AIDS: THE EPIDEMIOLOGICAL SIGNIFICANCE
OF TWO DIFFERENT MEAN RATES OF
PARTNER CHANGE

By

John A. Jacquez
and
Carl P. Simon

IMA Preprint Series # 668
July 1990
AIDS: THE EPIDEMIOLOGICAL SIGNIFICANCE OF TWO DIFFERENT MEAN RATES OF PARTNER CHANGE

by

JOHN A. JACQUEZ
Departments of Physiology and Biostatistics

and

CARL P. SIMON
Departments of Mathematics, Economics, and Public Policy
The University of Michigan
Ann Arbor, Michigan 48109

Address for Proofs: Dr. John A. Jacquez
Department of Physiology
The University of Michigan
7808 Medical Science II
Ann Arbor, MI 48109-0622
Tele: (313) 764-4377
1. Introduction

In their work on AIDS, Anderson, Medley, May et al. (1986) and May and Anderson (1987) have stressed the importance of a mean contact rate, \(c \), which is the ratio of the population-weighted second (non-central) moment to the first moment (the mean \(\bar{c} \)) of the contact rates, for the initial growth of an epidemic. For a discrete heterogeneous population, let \(N_i \) be the number in population subgroup \(i \), \(X_i \) the number of susceptibles and \(Y_i \) the number of infectives, \(N_i = X_i + Y_i \). Let \(c_i \) be the contact rate per person in subgroup \(i \). Then,

\[
\bar{c} = \frac{\sum_i c_i N_i}{\sum_i N_i} = \frac{\sum_i c_i N_i}{N},
\]

(1)

\[
c = \frac{\sum_i c_i^2 N_i}{\sum_i c_i N_i} = \bar{c} + \frac{\sigma^2}{\bar{c}},
\]

(2)

where \(\sigma^2 \) is the variance of the \(c_i \)'s about \(\bar{c} \). Jacquez, Simon, Koopman et al. (1988) have stressed the importance of another mean contact rate, the mean infective weighted contact rate, \(\bar{c}_Y \):

\[
\bar{c}_Y = \frac{\sum_i c_i Y_i}{\sum_i Y_i} = \frac{\sum_i c_i Y_i}{Y}.
\]

(3)

Note that both of these means change with time as the epidemic progresses and as subgroups change in size; we use \(c^o \) and \(\bar{c}_Y^o \) to indicate their initial values.

It is the purpose of this note to provide simple derivations for each that make clear the differences between the two.

We assume a population heterogeneous in contact rates with proportional mixing between discrete subgroups and with only one stage to the infectious period. Assume \(\beta \) is the probability of transmission per contact between an infective and a susceptible, \(\mu \) is the rate constant for removal of individuals by all competing causes and \(k \) is the fractional rate (rate constant) at which infectives become sick enough with AIDS to be removed from the transmission process. Let \(U_i \) be the constant rate of recruitment of susceptibles into subgroup \(i \). Then, the equations for the process become:

\[
\dot{X}_i = -c_i \beta \frac{\sum_j c_j Y_j}{\sum_j c_j N_j} X_i - \mu X_i + U_i
\]

(4a)

\[
\dot{Y}_i = c_i \beta \frac{\sum_j c_j Y_j}{\sum_j c_j N_j} X_i - (\mu + k) Y_i.
\]

(4b)

Equations (4) are the same as equations (5.1) of Anderson, Medley, May et al. (1986), except for the addition of a non-zero competing mortality rate constant, \(\mu \), and a constant recruitment rate, and are the same as equations (1) and (2) of Jacquez, Simon, Koopman et al. (1988) for proportional mixing and with one instead of \(m \) infective stages.

2. The Initial Growth of the Number of Infectives

We are concerned with the early phases of the epidemic after the introduction of a few infectives into a large population, so that one can make the assumption \(X_i \approx N_i \).
Substitute N_i for X_i on the right side of equation (4b) and sum over i to obtain equation (5).

$$\dot{Y} = \beta \sum_j c_j Y_j - (\mu + k)Y$$ \hspace{1cm} (5)

Using equation (3), substitute \bar{c}_Y for $\sum_j c_j Y_j$ at the start of the process.

$$\dot{Y} = [\beta \bar{c}_Y - (\mu + k)]Y$$ \hspace{1cm} (6)

Thus, at the start of the process, the total number of infectives grows exponentially with growth rate,

$$\frac{\dot{Y}}{Y} = \beta \bar{c}_Y - (\mu + k).$$ \hspace{1cm} (7)

The initial growth rate of infectives depends on the initial distribution of infectives, which makes sense intuitively.

3. The Initial Growth of the Number of Contacts of Infectives

Let $V = \sum_i c_i Y_i$ be the total number of contacts of the infectives. Multiply equation (4b) by c_i and sum over i to obtain equation (8).

$$\dot{V} = \left(\beta \sum_j \frac{c_j^2 X_j}{\sum_j c_j N_j} - (\mu + k) \right) V$$ \hspace{1cm} (8)

At the start of the process, (8) can be rewritten as,

$$\dot{V} = [\beta \bar{c}^o - (\mu + k)]V.$$ \hspace{1cm} (9)

Initially, the total number of contacts of infectives grows exponentially with growth rate,

$$\frac{\dot{V}}{V} = \beta \bar{c}^o - (\mu + k).$$ \hspace{1cm} (10)

Comparing (7) and (10), we have a simple result. The initial growth rates for number of infectives and for number of contacts of infectives are given by the same expression; they differ in the mean contact rate that appears in the expression.

a. The infective weighted mean contact rate, \bar{c}_Y, is appropriate for the growth of the number of infectives at the start of the process.

b. The ratio of the population-weighted second moment of the contact rate to the first moment is appropriate for the growth of the number of contacts of the infectives, at the start of the process.

At the onset of the epidemic, when $X_i \approx N_i$ and $\dot{X}_i \approx 0$ for all i, the above $V = \sum c_i Y_i$ is just a constant multiple of the $\lambda(t) = \beta \sum i Y_i(t)/\sum i N_i(t)$, which Anderson et al. (1986) work with in their Section 5.1. Anderson et al. (1986) use a different method to derive their version of relationship (10). However, they do misstate their result by writing that
the “number of infected” (instead of the number of infective contacts) has growth rate
\(\beta c^o - (\mu + k) \).

Anderson et al. (1986) emphasize the importance of the initial growth rate in an
epidemiological model. First, \(\ln 2 \) divided by the initial growth rate is the doubling time,
a number that can often be estimated directly from data. Furthermore, the sign of the
initial growth rate tells whether the epidemic is increasing or decreasing. This is especially
important for the growth rate of infective contacts, \(\beta c^o - (\mu + k) \), because, as we will
see, the sign of \(\beta c^o - (\mu + k) \) determines the stability of the no–disease equilibrium. The
condition \(\beta c^o - (\mu + k) < 0 \) can be restated as \(R \equiv \beta c^o/(\mu + k) < 1 \). The expression
\(R \) is the important epidemiological threshold called the \textbf{reproductive number}. Since it
equals the average number of contacts times the average infectivity per contact times the
average incubation period \(D = 1/(\mu + k) \), it measures the number of secondary infections
produced, on the average, by one primary infection in a population of susceptibles.

4. An Apparent Paradox and its Resolution

On further examination the simple result of the previous Section seems to lead to an
ambiguity. We can choose a distribution of contact rates and initial sizes of population
subgroups so that the number of contacts of infectives has a positive growth rate (equation
(9)), but introduce the infectives only into low contact rate groups so that the number of
infectives has an initial negative growth rate (equation (6))! In this case, the number of
infectives will be decreasing while the number of their contacts will be increasing. What
will happen to the disease?

To resolve this apparent ambiguity and to better understand the relationship between
these two means \(c \) and \(c_Y \), we examine more closely the behavior of system (4) in a
neighborhood of the no–disease equilibrium: \(X^o_i = U_i/\mu, Y^o_i = 0 \), for \(i = 1, \ldots, n \). To
accomplish this task, we will compute and study the solution of the linearized system at the
no–disease equilibrium, since such a solution is \textit{the} first order approximation to the
solution of the non–linear system (4) in a neighborhood of the no–disease equilibrium.

First, note that if we start at the disease–free equilibrium, \(N^o_i = X^o_i = U_i/\mu \), then
\(c^o = \sum_i c_i^2 U_i / \sum_i c_i U_i \). The Jacobian of system (4) with respect to \(X_1, \ldots, X_n, Y_1, \ldots, Y_n \)
at the no–disease equilibrium is:

\[
D = \begin{pmatrix}
-\mu I & -B \\
0 & B - (\mu + k)I
\end{pmatrix},
\]

where \(B \) is the rank-one matrix

\[
B = \frac{\beta}{\sum_j c_j U_j} \begin{pmatrix} U_1 c_1^2 & \cdots & U_1 c_1 c_n \\
\vdots & \ddots & \vdots \\
U_n c_n c_1 & \cdots & U_n c_n^2 \end{pmatrix}.
\]

The \(2n \) simple eigenvalues of \(D \) are:
1) \(-\mu\) with multiplicity \(n \) and
2) the \(n \) eigenvalues of \(B - (\mu + k)I \), namely:
2a) $\beta \left(\sum_i c_i^2 U_i / \sum c_i U_i \right) - (\mu + k) = \beta c^o - (\mu + k)$ with multiplicity one and
2b) $-(\mu + k)$ with multiplicity $n - 1$.

The linearization of system (4) at the no-disease equilibrium is

$$
\left(\begin{array}{c}
\Delta X \\
\Delta Y
\end{array} \right)' = D \left(\begin{array}{c}
\Delta X \\
\Delta Y
\end{array} \right),
$$

To simplify notation, write $x_i(t)$ for $\Delta X_i(t)$ and $y_i(t)$ for $\Delta Y_i(t)$. The solution of the linear initial value problem:

$$
\left(\begin{array}{c}
x(t) \\
y(t)
\end{array} \right) = e^{Dt} \left(\begin{array}{c}
x^o \\
y^o
\end{array} \right) = \left(\begin{array}{c}
e^{-\mu t} x^o + F(t) y^o \\
e^{\left(B - (\mu + k)1\right)t} y^o
\end{array} \right),
$$

for some matrix $F(t)$. We focus on the last n equations:

$$
\begin{bmatrix}
y_1(t) \\
\vdots \\
y_n(t)
\end{bmatrix} = e^{\left(B - (\mu + k)1\right)t} \begin{bmatrix}
y_1^o \\
\vdots \\
y_n^o
\end{bmatrix}
$$

$$
= P \begin{bmatrix}
e^{(\beta c^o - (\mu + k))t} & 0 & \cdots & 0 \\
0 & e^{-(\mu + k)t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{-(\mu + k)t}
\end{bmatrix} P^{-1} \begin{bmatrix}
y_1^o \\
\vdots \\
y_n^o
\end{bmatrix}
$$

$$
= e^{-(\mu + k)t} \begin{bmatrix}
y_1^o \\
\vdots \\
y_n^o
\end{bmatrix} + P \begin{bmatrix}
e^{(\beta c^o - (\mu + k))t} - e^{-(\mu + k)t} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix} P^{-1} \begin{bmatrix}
y_1^o \\
\vdots \\
y_n^o
\end{bmatrix},
$$

where P is the matrix of the eigenvectors of $B - (\mu + k)I$:

$$
P = \begin{bmatrix}
c_1 U_1 & c_2 & \cdots & c_n \\
c_2 U_2 & -c_1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
c_n U_n & 0 & \cdots & -c_1
\end{bmatrix},
$$

and P^{-1} is its inverse:

$$
P^{-1} = \frac{1}{c_1 \sum_i c_i^2 U_i} \begin{bmatrix}
c_1 c_1 & -c_2 c_1 & \cdots & c_n c_1 \\
c_1 c_2 U_2 & c_2^2 U_2 & \cdots & c_n c_2 U_2 \\
\vdots & \vdots & \ddots & \vdots \\
c_1 c_n U_n & c_2 c_n U_n & \cdots & c_n^2 U_n
\end{bmatrix}.
$$
One computes from (11), (12) and (13) that

$$\sum_i y_i(t) = \sum_i y_i^0 \left[e^{-(\mu+k)t} + \frac{\bar{c}_Y}{\bar{c}_0} \left(e^{(\beta c^o-(\mu+k))t} - e^{-(\mu+k)t} \right) \right].$$

(14)

By (14), the instantaneous growth rate of $\sum y_i(t)$ at $t = 0$ is

$$\frac{\sum_i y_i'(0)}{\sum_i y_i^0} = \beta \bar{c}_Y - (\mu + k),$$

as we found in (7). Thus, immediately after the introduction of infected individuals into a disease–free system, the total number of infectives grows like $e^{(\beta \bar{c}_Y-(\mu+k))t}$. This initial growth rate may be positive or negative, but soon the growth of $\sum y_i(t)$ will be dominated by the term in $e^{(\beta c^o-(\mu+k))t}$ in (14).

If one looks at the initial growth rate of the number of contacts of the infected individuals, one finds from (11) that

$$\sum_i c_i y_i(t) = \left(\sum_i c_i y_i^0 \right) e^{(\beta c^o-(\mu+k))t},$$

confirming (10).

To summarize the results of these computations, if a few infectives are introduced into a disease–free population which satisfies proportional mixing, the total number of infected individuals has initial growth rate $\beta \bar{c}_Y - (\mu + k)$, while the total number of their contacts has initial growth rate $\beta c^o - (\mu + k)$. As time passes, the growth rate of the number of infectives tends to $\beta c^o - (\mu + k)$, at least for the linear approximation of the solution of (4).

We note that Jacquez, Simon, Koopman et al. (1988) show that the sign of the threshold $\beta c^o - (\mu + k)$ determines whether or not an endemic equilibrium exists. The calculation of the eigenvalues of the Jacobian D shows that the sign of $\beta c^o - (\mu + k)$ also determines the local stability of the disease–free equilibrium. See Lin (1989) for generalizations of this local stability result to more complex HIV systems.

Some final comments are in order on the applicability of these results. First, they depend on the assumption of proportional mixing. Furthermore, the basic processes at work are really stochastic, and deterministic models of epidemic processes can be good approximations to reality only when there are large numbers in all groups. At the start of an epidemic when there are few infectives, the basic stochastic nature should predominate; and even if equation (10) is greater than zero, there must be a non–zero probability of extinction of the epidemic.

Acknowledgement

We thank Herb Hethcote and Robert May for their helpful suggestions on prior drafts of this note. This work was supported in part by a Presidential Initiatives Grant from the University of Michigan and by grant RR 02176-01A1 from NIH-DRR, DHEW.
References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td>Mark J. Friedman and Eusebius J. Doedel</td>
<td>Numerical computation and continuation of invariant manifolds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connecting fixed points</td>
</tr>
<tr>
<td>596</td>
<td>Scott J. Spector</td>
<td>Linear Deformations as Global Minimizers in Nonlinear Elasticity</td>
</tr>
<tr>
<td>597</td>
<td>Denis Serre</td>
<td>Richness and the classification of quasilinear hyperbolic systems</td>
</tr>
<tr>
<td>598</td>
<td>L. Preziosi and F. Rosso</td>
<td>On the stability of the shearing flow between pipes</td>
</tr>
<tr>
<td>599</td>
<td>Avner Friedman and Wenxiong Liu</td>
<td>A system of partial differential equations arising in electrophotography</td>
</tr>
<tr>
<td>600</td>
<td>Jonathan Bell, Avner Friedman, and Andrew A. Lacey</td>
<td>On solutions to a quasilinear diffusion problem from the study of soft tissue</td>
</tr>
<tr>
<td>601</td>
<td>David G. Schaeffer and Michael Shearer</td>
<td>Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading</td>
</tr>
<tr>
<td>602</td>
<td>Herbert C. Kranzer and Barbara Lee Keyfitz</td>
<td>A strictly hyperbolic system of conservation laws admitting singular shocks</td>
</tr>
<tr>
<td>603</td>
<td>S. Laederich and M. Levi</td>
<td>Qualitative dynamics of planar chains</td>
</tr>
<tr>
<td>604</td>
<td>Milan Miklavčič</td>
<td>A sharp condition for existence of an inertial manifold</td>
</tr>
<tr>
<td>605</td>
<td>Charles Collins, David Kinderlehrer, and Mitchell Luskin</td>
<td>Numerical approximation of the solution of a variational problem with a double well potential</td>
</tr>
<tr>
<td>606</td>
<td>Todd Arbogast</td>
<td>Two-phase incompressible flow in a porous medium with various nonhomogeneous boundary conditions</td>
</tr>
<tr>
<td>607</td>
<td>Peter Poláčik</td>
<td>Complicated dynamics in scalar semilinear parabolic equations in higher space dimension</td>
</tr>
<tr>
<td>608</td>
<td>Bei Hu</td>
<td>Diffusion of penetrant in a polymer: a free boundary problem</td>
</tr>
<tr>
<td>609</td>
<td>Mohamed Sami Elbialy</td>
<td>On the smoothness of the linearization of vector fields near resonant hyperbolic rest points</td>
</tr>
<tr>
<td>610</td>
<td>Max Jodeit, Jr. and Peter J. Olver</td>
<td>On the equation (\nabla f = M \nabla g)</td>
</tr>
<tr>
<td>611</td>
<td>Shui-Nee Chow, Kening Lu, and Yun-Qiu Shen</td>
<td>Normal form and linearization for quasiperiodic systems</td>
</tr>
<tr>
<td>612</td>
<td>Prabir Daripa</td>
<td>Theory of one dimensional adaptive grid generation</td>
</tr>
<tr>
<td>613</td>
<td>Michael C. Mackey and John G. Milton</td>
<td>Feedback, delays and the origin of blood cell dynamics</td>
</tr>
<tr>
<td>614</td>
<td>D.G. Aronson and S. Kamin</td>
<td>Disappearance of phase in the Stefan problem: one space dimension</td>
</tr>
<tr>
<td>615</td>
<td>Martin Krupa</td>
<td>Bifurcations of relative equilibria</td>
</tr>
<tr>
<td>616</td>
<td>D.D. Joseph, P. Singh, and K. Chen</td>
<td>Couette flows, rollers, emulsions, tall Taylor cells, phase separation and inversion, and a chaotic bubble in Taylor-Couette flow of two immiscible liquids</td>
</tr>
<tr>
<td>617</td>
<td>Artemio González-López, Niky Kamran, and Peter J. Olver</td>
<td>Lie algebras of differential operators in two complex variables</td>
</tr>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schecter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Iso spectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuitspace and other properties of an</td>
</tr>
</tbody>
</table>
incidence matrix for binary trees

Stanley Minkowitz and Matthew Witten, Periodicity in cell proliferation using an asynchronous cell population

M. Chipot and G. Dal Maso, Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem

Jeffery M. Franke and Harlan W. Stech, Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations

Xinfu Chen, Generation and propagation of the interface for reaction–diffusion equations

Philip Korman, Dynamics of the Lotka–Volterra systems with diffusion

Harlan W. Stech, Generic Hopf bifurcation in a class of integro-differential equations

Stephane Laederich, Periodic solutions of nonlinear differential difference equations

Peter J. Olver, Canonical Forms and Integrability of BiHamiltonian Systems

S.A. van Gils, M.P. Krupa and W.F. Langford, Hopf bifurcation with nonsemisimple 1:1 Resonance

R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials

Carlos Rocha, Properties of the attractor of a scalar parabolic P.D.E.

Debra Lewis, Lagrangian block diagonalization

Richard C. Churchill and David L. Rod, On the determination of Ziglin monodromy groups

Xinfu Chen and Avner Friedman, A nonlocal diffusion equation arising in terminally attached polymer chains

Peter Gritzmann and Victor Klee, Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces

P. Szmolyan, Analysis of a singularly perturbed traveling wave problem

Stanley Reiter and Carl P. Simon, Decentralized dynamic processes for finding equilibrium

Fernando Reitich, Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions

Russell A. Johnson, Cantor spectrum for the quasi-periodic Schrödinger equation

Wenxiong Liu, Singular solutions for a convection diffusion equation with absorption

Deborah Brandon and William J. Hrusa, Global existence of smooth shearing motions of a nonlinear viscoelastic fluid

James F. Reineck, The connection matrix in Morse–Smale flows II

Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay, Simple resonance regions of torus diffeomorphisms

Willard Miller, Jr., Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar

Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure

Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms

D.V. Anosov, Hilbert’s 21st problem (according to Bolibruch)

Stephane Laederich, Ray–Singer torsion for complex manifolds and the adiabatic limit

Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I

Emanuel Parzen, Time series, statistics, and information

Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release

Ju. S. Il’yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation

James F. Reineck, Continuation to gradient flows

Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N–body problem

John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change

Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations

Matthew Stafford, Markov partitions for expanding maps of the circle

Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds

M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations

M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations

Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations

Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice

Christophe Golé, Ghost circles for twist maps

Christophe Golé, Ghost tori for monotone maps

Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits