APPLICATIONS OF THE CROSSING NUMBER

By

János Pach
Farhad Shahrokhi
and
Mario Szegedy

IMA Preprint Series # 1200
January 1994
Applications of the Crossing Number

János Pach*
Dept. of Computer Science, City College-CUNY
and Courant Institute, NYU

Farhad Shahrokhi
Dept. of Computer Science, University of North Texas

Mario Szegedy
AT&T Bell Laboratories

Abstract

We show that any graph of n vertices that can be drawn in the plane with no $k + 1$ pairwise crossing edges has at most $c_k n \log^{2k-2} n$ edges. This gives a partial answer to a dual version of a well-known problem of Avital–Hanani, Erdős, Kupitz, Perles, and others. We also construct two point sets $\{p_1, \ldots, p_n\}, \{q_1, \ldots, q_n\}$ in the plane such that any piecewise linear one-to-one mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(p_i) = q_i \ (1 \leq i \leq n)$ is composed of at least $\Omega(n^2)$ linear pieces. It follows from a recent result of Souvaine and Wenger that this bound is asymptotically tight. Both proofs are based on a relation between the crossing number and the bisection width of a graph.

1 Introduction

A geometric graph is a graph drawn in the plane by (possibly crossing) straight-line segments i.e., it is defined as a pair of $(V(G), E(G))$, where

*Supported by NSF grant CCR-91-22103, PSC-CUNY Research Award 663472 and OTKA-4269.
$V(G)$ is a set of points in the plane in general position and $E(G)$ is a set of closed segments whose endpoints belong to $V(G)$.

The following question was raised by Avital and Hanani [AH], Erdős, Kupitz [K] and Perles: What is the maximum number of edges that a geometric graph of n vertices can have without containing $k + 1$ pairwise disjoint edges? It was proved in [PT] that for any fixed k the answer is linear in n. (The cases when $k \leq 3$ had been settled earlier by Hopf and Pannwitz [HF], Erdős [E], Alon and Erdős [AE], O’Donnel and Perles [OP], and Goddard, Katchalski and Kleitman [GKK].)

In this paper we shall discuss the dual counterpart of the above problem. We say that two edges of G cross each other if they have an interior point in common. Let $e_k(n)$ denote the maximum number of edges that a geometric graph of n vertices can have without containing $k + 1$ pairwise crossing edges. If G has no crossing edges, then it is a planar graph. Thus, it follows from Euler’s polyhedral formula that

$$e_1(n) = 3n - 6 \quad \text{for all } n \geq 3.$$

It was shown in [P] that $e_2(n) < 13n^{3/2}$ and that, for any fixed k,

$$e_k(n) = O(n^{2 - 1/25(k+1)^2}).$$

However, we suspect that $e_k(n) = O(n)$ holds for very fixed k as n tends to infinity. Our next theorem brings us fairly close to this bound.

Theorem 1.1 Let G be a geometric graph of n vertices, containing no $k + 1$ pairwise crossing edges. Then the number of edges of G satisfies

$$|E(G)| \leq c_k n \log^{2k-2} n,$$

with a suitable constant c_k depending only on k.

The proof is based on a general result relating the crossing number of a graph to its bisection width (see Theorem 2.1). A nice feature of our approach is that we do not use the assumption that the edges of G are line segments. Theorem 1.1 remains valid for graphs whose edges are represented by arbitrary Jordan arcs with the property that no arc passes through any vertex other than its endpoints.
The same ideas can be used to settle the following problem. Let \(T_1 \) and \(T_2 \) be triangles in the plane, and let \(\{p_1, \ldots, p_n\} \) and \(\{q_1, \ldots, q_n\} \) be two \(n \)-element point sets lying in the interior of \(T_1 \) and \(T_2 \), respectively. A homeomorphism \(f \) from \(T_1 \) onto \(T_2 \) is a continuous one-to-one mapping with continuous inverse. \(f \) is called piecewise linear if there exists a triangulation of \(T_1 \) such that \(f \) is linear on each of its triangles. The size of \(f \) is defined as the minimum number of triangles in such a triangulation. Recently, Souvaine and Wenger [SW] have shown that one can always find a piecewise linear homeomorphism \(f : T_1 \to T_2 \) with \(f(p_i) = q_i \) (\(1 \leq i \leq n \)) such that the size of \(f \) is \(O(n^2) \). Our next result shows that this bound cannot be improved.

Theorem 1.2 There exist a triangle \(T \) and two point sets \(\{p_1, \ldots, p_n\}, \{q_1, \ldots, q_n\} \subseteq \text{int} \ T \) such that the size of any piecewise linear homeomorphism \(f : T \to T \) which maps \(p_i \) to \(q_i \) (\(1 \leq i \leq n \)) is at least \(cn^2 \) (for a suitable constant \(c > 0 \)).

For some closely related problems consult [S] and [ASS].

2 Crossing number and bisection width

Let \(G \) be a graph of \(n \) vertices with no loops and no multiple edges. For any partition of the vertex set \(V(G) \) into two disjoint parts \(V_1 \) and \(V_2 \), let \(E(V_1, V_2) \) denote the set of edges with one endpoint in \(V_1 \) and the other endpoint in \(V_2 \). Define the bisection width of \(G \) as

\[
b(G) = \min_{|V_1|, |V_2| \geq n/3} |E(V_1, V_2)|,
\]

where the minimum is taken over all partitions \(V(G) = V_1 \cup V_2 \) with \(|V_1|, |V_2| \geq n/3 \).

Consider now a drawing of \(G \) in the plane such that the vertices of \(G \) are represented by distinct points and the edges are represented by Jordan arcs connecting them with the property that no arc passes through a vertex different from its endpoints. The crossing number \(c(G) \) of \(G \) is defined as the minimum number of crossing pairs of arcs in such a drawing of \(G \), where two arcs are said to be crossing if they have an interior point in common.
It is easy to show that the minimum number of crossings can always be realized by a drawing satisfying the following conditions:

(1) no two arcs meet in more than one point (including their endpoints);
(2) no three arcs share a common interior point.

We need the following result which is an easy consequence of a weighted version of the Lipton-Tarjan separator theorem for planar graphs [LT].

Theorem 2.1 Let G be a graph with n vertices of degree d_1, \ldots, d_n. Then

$$b^2(G) \leq (1.58)^2 \left(16c(G) + \sum_{i=1}^{n} d_i^2 \right),$$

where $b(G)$ and $c(G)$ denote the bisection width and the crossing number of G, respectively.

Proof: Let H be a plane graph on the vertex set $V(H) = \{v_1, \ldots, v_N\}$ such that each vertex has a non-negative weight $w(v_i)$ and $\sum_{i=1}^{N} w(v_i) = 1$. Let $d(v_i)$ denote the degree of v_i in H. It was shown by Gazit and Miller [GM] that, by the removal of at most

$$1.58 \left(\sum_{i=1}^{N} d^2(v_i) \right)^{1/2}$$

edges, H can be separated into two disjoint subgraphs H_1 and H_2 such that

$$\sum_{v_i \in V(H_1)} w(v_i) \geq \frac{1}{3} \sum_{v_i \in V(H_2)} w(v_i) \geq \frac{1}{3}.$$

(See also [M] and [DDS].)

Consider now a drawing of G with $c(G)$ crossing pairs of arcs satisfying conditions (1) and (2). Introducing a new vertex at each crossing, we obtain a plane graph H with $N = n + c(G)$ vertices. Assign weight 0 to each new vertex and weights of $1/n$ to all other vertices. The above result implies that, by the deletion of at most

$$1.58 \left(16c(G) + \sum_{i=1}^{n} d_i^2 \right)^{1/2}$$
edges, \(H \) can be separated into two parts \(H_1 \) and \(H_2 \) such that both of the sets \(V_1 = V(H_1) \cap V(G) \) and \(V(H_2) \cap V(G) \) have at least \(n/3 \) elements. Hence,
\[
b(G) \leq |E(V_1, V_2)| \leq 1.58 \left(16c(G) + \sum_{i=1}^{n} d_i^2 \right)^{1/2},
\]
and the result follows. \(\Box \)

In the special case when every vertex of \(G \) is of degree at most 4, Theorem 2.1 was established by Leighton [L] and it proved to be an important tool in VLSI design (see [U]).

3 Geometric graphs

The aim of this section is to prove the following generalization of Theorem 1.1 for curvilinear graphs.

Theorem 3.1 Let \(G \) be a graph with \(n \geq 2 \) vertices, and let \(k \geq 1 \). If \(G \) has a drawing with Jordan arcs such that no arc passes through any vertex other than its endpoints and there are no \(k + 1 \) pairwise crossing arcs, then
\[
|E(G)| \leq 3n(10 \log_2 n)^{2k-2}.
\]

Proof: By double induction on \(k \) and \(n \). The assertion is true for \(k = 1 \) and for all \(n \). It is also true for any \(k > 1 \) and \(n \leq 6 \cdot 10^{2k-2} \), because for these values the above upper bound exceeds \(\binom{n}{2} \).

Assume now that we have already proved the theorem for some \(k \) and all \(n \), and we want to prove it for \(k + 1 \). Let \(n \geq 6 \cdot 10^{2k} \), and suppose that the theorem holds for \(k + 1 \) and for all graphs having fewer than \(n \) vertices.

Let \(G \) be a graph of \(n \) vertices, which has a drawing with no \(k + 2 \) pairwise crossing edges. Let us fix such a drawing with \(c(G) \) crossings and, for the sake of simplicity, denote it also by \(G = (V(G), E(G)) \). For any arc \(e \in E(G) \), let \(G_e \) denote the graph consisting of all arcs that cross \(e \). Clearly, \(G_e \) has no \(k + 1 \) pairwise crossing arcs. Thus, by the induction hypothesis,
\[
c(G) = \frac{1}{2} \sum_{e \in E(G)} |E(G_e)|
\]
\[\leq \frac{1}{2} \sum_{e \in E(G)} 3n(10 \log_2 n)^{2k-2} \]

\[\leq \frac{3}{2} |E(G)| n(10 \log_2 n)^{2k-2}. \]

Since \(\sum_{i=1}^{n} d_i^2 \leq 2|E(G)|n \) holds for every graph \(G \) with degrees \(d_1, \ldots, d_n \), Theorem 2.1 implies that

\[b(G) \leq 1.58 \left(16c(G) + \sum_{i=1}^{n} d_i^2 \right)^{1/2} \]

\[\leq 9 \sqrt{n|E(G)| (10 \log_2 n)^{k-1}}. \]

Consider a partition of \(V(G) \) into two parts \(V_1 \) and \(V_2 \), each containing at least \(n/3 \) vertices, such that the number of edges connecting them is \(b(G) \). Let \(G_1 \) and \(G_2 \) denote the subgraphs of \(G \) induced by \(V_1 \) and \(V_2 \), respectively. Since neither of \(G_1 \) or \(G_2 \) contains \(k+2 \) pairwise crossing edges and each of them has fewer than \(n \) vertices, we can apply the induction hypothesis to obtain

\[|E(G)| = |E(G_1)| + |E(G_2)| + b(G) \]

\[\leq 3n_1(10 \log_2 n_1)^{2k} + 3n_2(10 \log_2 n_2)^{2k} + b(G), \]

where \(n_i = |V_i| \) \((i = 1, 2)\). Combining the last two inequalities we get

\[|E(G)| - 9 \sqrt{n(10 \log_2 n)^{k-1}|E(G)|} \]

\[\leq 3 \frac{n}{3}(10 \log_2 \frac{n}{3})^{2k} + 3 \frac{2n}{3}(10 \log_2 \frac{2n}{3})^{2k} \]

\[\leq 3n(10 \log_2 n)^{2k}(1 - \frac{k}{\log_2 n}). \]

If the left hand side of this inequality is negative, then \(|E(G)| \leq 3n(10 \log_2 n)^{2k} \) and we are done. Otherwise,

\[f(x) = x - 9 \sqrt{n(10 \log_2 n)^{k-1}x} \]

is a monotone increasing function of \(x \) when \(x \geq |E(G)| \). An easy calculation shows that

\[f(3n(10 \log_2 n)^{2k}) > 3n(10 \log_2 n)^{2k}(1 - \frac{k}{\log_2 n}). \]
Hence,
\[f(|E(G)|) < f(3n(10 \log_2 n)^{2k}), \]
which in turn implies that
\[|E(G)| < 3n(10 \log_2 n)^{2k}, \]
as required. □

4 Avoiding snakes

In [ASS], Aronov, Seidel and Souvaine constructed two polygonal regions P and Q with vertices $\{p_1, \ldots, p_n\}$ and $\{q_1, \ldots, q_n\}$ in clockwise order such that the size of any piecewise linear homeomorphism $f : P \to Q$ with $f(p_i) = q_i$ ($1 \leq i \leq n$) is at least cn^2 (for an absolute constant $c > 0$). Their ingenious construction heavily relies on some special geometric features of “snakelike” polygons.

Our theorem 1.2 (stated in the introduction) provides the same lower bound for a modified version of this problem due to J.E. Goodman and R. Pollack. The proof given below is purely combinatorial, and avoids the use of “snakes.”

Proof of Theorem 1.2: Let T_1 and T_2 be two triangles containing two convex n-gons P and Q in their interiors, respectively. Let $p_{\pi(1)}, \ldots, p_{\pi(n)}$ denote the vertices of P in clockwise order, where π is a permutation of $\{1, \ldots, n\}$ to be specified later. Furthermore, let q_1, \ldots, q_n denote the vertices of Q in clockwise order. Let $f : T_1 \to T_2$ be a piecewise linear homeomorphism with $f(p_i) = q_i$ ($1 \leq i \leq n$), and fix a triangulation T_1 of T_1 with $|T_1| = \text{size}(f)$ triangles such that f is linear on each of them. By subdividing some members of T_1 if necessary, we obtain a new triangulation T_1' of T_1 such that each p_i is a vertex of T_1' and $|T_1'| \leq |T_1| + 3n$.

Obviously, f will map T_1' into an isomorphic triangulation T_2' of T_2. The image of each segment $p_{\pi(i)}p_{\pi(i+1)}$ is a polygonal path connecting $q_{\pi(i)}$ and $q_{\pi(i+1)}$, ($1 \leq i \leq n$). The collection of these paths together with the segments q_iq_{i+1} is a drawing of the graph $G = G_\pi$ defined by:

\[V(G) = \{q_1, \ldots, q_n\}, \]
\[E(G) = \{q_iq_{i+1} \mid 1 \leq i \leq n\} \cup \{q_{\pi(i)}q_{\pi(i+1)} \mid 1 \leq i \leq n\}. \]

7
Suppose that this drawing has \(c \) crossing pairs of arcs. Notice that each crossing must occur between a path \(q_{\pi(i)}q_{\pi(i+1)} \) and a segment \(q_jq_{j+1} \). By the convexity of \(Q \), any line can intersect at most two segments \(q_jq_{j+1} \). Hence the total number of subsegments of the concatenation of the polygons \(f(p_{\pi(i)}p_{\pi(i+1)}) \), \(1 \leq i \leq n \), is at least \(c/2 \). On the other hand, by the convexity of \(P \), each triangle belonging to \(T_1' \) intersects at most two sides of the form \(P_{\pi(i)}p_{\pi(i+1)} \). Thus, \(|T_1'| \geq c/4 \), which yields that

\[
\text{size}(f) = |T_1| \geq |T_1'| - 3n \geq \frac{c(G)}{4} - 3n,
\]

where \(c(G) \) stands for the crossing number of \(G \). Applying Theorem 2.1, we obtain that

\[
c(G) > \frac{b^2(G)}{40} - 1.
\]

Therefore,

\[
\text{size}(f) \geq \frac{b^2(G)}{160} - 3n - \frac{1}{4}.
\]

To complete the proof of Theorem 1.2, it is sufficient to show that for a suitable permutation \(\pi \) the bisection width of the graph \(G = G_\pi \), defined by (*), is at least constant times \(n \). We use a counting argument (cf. [AS]). The family of graphs \(G_\pi \) has size \(n! \). We bound from above the number of those members of this family whose bisection width is at most \(k \). We will see that for \(k \leq n/20 \) this number is less than \(n! \).

Let \(b(G_\pi) \leq k \). Let \((V_1, V_2)\) be a partition of \(V(G_\pi) \) with \(|V_1|, |V_2| \geq n/3 \) and \(E(V_1, V_2) \leq k \). Define

\[
E_1(V_1, V_2) = \{ q_iq_{i+1} \mid 1 \leq i < n \} \cap E(V_1, V_2),
\]

\[
E_2(V_1, V_2) = \{ q_{\pi(i)}q_{\pi(i+1)} \mid 1 \leq i < n \} \cap E(V_1, V_2).
\]

Since \(|E_1(V_1, V_2)| \leq k \), the partition \((V_1, V_2)\) should be of a special form. If we delete all elements of \(E_1(V_1, V_2) \) from the path \(q_1 \ldots q_n \), it splits into at most \(k+1 \) paths (or points) lying alternately in \(V_1 \) and in \(V_2 \). This yields a \(2(k+1)(\frac{n}{k}) \) upper bound on the number of partitions in question.

The order in which the elements of \(V_i \) (\(i = 1, 2 \)) occur in the sequence \(q_{\pi(1)} \ldots q_{\pi(n)} \) can be represented by a function \(\sigma_i : \{1, \ldots, |V_i|\} \rightarrow V_i \quad (i = 1, 2) \).
1, 2). For a fixed partition \((V_1, V_2)\), there are at most \(|V_1|!\) choices for \(\sigma_1\) and \(|V_2|!\) choices for \(\sigma_2\). If \(\sigma_1\) and \(\sigma_2\) are also fixed, then the number of possible permutations is bounded again by \(2(k + 1) \binom{n}{k}\). Thus the total number of permutations \(\pi\) for which \(b(G_\pi) \leq k\) cannot exceed

\[
\sum_{(V_1, V_2)} |V_1|!|V_2|!2(k + 1) \binom{n}{k} \leq \sum_{(V_1, V_2)} n! \left(\frac{n}{n/3} \right)^{-1} 2(k + 1) \binom{n}{k} \\
\leq 4(k + 1)^2 \binom{n}{k}^2 \left(\frac{n}{n/3} \right)^{-1} n!,
\]

which is less than \(n!\) provided that \(k \leq n/20\) and \(n\) is sufficiently large. \(\Box\)

References

[GKK] W. Goddard, M. Katchalski and D.J. Kleitman, Forcing disjoint segments in the plane, *manuscript*.

[OP] P. O'Donnel and M. Perles, Every geometric graph with n vertices and $3.6n-3.4$ edges contains three pairwise disjoint edges, *manuscript, Rutgers University, New Brunswick, 1991*.

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1121</td>
<td>Nahum Shimkin & Adam Shwartz</td>
<td>Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality</td>
</tr>
<tr>
<td>1122</td>
<td>M.E. Bradley</td>
<td>Well-posedness and regularity results for a dynamic Von Kármán plate</td>
</tr>
<tr>
<td>1123</td>
<td>Zhangxin Chen</td>
<td>Finite element analysis of the 1D full drift diffusion semiconductor model</td>
</tr>
<tr>
<td>1124</td>
<td>Gang Bao & David C. Dobson</td>
<td>Diffractive optics in nonlinear media with periodic structure</td>
</tr>
<tr>
<td>1125</td>
<td>Steven Cox & Enrique Zuazua</td>
<td>The rate at which energy decays in a damped string</td>
</tr>
<tr>
<td>1126</td>
<td>Anthony W. Leung</td>
<td>Optimal control for nonlinear systems of partial differential equations related to ecology</td>
</tr>
<tr>
<td>1127</td>
<td>H.J. Sussmann</td>
<td>A continuation method for nonholonomic path-finding problems</td>
</tr>
<tr>
<td>1128</td>
<td>Yung-Jen Guo & Walter Littman</td>
<td>The null boundary controllability for semilinear heat equations</td>
</tr>
<tr>
<td>1129</td>
<td>Q. Zhang & G. Yin</td>
<td>Turnpike sets in stochastic manufacturing systems with finite time horizon</td>
</tr>
<tr>
<td>1130</td>
<td>I. Győri, F. Hartung & J. Turi</td>
<td>Approximation of functional differential equations with time- and state-dependent delays by equations with piecewise constant arguments</td>
</tr>
<tr>
<td>1131</td>
<td>I. Győri, F. Hartung & J. Turi</td>
<td>Stability in delay equations with perturbed time lags</td>
</tr>
<tr>
<td>1132</td>
<td>F. Hartung & J. Turi</td>
<td>On the asymptotic behavior of the solutions of a state-dependent delay equation</td>
</tr>
<tr>
<td>1133</td>
<td>Pierre-Alain Gremaud</td>
<td>Numerical optimization and quasiconvexity</td>
</tr>
<tr>
<td>1134</td>
<td>Jie Tai Yu</td>
<td>Resultants and inversion formula for N polynomials in N variables</td>
</tr>
<tr>
<td>1135</td>
<td>Avner Friedman & J.L. Velázquez</td>
<td>The analysis of coating flows in a strip</td>
</tr>
<tr>
<td>1136</td>
<td>Eduardo D. Sontag</td>
<td>Control of systems without drift via generic loops</td>
</tr>
<tr>
<td>1137</td>
<td>Yuan Wang & Eduardo D. Sontag</td>
<td>Orders of input/output differential equations and state space dimensions</td>
</tr>
<tr>
<td>1138</td>
<td>Scott W. Hansen</td>
<td>Boundary control of a one-dimensional, linear, thermoelastic rod</td>
</tr>
<tr>
<td>1139</td>
<td>Robert Lipton & Bogdan Vernescu</td>
<td>Homogenization of two phase emulsions with surface tension effects</td>
</tr>
<tr>
<td>1140</td>
<td>Scott Hansen & Enrique Zuazua</td>
<td>Exact controllability and stabilization of a vibrating string with an interior point mass</td>
</tr>
<tr>
<td>1141</td>
<td>Bei Hu & Jongmin Yong</td>
<td>Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints</td>
</tr>
<tr>
<td>1142</td>
<td>Mark H.A. Davis</td>
<td>A deterministic approach to optimal stopping with application to a prophet inequality</td>
</tr>
<tr>
<td>1143</td>
<td>M.H.A. Davis & M. Zervos</td>
<td>A problem of singular stochastic control with discretionary stopping</td>
</tr>
<tr>
<td>1144</td>
<td>Bernardo Cockburn & Pierre-Alain Gremaud</td>
<td>An error estimate for finite element methods for scalar conservation laws</td>
</tr>
<tr>
<td>1145</td>
<td>David C. Dobson & Fadil Santosa</td>
<td>An image enhancement technique for electrical impedance tomography</td>
</tr>
<tr>
<td>1146</td>
<td>Jin Ma, Philip Protter, & Jongmin Yong</td>
<td>Solving forward-backward stochastic differential equations explicitly — a four step scheme</td>
</tr>
<tr>
<td>1147</td>
<td>Yong Liu</td>
<td>The equilibrium plasma subject to skin effect</td>
</tr>
<tr>
<td>1148</td>
<td>Ulrich Hornung</td>
<td>Models for flow and transport through porous media derived by homogenization</td>
</tr>
<tr>
<td>1149</td>
<td>Avner Friedman, Chaoceng Huang, & Jongmin Yong</td>
<td>Effective permeability of the boundary of a domain</td>
</tr>
<tr>
<td>1150</td>
<td>Gang Bao</td>
<td>A uniqueness theorem for an inverse problem in periodic diffractive optics</td>
</tr>
<tr>
<td>1151</td>
<td>Angelo Favini, Mary Ann Horn, & Irena Lasiecka</td>
<td>Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1152</td>
<td>E.G. Kalnins & Willard Miller, Jr.</td>
<td>Models of q-algebra representations: q-integral transforms and “addition theorems”</td>
</tr>
<tr>
<td>1153</td>
<td>E.G. Kalnins, V.B. Kuznetsov & Willard Miller, Jr.</td>
<td>Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet</td>
</tr>
<tr>
<td>1154</td>
<td>A. Kersch, W. Morokoff & Chr. Werner</td>
<td>Selfconsistent simulation of sputtering with the DSMC method</td>
</tr>
<tr>
<td>1155</td>
<td>Bing-Yu Zhang</td>
<td>A remark on the Cauchy problem for the korteweg-de vries equation on a periodic domain</td>
</tr>
<tr>
<td>1156</td>
<td>Gang Bao</td>
<td>Finite element approximation of time harmonic waves in periodic structures</td>
</tr>
<tr>
<td>1157</td>
<td>Tao Lin & Hong Wang</td>
<td>Recovering the gradients of the solutions of second-order hyperbolic equations by interpolating the finite element solutions</td>
</tr>
<tr>
<td>1158</td>
<td>Zhangxin Chen</td>
<td>L^p-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems</td>
</tr>
<tr>
<td>1159</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>Homogenization of compositional flow in fractured porous media</td>
</tr>
<tr>
<td>1160</td>
<td>L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young & J.C. Doyle</td>
<td>A formula for computation of the real stability radius</td>
</tr>
<tr>
<td>1161</td>
<td>Maria Inés Troparevsky</td>
<td>Adaptive control of linear discrete time systems with external disturbances under inaccurate modelling: A case study</td>
</tr>
<tr>
<td>1162</td>
<td>Petr Klouček & Franz S. Rys</td>
<td>Stability of the fractional step Θ-scheme for the nonstationary Navier-Stokes equations</td>
</tr>
<tr>
<td>1163</td>
<td>Eduardo Casas, Luis A. Fernández & Jongmin Yong</td>
<td>Optimal control of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1164</td>
<td>Darrell Duffie, Jin Ma & Jongmin Yong</td>
<td>Black's consol rate conjecture</td>
</tr>
<tr>
<td>1165</td>
<td>D.G. Aronson & J.L. Vazquez</td>
<td>Anomalous exponents in nonlinear diffusion</td>
</tr>
</tbody>
</table>
Ruben D. Spies, Local existence and regularity of solutions for a mathematical model of thermomechanical phase transitions in shape memory materials with Landau-Ginzburg free energy

Pu Sun, On circular pipe Poiseuille flow instabilities

Angelo Favini, Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Global existence, uniqueness and regularity of solutions to a Von Kármán system with nonlinear boundary dissipation

A. Dontchev, Tz. Donchev & I. Slavov, On the upper semicontinuity of the set of solutions of differential inclusions with a small parameter in the derivative

Jin Ma & Jiongmin Yong, Regular-singular stochastic controls for higher dimensional diffusions — dynamic programming approach

Alex Solomonoff, Bayes finite difference schemes

Todd Arbogast & Zhangxin Chen, On the implementation of mixed methods as nonconforming methods for second order elliptic problems

Zhangxin Chen & Bernardo Cockburn, Convergence of a finite element method for the drift-diffusion semiconductor device equations: The multidimensional case

Boris Mordukhovich, Optimization and finite difference approximations of nonconvex differential inclusions with free time

Avner Friedman, David S. Ross, and Jianhua Zhang, A Stefan problem for reaction-diffusion system

Alex Solomonoff, Fast algorithms for micromagnetic computations

Nikan B. Firoozaie, Homogenization on lattices: Small parameter limits, H-measures, and discrete Wigner measures

G. Yin, Adaptive filtering with averaging

Wlodzimierz Byrc and Amir Dembo, Large deviations for quadratic functionals of Gaussian processes

Ilja Schmelzer, 3D anisotropic grid generation with intersection-based geometry interface

Alex Solomonoff, Application of multipole methods to two matrix eigenproblems

A.M. Latypov, Numerical solution of steady euler equations in streamline-aligned orthogonal coordinates

Bei Hu & Hong-Ming Yin, Semilinear parabolic equations with prescribed energy

Bei Hu & Jianhua Zhang, Global existence for a class of Non-Fickian polymer-penetrant systems

Rongze Zhao & Thomas A. Posbergh, Robust stabilization of a uniformly rotating rigid body

Mary Ann Horn & Irena Lasiecka, Uniform decay of weak solutions to a von Kármán plate with nonlinear boundary dissipation

Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions to a von Kármán system with nonlinear dissipative boundary conditions

Mary Ann Horn, Nonlinear boundary stabilization of a von Kármán plate via bending moments only

Frank H. Shaw & Charles J. Geyer, Constrained covariance component models

Tomasz Luczaka, A greedy algorithm estimating the height of random trees

Timo Seppäläinen, Maximum entropy principles for disordered spins

Yuandan Lin, Eduardo D. Sontag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for nonlinear stability

Svante Janson, Random regular graphs: Asymptotic distributions and contiguity

Rachid Ababou, Random porous media flow on large 3-D grids: Numerics, performance, & application to homogenization

Moshe Fridman, Hidden Markov model regression

Petr Klouček, Bo Li & Mitchell Luskin, Analysis of a class of nonconforming finite elements for Crystalline microstructures

Steven P. Lalley, Random series in inverse Pisot powers

Rudy Yaksic, Expected optimal exercise time of a perpetual American option: A closed-form solution

Rudy Yaksic, Valuation of an American put catastrophe insurance futures option: A Martingale approach

János Pacz, Farhad Shahrokhi & Mario Szegedy, Application of the crossing number

Avner Friedman & Chaocheng Huang, Averaged motion of charged particles under their self-induced electric field

Joel Spencer, The Erdős-Hanani conjecture via Talagrand’s inequality

Zhangxin Chen, Superconvergence results for Galerkin methods for wave propagation in various porous media

Russell Lyons, Robin Pemantle & Yuval Peres, When does a branching process grow like its mean? Conceptual proofs of $L \log L$ criteria

Robin Pemantle, Maximum variation of total risk

Robin Pemantle & Yuval Peres, Galton-Watson trees with the same mean have the same polar sets

Robin Pemantle, A shuffle that mixes sets of any fixed size much faster than it mixes the whole deck

Itai Benjamini, Robin Pemantle & Yuval Peres, Martin capacity for Markov chains and random walks in varying dimensions

Włodzimierz Bryc & Amir Dembo, On large deviations of empirical measures for stationary Gaussian processes

Martin Hildebrand, Some random processes related to affine random walks

Alexander E. Mazel & Yurii M. Suhov, Ground states of a Boson quantum lattice model