at \(t = 0 \)) and our main interest is to find finite dimensional controllers (say e.g. for flutter suppression, [1]) that robustly stabilize the systems in the sense of the set-up shown in Figure 1.

3 Stabilization of the Plant

In this section we consider the plant described by equations (1.1)-(1.2) with zero initial conditions. In the frequency domain the plant transfer function, \(P(s) \), is given by (1.8a-b). We will now discuss in detail the problem of stabilizing \(P \) by a finite dimensional controller \(C \).

Let us begin by studying the stabilizability conditions for the plant \(P \). The issue is to find strongly coprime factorizations for

\[
P(s) = \begin{bmatrix} P_1(s) \\ c_2(s \hat{k}_1(s))^{-1} P_1(s) \end{bmatrix}.
\]

Therefore it is necessary that \(P_1 \) is stabilizable, and the transfer function \((s \hat{k}_1(s))^{-1} \) admits a coprime factorization in \(H^\infty \). So, we will assume that there exists \(N_{k_1}, M_{k_1} \in H^\infty \) such that \(N_{k_1}(s)/M_{k_1}(s) = c_2(s \hat{k}_1(s))^{-1} \) and the pair \((N_{k_1}, M_{k_1}) \) is coprime, i.e.

\[
\inf_{\Re s > 0} (|N_{k_1}(s)|^2 + |M_{k_1}(s)|^2) > 0.
\]

In order to obtain simple conditions on stabilizability of \(P_1 \) we make certain mild assumptions. Suppose that the kernel \(k_2(t), t \geq 0 \), is in \(L^1[0, \infty) \); this guarantees that \(\hat{k}_2 \in H^\infty \). Then, assume that the pairs \((A, b), (A, b_1) \) and \((A, b_2) \) are “stabilizable” (in the classical
finite dimensional linear system theoretic sense), and the pair \((c_1, A)\) is detectable. With this assumption we can find rational functions \(N_b, N_{b_1}, N_{b_2}, M_a \in H^\infty\) such that
\[
\frac{N_b(s)}{M_a(s)} = c_1(sI - A)^{-1}b \quad \text{and} \quad \frac{N_{b_i}(s)}{M_a(s)} = c_1(sI - A)^{-1}b_i, \quad i = 1, 2,
\]
and the pairs \((N_b, M_a), (N_{b_1}, M_a), (N_{b_2}, M_a)\) are coprime. Thus, \(P_1(s)\) can be rewritten as
\[
P_1(s) = \frac{N_b(s)M_{k_1}(s)}{M_{k_1}(s)M_a(s) - N_{k_1}(s)(N_{b_2}(s) + \hat{k}_2(s)N_{b_1}(s))}.
\]
(3.1)

Defining
\[
N_1(s) = N_b(s)M_{k_1}(s)
\]
(3.2a)
and
\[
M_1(s) = M_{k_1}(s)M_a(s) - N_{k_1}(s)(N_{b_2}(s) + \hat{k}_2(s)N_{b_1}(s))
\]
(3.2b)
we see that stabilizability of \(P_1\) is equivalent to having \((N_1, M_1)\) strongly coprime.

Recall that \(N_b(s)\) is rational, so it has zeros in the extended closed right half plane at only finitely many points, say \(s_1, \ldots, s_{\ell}\), with multiplicities \(m_1, \ldots, m_{\ell}\) respectively. Then, for \((N_1, M_1)\) to be strongly coprime we have the following two necessary conditions
\[
(i) \quad \left. \frac{\partial^i}{\partial s^i} \left[M_{k_1}(s)M_a(s) - N_{k_1}(s)(N_{b_2}(s) + \hat{k}_2(s)N_{b_1}(s)) \right] \right|_{s = s_j} \neq 0
\]
for all \(i = 1, \ldots, m_j\), and \(j = 1, \ldots, \ell\);
\[
(ii) \quad \text{the pair } (M_{k_1}, (N_{b_2} + \hat{k}_2N_{b_1})) \text{ is strongly coprime.}
\]
It is also not difficult to see from (3.1) that if both (i) and (ii) are satisfied then the pair \((N_1, M_1)\) is strongly coprime hence \(P_1\) is stabilizable.

Now returning back to the original plant \(P\) we see that, with the above notation and assumptions, we have
\[
P(s) = \begin{bmatrix} N_1(s) \\ N_2(s) \end{bmatrix} M_1(s)^{-1},
\]
where \(N_1(s) = N_b(s)M_{k_1}(s), N_2(s) = N_b(s)N_{k_1}(s)\), and \(M_1(s)\) is given by (3.2b). Therefore, for stabilizability of \(P_2\), in addition to condition (i) we need
\[
(iii) \quad \text{the pair } (N_{k_1}, M_a) \text{ is strongly coprime.}
\]
Moreover (i) and (iii) guarantees that \((N_2, M_1)\) is coprime, and hence \(P_2\) is stabilizable. Thus, we have

Lemma 3.1 Consider the plant \(P(s)\) described by (1.8a,b), and suppose that \(k_2 \in L^1[0, \infty)\) and \((A, b), (A, b_1), (A, b_2)\) are stabilizable and \((c_1, A)\) is detectable. Then, the plant \(P\) is stabilizable if and only if (i), (ii) and (iii) hold. Moreover, if these conditions are satisfied a right (resp. left) strongly coprime factorization is given by

\[
P = NM^{-1}, \quad \text{where } N := \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}, M := M_1,
\]

(resp.)

\[
P = \tilde{M}^{-1} \tilde{N}, \quad \text{where } \tilde{N} := N, \tilde{M} = \begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix}.
\]

Furthermore, we have

\[
\lambda^2 := \inf_{\Re s > 0} \left(|N_1(s)|^2 + |N_2(s)|^2 + |M_1(s)|^2 \right) > 0,
\]

and

\[
\bar{\lambda}^2 := \inf_{\Re s > 0} \min\{(|N_1(s)|^2 + |M_1(s)|^2), (|N_2(s)|^2 + |M_1(s)|^2)\} > 0.
\]

Proof: Immediate from the above arguments and the results of [22]. \(\Box\)

These conditions guarantee stabilizability of the plant \(P\), i.e. there exists a controller, possibly infinite dimensional, stabilizing the closed loop system. However, our purpose is to find, if possible, a finite dimensional controller, rational \(C(s)\), stabilizing the closed loop system. In order to guarantee the existence of such a controller we need some more conditions on the "infinite dimensional" parts \((sk_1(s))^{-1}\) and \(k_2(s)\). We now want to discuss this issue. As mentioned in Section 1 we will "approximate" these terms by rational functions to obtain a new finite dimensional plant which is "close" to the original plant in the gap metric, (see [9] for a precise definition and details). Then, we will find a rational controller (from the new plant) which stabilizes the approximate plant as well the original plant.

A simple sufficient condition for the existence of rational approximations is that the functions \(M_{k_1}(j\omega), N_{k_1}(j\omega)\) and \(\hat{k}_2(j\omega)\) are continuous for all \(\omega \in \mathbb{R} \cup \{\infty\}\). So we will assume
that this condition holds. Then, we know that these functions are uniformly approximable by rational functions in H^∞ (see e.g. [13]), i.e. given arbitrary small $\epsilon > 0$, there exists rational functions $M^f_{k_1}$, $N^f_{k_1}$, $\hat{k}^f_2 \in H^\infty$ such that

$$\|M_{k_1} - M^f_{k_1}\|_{\infty} + \|N_{k_1} - N^f_{k_1}\|_{\infty} + \|\hat{k}_2 - \hat{k}^f_2\|_{\infty} < \epsilon. \quad (3.3)$$

Therefore, the numerator, $N = \begin{bmatrix} N_1 \\ N_2 \end{bmatrix}$, and the denominator, M_1, are uniformly approximable in H^∞ by rational functions. Thus, for any $\epsilon > 0$ we can find a rational transfer function

$$P_f(s) = \begin{bmatrix} N^f_{1}(s) \\ N^f_{2}(s) \end{bmatrix} M^f_{1}(s)^{-1} \quad (3.4a)$$

such that

$$P(s) = \begin{bmatrix} N^f_{1}(s) + \Delta_{N_1}(s) \\ N^f_{2}(s) + \Delta_{N_2}(s) \end{bmatrix} (M^f_{1}(s) + \Delta_{M_1}(s))^{-1} \quad (3.4b)$$

with

$$\| \begin{bmatrix} \Delta_{N_1} \\ \Delta_{N_2} \\ \Delta_{M_1} \end{bmatrix} \|_{\infty} < \epsilon, \quad (3.4c)$$

where $N^f_{1}, N^f_{2}, M^f_{1} \in H^\infty$ are rational functions approximating N_1, N_2, M_1. We shall make use of the following.

Lemma 3.2 Consider the equations (3.4a,b,c). Then, for $\epsilon > 0$ sufficiently small, P is stabilizable implies that P_f is also stabilizable.

Proof: Define

$$\lambda_f^2 := \inf_{\text{Re } s > 0} (|N^f_{1}(s)|^2 + |N^f_{2}(s)|^2 + |M^f_{1}(s)|^2) > 0,$$

and

$$\bar{\lambda_f}^2 := \inf_{\text{Re } s > 0} \min\{|N^f_{1}(s)|^2 + |M^f_{1}(s)|^2, (|N^f_{2}(s)|^2 + |M^f_{1}(s)|^2)\} > 0.$$

Clearly by choosing $\epsilon > 0$ sufficiently small we can make $\lambda_f \geq \frac{1}{2}$ and $\bar{\lambda_f} \geq \frac{1}{2}$. On the other hand, by the fact that P is stabilizable we have $\lambda > 0$ and $\bar{\lambda} > 0$. Therefore, $\lambda_f > 0$ and $\bar{\lambda_f} > 0$, which means that P_f is stabilizable (see [22] and [20]). \Box
Although we have coprime factorizations for P_f from the above Lemma 3.2, we need to have normalized coprime factorizations in order to apply the theory of robustness optimization in the gap metric, [9]. So, let us now find normalized coprime factorizations for P_f by constructing rational functions $G^f, G_1^f, G_2^f \in H^\infty$, with $(G^f)^{-1}, (G_1^f)^{-1}, (G_2^f)^{-1} \in H^\infty$, satisfying

\begin{align}
(G^f)^*G^f &= |G^f_(j\omega)|^2 = (|N_1^f(j\omega)|^2 + |N_2^f(j\omega)|^2 + |M_1^f(j\omega)|^2)^{-1} \\
(G_1^f)^*G_1^f &= |G_1^f(j\omega)|^2 = (|N_1^f(j\omega)|^2 + |M_1^f(j\omega)|^2)^{-1} \\
(G_2^f)^*G_2^f &= |G_2^f(j\omega)|^2 = (|N_2^f(j\omega)|^2 + |M_1^f(j\omega)|^2)^{-1}.
\end{align}

Note that since $\lambda_f > 0$ and $\bar{\lambda}_f > 0$ these functions exist, and they can be computed using spectral factorization techniques. Then, P_f can be rewritten as

\begin{equation}
P_f = N_f M_f^{-1} = \tilde{M}_f^{-1} \tilde{N}_f \tag{3.6a}
\end{equation}

where

\begin{equation}
N_f = \begin{bmatrix} N_1^f G^f \\ N_2^f G^f \end{bmatrix}, \quad M_f = M_1^f G^f \tag{3.6b}
\end{equation}

and

\begin{equation}
\tilde{N}_f = \begin{bmatrix} G_1^f N_1^f \\ G_2^f N_2^f \end{bmatrix}, \quad \tilde{M}_f = \begin{bmatrix} G_1^f M_1^f & 0 \\ 0 & G_2^f M_1^f \end{bmatrix}. \tag{3.6c}
\end{equation}

Since we have

\[N_f^* N_f + M_f^* M_f = 1,
\]

and

\[
\tilde{N}_f \tilde{N}_f^* + \tilde{M}_f \tilde{M}_f^* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
\]

\[\begin{bmatrix} N_f \\ M_f \end{bmatrix}\] is inner and \[\begin{bmatrix} \tilde{M}_f & \tilde{N}_f \end{bmatrix}\] is co-inner. Moreover, we can find $U_f, \tilde{U}_f, V_f, \tilde{V}_f \in H^\infty$ appropriate size matrices satisfying

\[
\begin{bmatrix} \tilde{V}_f & -\tilde{U}_f \\ -\tilde{N}_f & \tilde{M}_f \end{bmatrix} \begin{bmatrix} M_f & U_f \\ N_f & V_f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]
(See for example [8], pp. 22–24, and [23], pp. 82–84, on how to compute these matrices.)

The set of all stabilizing controllers for P_f is given by

$$\{C_f = (U_f - M_f Q)(V_f + N_f Q)^{-1} : Q = [Q_1, Q_2], Q_1, Q_2 \in H^\infty\}.$$

It is also known (cf. [9], [24]) that the controller $C_f = (U_f - M_f Q)(V_f + N_f Q)^{-1}$ stabilizes all plants of the form

$$P_t = (\tilde{M}_f + \Delta M_f)^{-1}(\tilde{N}_f + \Delta N_f)$$

where $\Delta P_t := [\Delta M_f, \Delta N_f]$ has arbitrary entries in H^∞, subject to $\|\Delta P_t\|_\infty < \epsilon$, if and only if

$$\| [U_f \atop V_f] - [M_f \atop N_f] Q \|_\infty \leq \frac{1}{\epsilon}.$$

In view of the above fact one can define a quantity γ_f, for the plant P_f, as

$$\gamma_f^{-1} := \inf_{Q \in H^\infty} \| [U_f \atop V_f] - [M_f \atop N_f] Q \|_\infty.$$

The quantity γ_f characterizes the largest amount of uncertainty level ϵ tolerated by P_f, in the sense that there exists a controller stabilizing P_f and all plants of the form P_t if and only if $\epsilon \leq \gamma_f$. In fact the same statement is true, [9], for plants of the form

$$P_t = (N_f + \Delta N_f)(M_f + \Delta M_f)^{-1}$$

with $\Delta P_t := [\Delta M_f \atop \Delta N_f]$ having arbitrary entries in H^∞, and $\|\Delta P_t\|_\infty < \epsilon$. Since P_f is stabilizable we have $\lambda_f \geq \gamma_f > 0$. (We refer to [9] for all the details of these facts and other related references.) In a similar fashion one can define the quantity γ for the plant P as the largest uncertainty level tolerated by P. Again, since P is stabilizable we have $\lambda \geq \gamma > 0$.

Note that the approximate plant can be written as

$$P_f = N_f M_f^{-1} = \begin{bmatrix} N_1^f G^f \\ N_2^f G^f \end{bmatrix} (M_1^f G^f)^{-1}$$

similarly the original plant is of the form

$$P = \begin{bmatrix} N_1^f + \Delta N_1 \\ N_2^f + \Delta N_2 \end{bmatrix} (M_1^f + \Delta M_1)^{-1} = \begin{bmatrix} N_1^f G^f + G^f \Delta N_1 \\ N_2^f G^f + G^f \Delta N_2 \end{bmatrix} (M_1^f G^f + G^f \Delta M_1)^{-1}.$$
Accordingly we set

\[\Delta_P := G^f \begin{bmatrix} \Delta_{N_1} \\ \Delta_{N_2} \\ \Delta_{M_1} \end{bmatrix}. \]

We are now ready to state our main result. But first we summarize all the assumptions used in this section.

Assumption 1: (On finite dimensional parts of the plant)

\((A, b), \ (A, b_1), \ (A, b_2)\) are stabilizable and \((c_1, A)\) is detectable.

Assumption 2: (On the kernel \(k_2(t), t \geq 0\))

\(k_2 \in L^1[0, \infty), \ \text{so} \ \hat{k}_2(s) := \int_0^\infty e^{-st}k_2(t)dt \in H^\infty \ \text{and} \ \hat{k}_2(j\omega) \ \text{is continuous on} \ \omega \in \mathbb{R} \cup \{\infty\}.\)

Assumption 3: (On the kernel \(k_1(t), t \geq 0\))

\(\hat{k}_1(s) := \int_0^\infty e^{-st}k_1(t)dt \ \text{is such that} \ c_2(s\hat{k}_2(s))^{-1} = N_{k_1}(s)/M_{k_1}(s) \ \text{with} \ N_{k_1}, M_{k_1} \in H^\infty \ \text{and} \ \ (N_{k_1}, M_{k_1}) \ \text{is strongly coprime in} \ H^\infty, \ \text{moreover} \ N_{k_1}(j\omega) \ \text{and} \ M_{k_1}(j\omega) \ \text{are continuous in} \ \omega \in \mathbb{R} \cup \{\infty\}.\)

Assumption 4: (Coupling between finite and infinite dimensional parts)

(4.i): The pair \((N_b, \ (M_{k_1}M_a - N_{k_1}(N_{b_2} + \hat{k}_2N_{b_1}))) \) is coprime.

(4.ii): The pair \((M_{k_1}, \ (N_{b_2} + \hat{k}_2N_{b_1})) \) is coprime.

(4.iii): The pair \((N_{k_1}, \ M_a) \) is coprime.

Theorem 3.3 Consider the plant described by (1.8a,b) and suppose that the Assumptions 1-4 are satisfied. Then, there exists a controller \(C_f, \ \text{finite dimensional}, \ (\text{i.e.} \ C_f(s) \ \text{is rational}) \ \text{stabilizing the closed loop system with plant} \ P.\)

Proof: From the discussion following Lemma 3.2 we know that if \(\|\Delta_P\|_\infty < \gamma_f\) then there exists a controller stabilizing both \(P_f\) and \(P\). Such a controller can be obtained from the finite dimensional plant \(P_f\) in an optimal way. Moreover, this controller, \(C_{f,\text{opt}}, \ \text{is rational, i.e. finite dimensional. This is essentially a consequence of the well known result that} \ H^\infty \ \text{optimal controllers for finite dimensional plants are finite dimensional. Now, we know that, by uniform approximability assumptions on} \ M_{k_1}, N_{k_1} \ \text{and} \ \hat{k}_2 \ \text{we can make} \ \epsilon > 0, \ \text{in} (3.4c), \ \text{as small as we wish. However, we want to prove that we can make} \ \|\Delta_P\|_\infty \ \text{arbitrarily small.} \)
To show this it is sufficient to prove that there exists $\eta' > 0$ and $\epsilon' > 0$ such that for all $\epsilon' > \epsilon > 0$ we have $\|G^f\|_\infty < \eta'$. This is indeed true because from the proof of the Lemma 3.2 we know that $\|G^f\| \leq \frac{1}{2}$ for some sufficiently small ϵ, say for $\epsilon \leq \epsilon'$. Thus, for any $0 < \epsilon \leq \epsilon'$ fixed we can make $\|\Delta_P\|_\infty < \epsilon$, by a suitable choice of the rational functions $M_{k_1}^f, N_{k_1}^f, \hat{k}_2^f \in H^\infty$. Finally in order to prove the existence of a finite dimensional controller stabilizing P, we need to ensure that as $\epsilon \to 0$, γ_f is bounded below by a strictly positive number. Again, we know that as $\epsilon \to 0$ the distance, in the gap metric, between P and P_f approaches to zero and hence the quantity γ_f approaches to $\gamma > 0$, see [9]. This concludes the proof of the existence of a finite dimensional controller which stabilizes the closed loop system with the infinite dimensional plant P. □

4 An algorithm to construct $C_{f,opt}^f$

In this section we summarize the procedure described in Section 3 as an algorithm for the construction of a stabilizing finite dimensional controller.

Algorithm: Given the data $A, b, b_1, b_2, c_1, \hat{k}_2(s), c_1(s\hat{k}_1(s))^{-1} = N_{k_1}(s)/M_{k_1}(s)$.

Step 1: Find rational functions $N_b, N_{b_1}, N_{b_2}, M_a \in H^\infty$ such that

$$\frac{N_b(s)}{M_a(s)} = c_1(sI-A)^{-1}b, \quad \frac{N_{b_i}(s)}{M_a(s)} = c_1(sI-A)^{-1}b_i, \quad i = 1, 2;$$

and the pairs $(N_b, M_a), (N_{b_1}, M_a)$ and (N_{b_2}, M_a) are coprime.

Step 2: Pick a small number $\epsilon > 0$, and find $M_{k_1}^f, N_{k_1}^f, \hat{k}_2^f \in H^\infty$, rational functions such that

$$\|M_{k_1}^f - M_{k_1}\|_\infty < \epsilon$$
$$\|N_{k_1}^f - N_{k_1}\|_\infty < \epsilon$$
$$\|\hat{k}_2^f - \hat{k}_2\|_\infty < \epsilon$$
$$\|N_{k_1}^f \hat{k}_2^f - N_{k_1} \hat{k}_2\|_\infty < \epsilon.$$
Step 3: Define

\[N_1^f := N_b M_1^k, \quad N_2^f := N_b N_1^k, \]

\[M_1^f := M_a M_1^k - N_1^k(N_{b_2} + \hat{k}_2 N_{b_1}) \]

and check that \((N_1^f, M_1^f)\) and \((N_2^f, M_1^f)\) are coprime, otherwise go to step 1 and decrease \(\epsilon\) until this is satisfied.

Step 4: Find the rational function \(G^f \in H^\infty\) such that \((G^f)^{-1} \in H^\infty\) and

\[|G^f(j\omega)|^2 = (|N_1^f(j\omega)|^2 + |N_2^f(j\omega)|^2 + |M_1^f(j\omega)|^2)^{-1}. \]

Step 5: Compute \(\|M_b\|_\infty, \|M_a\|_\infty, \|N_{b_2}\|_\infty, \|N_{b_1}\|_\infty, \|G^f\|_\infty\) (or find upper bounds for each of these norms) and check that

\[\|N_1^f - N_1\|_\infty < \|N_b\|_\infty \ \epsilon \]

\[\|N_2^f - N_2\|_\infty < \|N_b\|_\infty \ \epsilon \]

\[\|M_1^f - M_1\|_\infty < (\|M_a\|_\infty + \|N_{b_2}\|_\infty + \|N_{b_1}\|_\infty) \ \epsilon. \]

(Note that from Step 2 these are automatically satisfied.) Using the above bounds find a real number \(\eta\) such that

\[\eta \geq \|G^f\|_\infty \left(2\|N_b\|_\infty^2 + (\|M_a\|_\infty + \|N_{b_2}\|_\infty + \|N_{b_1}\|_\infty)^2\right)^{1/2}. \]

Then we have \(\|\Delta P\|_\infty < \eta \ \epsilon.\)

Step 6: Compute \(\gamma_f\) for the plant \(P_f\) from the formula

\[\gamma_f = \sqrt{1 - \|\Gamma_f\|^2}, \]

where \(\Gamma_f\) is the Hankel operator with symbol \([M_1^{\ast f}, N_1^{\ast f}, N_2^{\ast f}]\), (cf. [11]).

Step 7: Check if \(\gamma_f \geq \eta \epsilon > \|\Delta P\|_\infty\)

* True: go to next step
* False: go to Step 1, decrease ϵ and repeat the procedure.

Step 8: From $P_f := \begin{bmatrix} N_1^f \\ N_2^f \end{bmatrix} (M_1^f)^{-1}$ compute the optimal controller $C_{f,\text{opt}}$ which robustly stabilize the gap ball around P_f of radius γ_f, see [9], [11], etc. Note that $C_{f,\text{opt}}$ is rational.

End of the algorithm, $C_{f,\text{opt}}$ found in Step 8 stabilizes the original plant $P = \begin{bmatrix} N_1 \\ N_2 \end{bmatrix} M_1^{-1}$.

We now want to make some remarks about the above algorithm. There are several ways to perform the computations required in Step 2; see for example [13] and [12] for different approximation schemes and further references on this subject.

From the Lemma 3.2 we have stabilizability of P_f for $\epsilon > 0$ sufficiently small, so it is guaranteed that the algorithm will pass the test in Step 3.

There are also several methods to perform a spectral factorization which gives G^f in Step 4, see for example [8] pp. 90–93. Computing the H^∞ norm of the scalar rational transfer functions N_b, N_{b_1}, N_{b_2}, M_a and G^f is not difficult. For example a simple plot of their magnitudes on the imaginary axis (Bode plots) would give these norms. Therefore, the constant in Step 5 can be found easily. Similarly computing γ_f for a given rational plant P_f is rather easy, see for example [7], [8] and [21] for different methods and further references. We know that for $\epsilon > 0$ sufficiently small we have $\gamma_f \geq \gamma/2 > 0$, therefore the algorithm will eventually pass the test in Step 7.

In Step 8 computing $C_{f,\text{opt}}$ requires finding the singular values and vectors of the Hankel operator of Step 6. These also can be obtained from the standard methods of H^∞ optimal control theory, see e.g. [7], [10], [21] for further details and references.

Finally we want to make a remark on the order of the controller. As ϵ decreases the order of P_f, hence the dimension of the controller $C_{f,\text{opt}}$ increases. Therefore, to have a reasonably low order controller one may want to find the smallest η in Step 5, and the largest $\epsilon > 0$ satisfying $\gamma_f \geq \eta \epsilon$ (note that γ_f also depends on ϵ).
5 Remarks on Stability and the Aeroelastic Model

In this section we discuss the relations between the closed loop stability (which is an external stability concept) and the “boundedness” issue for the components of the “states” x_1 and x_2, (which can be regarded as internal stability). We also discuss the relationship between the assumptions used in Section 3 and the aeroelastic model described in Section 2.

Recall, from the definition of the closed loop stability, that the controller $C_{f,\text{opt}}$, obtained in Step 8 of the algorithm, guarantees the following: when $r, d \in L^2[0, \infty)$ we have $u, y_1, y_2 \in L^2[0, \infty)$. Note that $y_2 \in L^2[0, \infty)$ implies $x_2 \in L^2[0, \infty)$, because $y_2(t) = c_2 x_2(t)$ and $c_2 \neq 0$; so, x_2 has “finite energy.”

We are also concerned with the other “states,” i.e., the entries of x_1. Let us define $x_2(t) := u_1(t)$ and $\int_0^t k_2(\tau)x_2(t-\tau)d\tau := u_2(t)$. Then, since $x_2 \in L^2[0, \infty)$ and $k_2 \in L^1[0, \infty)$, (Assumption 2), we have $u_1, u_2 \in L^2[0, \infty)$. Hence, we can re-write (1.1)-(1.2) as

$$\frac{d}{dt} x_1(t) = Ax_1(t) + b_1 u_1(t) + b_2 u_2(t) + bu(t)$$

and

$$y_1(t) = c_1 x_1(t).$$

So,

$$y_1(t) = \int_0^t c_1 e^{A(t-\tau)}(b_1 u_1(\tau) + b_2 u_2(\tau) + bu(\tau))d\tau$$

with $y_1 \in L^2[0, \infty)$ and $u, u_1, u_2 \in L^2[0, \infty)$. Thus, by Assumption 1, detectability of (c_1, A), we conclude that all the entries of x_1 are in $L^2[0, \infty)$.

It is also desirable to have “exponential decay” in the output signals when the input signals are of the same type. This also can be put in the framework of Definition 1.1 of stability in the following way. Let us define the set of all finite energy signals that are exponentially decaying, with a rate faster than $\sigma \geq 0$, as

$$L^2_{\sigma} := L^2_{\sigma}[0, \infty) := \{g : g(t) = e^{-\sigma t} f_g(t), t \geq 0, f_g \in L^2[0, \infty)\}. $$
Then, we say that a linear time invariant system is σ-stable if for all input $v \in L^2_\sigma$ we have the output $z \in L^2_\sigma$ and the maximum energy amplification, $\sup_{0 \neq v \in L^2_\sigma} (\|z\|_2/\|v\|_2)$ is finite. In this context σ-stability of the closed loop system of Figure 1 is equivalent to having all the entries of $T(p,c)$ in

$$H^\infty_\sigma := \{ \phi : \phi_\sigma \in H^\infty where \phi_\sigma(s) := \phi(s - \sigma) \}.$$

With the above notation we can define σ-coprimeness as follows: two functions $\varphi, \psi \in H^\infty_\sigma$ are σ-coprime (or the pair (φ, ψ) is σ-coprime) if the pair $(\varphi_\sigma, \psi_\sigma)$ is coprime. Then, replacing H^∞ by H^∞_σ, $j\omega$ by $-\sigma + j\omega$, and the word coprime by σ-coprime in Assumptions 1-4 we can guarantee the existence of a finite dimensional controller which σ-stabilizes the closed loop system. The proof and the constructive algorithm are exactly the same as before except that we replace s by $s - \sigma$ and $j\omega$ by $-\sigma + j\omega$ wherever these appear.

We now want to spend a few words about the assumptions on the kernels k_1 and k_2 in the context of the aeroelastic model of Section 2. It seems (cf. [4]) that the choice of $k_2(t)$, $t \geq 0$, is not as important as the choice of k_1. In fact comparing (2.20)-(2.21) with (1.1)-(1.2) one can see that we have already made a simplifying assumption on the structure, in that the term

$$A_1^{-1} \left(B_2 x_2(t) - \frac{d}{dt} \int_{-\infty}^{0} A_1(\tau)x_2(t + \tau)d\tau + \int_{-\infty}^{0} B_1(\tau)x_2(t + \tau)d\tau \right)$$

is taken to be

$$b_1 x_2(t) + b_2 \int_{-\infty}^{0} \kappa_2(\tau)x_2(t + \tau)d\tau,$$

with $\kappa_2(\tau)$ a scalar function. In the more general case of (5.1), where $b_2 \kappa_2(\tau)$ of (5.2) is replaced by a $1 \times n$ vector of functions, our approach can still be used, but the procedure and the approximations might be more complicated, depending on the structure of the $1 \times n$ function.

The choice of $k_1(t)$, $t \geq 0$, is rather important. The key in this choice is that the asymptotic behavior of $k_1(t)$ (as $t \to 0$ and $t \to \infty$) should be similar to the asymptotic
behavior of $\sqrt{\frac{2+Ut}{Ut}}$, [4], [2], etc. For example a “reasonable” choice is

$$k_1(t) = 1 + \sqrt{\frac{2}{Ut}}.$$

Moreover this particular k_1 satisfies the Assumption 3. To see this note that

$$\dot{k}_1(s) = \int_0^\infty e^{-st}(1 + \sqrt{2/Ut})dt = \frac{1}{s} + a_1 \frac{1}{\sqrt{s}},$$

where $a_1 = \sqrt{2/\pi U} > 0$ (see e.g. [18]), so

$$c_2(s\dot{k}_1(s))^{-1} = \frac{c_2}{1 + a_1\sqrt{s}} \in H^\infty,$$ \hspace{1cm} (5.3)

and it is continuous. Furthermore, for this specific k_1, (5.3) implies that whenever $P_1 \in H^\infty$ we will have $P_2 \in H^\infty$ because $P_2(s) = c_2(s\dot{k}_1(s))^{-1}P_1(s)$. Therefore, if we can find a controller C_1 which stabilizes P_1 then we guarantee the following: $r, d \in L^2$ implies $y_1 = c_1x_1 \in L^2$ (this implies all entries of $x_1 \in L^2$, by detectability of (c_1, A), and hence $x_2 \in L^2$, because $\dot{x}_2(s) = (s\dot{k}_1(s))^{-1}\dot{y}_1(s)$ and $(s\dot{k}_1(s))^{-1} \in H^\infty$. Thus, in this case we do not need the measurement of x_2 in the output for the “internal” stabilization of the system by C_1.

6 Conclusions

In this paper we have considered a system described by the singular integro-differential equations (1.1)-(1.2). The aeroelastic model derived in Section 2 provides a motivation to study of this type of systems. The main restriction of the particular stabilization problem considered in this paper is that the initial conditions in (1.1)-(1.2) are assumed to be zero. This problem corresponds to the indcidual problem appearing in aeroelastic systems, see [3], p. 291.

We have used the frequency domain description of the plant to be controlled. Our main focus was on the stabilization of the plant by a finite dimensional controller. The original plant is infinite dimensional, but we have not used any particular state space realization. By approximating the original plant transfer function by rational functions the problem is
put in the framework of the theory of robust stabilization in the gap metric. An algorithm is given to construct a stabilizing finite dimensional controller. Important steps of the algorithm are finding rational approximates of certain H^∞ functions that are continuous on the boundary, computing the norm of a certain Hankel operator whose symbol is rational, and constructing the controller from the singular values and vectors of this Hankel operator. These are straightforward computations; there are several software packages available for these operations.

As discussed in the previous section the measurement of x_2 is not necessary for the aeroelastic model of Section 2. We have also assumed that the measurement of $y_1 = c_0x_1$, ($c_0 = c_1$), is perfect. In the case of a noisy measurement (and/or the presence of a disturbance) one may want to find a controller which not only stabilize the system but also minimizes the effect of the noise/disturbance on certain signals of interest. This can be put in the framework of an H^∞ control problem, where the plant and the signal uncertainties can be incorporated into a single H^∞ optimality criteria, see e.g. [8].

Another possible future research subject along the lines of the present paper is to consider non-zero initial conditions and minimize the effect of the initial conditions while keeping the system stable. This problem has been studied, in the H^2 control setting, in [1] using state space realizations. However, robustness to possible approximations of the optimal infinite dimensional controller was not discussed.

Finally we would like to mention that the finite delay version of the system (1.1)-(1.2) can also be studied in the frequency domain using the techniques of this paper. In fact there are several interesting questions associated with the finite delay problem, e.g. the problem of finding the conditions under which we can "approximate" the integrals of (1.1)-(1.2) by certain integrals over a finite time. We will report on this problem elsewhere.

References

Recent IMA Preprints

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td>Mark J. Friedman and Eusebius J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points</td>
</tr>
<tr>
<td>596</td>
<td>Scott J. Spector, Linear Deformations as Global Minimizers in Nonlinear Elasticity</td>
</tr>
<tr>
<td>597</td>
<td>Denis Serre, Richness and the classification of quasilinear hyperbolic systems</td>
</tr>
<tr>
<td>598</td>
<td>L. Preziosi and F. Rosso, On the stability of the shearing flow between pipes</td>
</tr>
<tr>
<td>599</td>
<td>Avner Friedman and Wenxiong Liu, A system of partial differential equations arising in electrophotography</td>
</tr>
<tr>
<td>600</td>
<td>Jonathan Bell, Avner Friedman, and Andrew A. Lacey, On solutions to a quasilinear diffusion problem from the study of soft tissue</td>
</tr>
<tr>
<td>601</td>
<td>David G. Schaeffer and Michael Shearer, Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading</td>
</tr>
<tr>
<td>602</td>
<td>Herbert C. Kranzer and Barbara Lee Keyfitz, A strictly hyperbolic system of conservation laws admitting singular shocks</td>
</tr>
<tr>
<td>603</td>
<td>S. Laederich and M. Levi, Qualitative dynamics of planar chains</td>
</tr>
<tr>
<td>604</td>
<td>Milan Miklavčič, A sharp condition for existence of an inertial manifold</td>
</tr>
<tr>
<td>605</td>
<td>Charles Collins, David Kinderlehrer, and Mitchell Luskin, Numerical approximation of the solution of a variational problem with a double well potential</td>
</tr>
<tr>
<td>606</td>
<td>Todd Arbogast, Two-phase incompressible flow in a porous medium with various nonhomogeneous boundary conditions</td>
</tr>
<tr>
<td>607</td>
<td>Peter Poláčik, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension</td>
</tr>
<tr>
<td>608</td>
<td>Bei Hu, Diffusion of penetrant in a polymer: a free boundary problem</td>
</tr>
<tr>
<td>609</td>
<td>Mohamed Sami ElBialy, On the smoothness of the linearization of vector fields near resonant hyperbolic rest points</td>
</tr>
<tr>
<td>610</td>
<td>Max Jodeit, Jr. and Peter J. Olver, On the equation (\nabla f = M \nabla g)</td>
</tr>
<tr>
<td>611</td>
<td>Shui-Nee Chow, Kening Lu, and Yun-Qiu Shen, Normal form and linearization for quasiperiodic systems</td>
</tr>
<tr>
<td>612</td>
<td>Prabir Daripa, Theory of one dimensional adaptive grid generation</td>
</tr>
<tr>
<td>613</td>
<td>Michael C. Mackey and John G. Milton, Feedback, delays and the origin of blood cell dynamics</td>
</tr>
<tr>
<td>614</td>
<td>D.G. Aronson and S. Kamin, Disappearance of phase in the Stefan problem: one space dimension</td>
</tr>
<tr>
<td>615</td>
<td>Martin Krupa, Bifurcations of relative equilibria</td>
</tr>
<tr>
<td>616</td>
<td>D.D. Joseph, P. Singh, and K. Chen, Couette flows, rollers, emulsions, tall Taylor cells, phase separation and inversion, and a chaotic bubble in Taylor-Couette flow of two immiscible liquids</td>
</tr>
<tr>
<td>617</td>
<td>Artemio González-López, Niky Kamran, and Peter J. Olver, Lie algebras of differential operators in two complex variables</td>
</tr>
<tr>
<td>618</td>
<td>L.E. Fraenkel, On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schecter and Michael Shearer, Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen, Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan, Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy, Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy, Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu, A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov, Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz, Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke, The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland, Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer, Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim, On the Poincare–Whitney circuitspace and other properties of an</td>
</tr>
</tbody>
</table>

Stanley Minkowitz and Matthew Witten, Periodicity in cell proliferation using an asynchronous cell population

M. Chipot and G. Dal Maso, Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem

Jeffery M. Franke and Harlan W. Stech, Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations

Xinfu Chen, Generation and propagation of the interface for reaction–diffusion equations

Philip Korman, Dynamics of the Lotka–Volterra systems with diffusion

Harlan W. Stech, Generic Hopf bifurcation in a class of integro-differential equations

Stephane Laederich, Periodic solutions of non linear differential difference equations

Peter J. Olver, Canonical Forms and Integrability of BillHamiltonian Systems

S.A. van Gils, M.P. Krupa and W.F. Langford, Hopf bifurcation with nonsemisimple 1:1 Resonance

R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials

Carlos Rocha, Properties of the attractor of a scalar parabolic P.D.E.

Debra Lewis, Lagrangian block diagonalization

Richard C. Churchill and David L. Rod, On the determination of Ziglin monodromy groups

Xinfu Chen and Avner Friedman, A nonlocal diffusion equation arising in terminally attached polymer chains

Peter Gritzmann and Victor Klee, Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces

P. Szmolyan, Analysis of a singularly perturbed traveling wave problem

Stanley Reiter and Carl P. Simon, Decentralized dynamic processes for finding equilibrium

Fernando Reitich, Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions

Russell A. Johnson, Cantor spectrum for the quasi-periodic Schrödinger equation

Wenxiong Liu, Singular solutions for a convection diffusion equation with absorption

Deborah Brandon and William J. Hrusa, Global existence of smooth shearing motions of a nonlinear viscoelastic fluid

James F. Reineck, The connection matrix in Morse–Smale flows II

Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay, Simple resonance regions of torus diffeomorphisms

Willard Miller, Jr., Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar

Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure

Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms

D.V. Anosov, Hilbert’s 21st problem (according to Bolibruch)

Stephane Laederich, Ray–Singer torsion for complex manifolds and the adiabatic limit

Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I

Emanuel Parzen, Time series, statistics, and information

Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release

Ju. S. Il’yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation

James F. Reineck, Continuation to gradient flows

Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem

John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change

Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations

Matthew Stafford, Markov partitions for expanding maps of the circle

Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds

M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations

M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations

Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations

Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice

Christophe Golé, Ghost circles for twist maps

Christophe Golé, Ghost tori for monotone maps

Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits