A NOTE ON SOLUTIONS FOR
THE INTRINSIC GENERALIZED WAVE
AND SINE-GORDON EQUATIONS

By

Keti Tenenblat

IMA Preprint Series # 575
August 1989
A NOTE ON SOLUTIONS FOR THE INTRINSIC GENERALIZED WAVE AND SINE-GORDON EQUATIONS

Keti Tenenblat *

0. Introduction

In the classical theory of differential geometry, the sine-Gordon equation was associated to surfaces of constant negative curvature contained in the euclidean space \mathbb{R}^3. A generic solution of this equation represents the angle between the asymptotic curves of the surface. In 1875, Backlund studied the geometry of these surfaces and obtained a transformation which provides new solutions for the sine-Gordon equation from a given one.

A generalization of these results led to a generalized sine-Gordon equation [9][10] and a generalized wave equation [8] and their Backlund transformations. Moreover, it was shown in [1][2] that the inverse scattering method can be applied in order to obtain solutions for both equations. Solutions for the generalized sine-Gordon and wave equations are orthogonal matrix functions of n independent variables, which correspond respectively to hyperbolic n-dimensional submanifolds of the euclidean space \mathbb{R}^{2n-1} and flat submanifolds of the unit sphere S^{2n-1}.

Another geometric interpretation for the classical sine-Gordon equation and other evolution equations such as KdV, MKdV, Burgers and many others was given in [4][5][6][7], where these equations were shown to be associated to the following intrinsic problem: generic solutions of such equations define hyperbolic metrics on open subsets of \mathbb{R}^2.

Motivated by the two-dimensional case, an intrinsic generalization for the sine-Gordon and wave equations was introduced in [3]. Moreover, a transformation was obtained which provides new solutions from a given one and it was also shown that

*Research partially supported by the Institute for Mathematics and its Applications with funds provided by the NSF and CNPq, Brazil.
solutions for these equations can be obtained by applying the inverse scattering method. Solutions for these equations are unit vector fields in \mathbb{R}^n, which define metrics with constant curvature on open subsets of \mathbb{R}^n.

In this note, taking $n = 3$, we consider the unit vector fields determined by two angle functions and rewrite the intrinsic generalized sine-Gordon and wave equations in terms of these functions. Moreover, using the results given in [3], we obtain explicit 1-soliton solutions and provide a graph of the angle functions.

1. The intrinsic generalized wave and sine-Gordon equations

The intrinsic generalization for the wave and sine-Gordon equations was introduced in [3] and it was motivated by a geometric problem, related to Riemannian manifolds of constant curvature.

We consider pairs $\{v,h\}$ of functions in the variables x_1,\ldots,x_n, where v is a unit vector field and h is an off diagonal matrix function defined on an open subset of \mathbb{R}^n, which satisfy the following set of equations:

\begin{align}
vv^t &= 1 \quad (1) \\
\frac{\partial v_i}{\partial x_j} &= v_j h_{ji} - \sum_{s=1}^{n} v_i h_{is} \delta_{ji} \quad (2) \\
\frac{\partial h_{ij}}{\partial x_i} + \frac{\partial h_{ij}}{\partial x_j} + \sum_{s \neq i, s \neq j} h_{is} h_{sj} &= -k v_i v_j, \quad i \neq j, \quad (3) \\
\frac{\partial h_{ij}}{\partial x_i} &= h_{is} h_{sj}, \quad i, s, j \text{ distinct} \quad (4) \\
\frac{\partial h_{ij}}{\partial x_i} + \frac{\partial h_{ij}}{\partial x_j} + \sum_{s \neq i, s \neq j} h_{js} h_{is} &= 0 \quad i \neq j. \quad (5)
\end{align}

The set of equations (1)-(5) is called the Intrinsic Generalized Wave Equation (IGWE) when the constant $k = 0$ and the Intrinsic Generalized Sine-Gordon Equation (IGSGE) when $k = -1$.

Remark: Whenever the coordinate functions of the vector field v do not vanish, the off diagonal matrix h is determined by v. Moreover, (5) is a consequence of the previous ones. The full set of equations is considered, in order to allow solutions which do not satisfy the above condition.
Given a solution of (1)-(5), such that the coordinate functions \(v_i \) do not vanish on an open subset \(U \) of \(\mathbb{R}^n \), we can define a metric on \(U \) by \(\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle = \delta_{i,j} v_i^2 \), for which the sectional curvature is constant equal to \(k \).

Observe that when \(n = 2 \), the above equations reduce to the homogeneous wave equation and the sine-Gordon equation respectively. In fact, consider the unit vector field in \(\mathbb{R}^2 \)

\[
v(x_1, x_2) = \left(\cos \frac{u}{2}, \sin \frac{u}{2} \right),
\]

where \(u(x_1, x_2) \) is a differentiable function. Then the matrix \(h \) is given by

\[
h = \frac{1}{2} \begin{pmatrix}
0 & u_{x_1} \\
-u_{x_2} & 0
\end{pmatrix},
\]

(3) reduces to

\[
u_{x_1 x_1} - u_{x_2 x_2} = -k \sin u.
\]

and (4),(5) are trivially satisfied. We also observe that the intrinsic generalized equations are nonlinear for \(n > 2 \), even when \(k = 0 \).

In general, for any dimension \(n \), one can consider the unit vector field \(v \) given by \(n - 1 \) functions of the variables \(x_1, \ldots, x_n \). Then (1)-(5) reduce to a system of differential equations for these functions. In what follows, this will be done for \(n = 3 \).

We consider

\[
v = (\sin \varphi \sin \theta, \sin \varphi \cos \theta, \cos \varphi), \tag{6}
\]

where \(\varphi \) and \(\theta \) are functions of \(x_1, x_2, x_3 \). It follows from (2) that the off-diagonal matrix \(h \) in terms of \(\varphi \) and \(\theta \) is given by

\[
h = \begin{pmatrix}
0 & \cotg \varphi \cotg \theta \varphi_{x_1} - \theta_{x_1} & -\varphi_{x_1} / \sin \theta \\
\tan \theta \cotg \varphi \theta_{x_2} + \theta_{x_2} & 0 & -\varphi_{x_2} / \cos \theta \\
\sin \theta \varphi_{x_3} + \tan \varphi \cos \theta \theta_{x_3} & \cos \theta \varphi_{x_3} - \tan \varphi \sin \theta \theta_{x_3} & 0
\end{pmatrix}.
\]

Equation (3) is symmetric with respect to \(i, j \), therefore we only need to consider \(i < j \). Hence, (3) is given by the following three equations.

\[
\begin{align*}
\varphi_{x_1}^2 &\sin^2 \varphi \sin^3 \theta \cos^2 \varphi \cos^3 \theta + \varphi_{x_1} \theta_{x_2} \sin^3 \varphi \sin^2 \theta \cos \varphi \cos^2 \theta (\cos^2 \theta - \sin^2 \theta) \\
+ \varphi_{x_2} &\sin \varphi \sin^5 \theta \cos \varphi \cos \theta - \varphi_{x_2}^2 \sin \varphi \cos^3 \theta + \varphi_{x_2} \theta_{x_2} \sin \varphi \sin^2 \theta \cos^3 \varphi \\
+ \varphi_{x_1} \sin \varphi \cos^3 \theta - \varphi_{x_1}^2 \sin \varphi \cos^2 \varphi \cos^3 \theta - \varphi_{x_1} \theta_{x_1} \sin \varphi \cos^3 \varphi \cos^2 \theta - \theta_{x_1}^2 \sin^4 \varphi \sin^3 \theta \cos \varphi \cos^2 \theta \\
- \theta_{x_1} &\sin \varphi \sin^2 \theta \cos^2 \varphi \cos^2 \theta = -k \sin^4 \varphi \sin^3 \theta \cos^2 \varphi \cos^3 \theta
\end{align*}
\]

(7)
\[
\varphi_{zzz_1} \sin \varphi \cos^3 \varphi \cos^2 \theta + \varphi_{zz} \theta_{zz} \sin \varphi \sin^2 \theta \cos^3 \theta (1 + \cos^2 \varphi)
- \varphi^2_{z_1} \sin^3 \theta \cos^3 \varphi - \varphi_{z_2} \theta_{z_2} \sin \varphi \sin^2 \theta \cos^2 \varphi \cos \theta - \varphi_{z_1} \theta_{z_1} \sin \varphi \sin \theta \cos^2 \varphi \cos^2 \theta + \varphi_{z_1} \theta_{z_1} \sin \varphi \cos^2 \varphi \cos^2 \theta + \theta_{zzz_1} \sin^2 \varphi \sin^2 \theta \cos \varphi \cos^3 \theta
- \theta^2_{z_1} \sin^3 \theta \cos \varphi \cos^2 \theta = -k \sin^2 \varphi \sin^3 \theta \cos^3 \varphi \cos^2 \theta
\]

(8)

\[
\varphi_{zzz_2} \sin \varphi \sin^2 \theta \cos^2 \varphi \cos^3 \theta - \varphi_{zz} \theta_{zz} \sin \varphi \sin^3 \theta \cos^2 \theta (1 + \cos^2 \varphi)
- \varphi_{z_2} \varphi_{z_2} \sin \varphi \sin^2 \theta \cos \varphi \cos \theta - \varphi_{z_2} \theta_{z_2} \sin \varphi \sin^3 \theta \cos^2 \varphi - \varphi_{z_1} \varphi_{z_1} \sin \varphi \sin \theta \cos \varphi \cos^2 \theta + \theta_{zzz_2} \sin^2 \varphi \sin^2 \theta \cos \varphi \cos^3 \theta
- \theta^2_{z_2} \sin^2 \varphi \sin^2 \theta \cos \varphi \cos^3 \theta = -k \sin^2 \varphi \sin^2 \theta \cos^3 \varphi \cos^2 \theta
\]

(9)

(4) provides six equations, which reduce to the following:

\[
\varphi_{zzz_1} \sin \varphi \sin \theta \cos^2 \varphi \cos \theta - \varphi_{zz} \varphi_{z_1} \sin \theta \cos^3 \varphi \cos \theta
- \varphi_{z_1} \theta_{z_1} \sin \varphi (1 - \sin^2 \varphi \cos^2 \theta) - \theta_{zzz_1} \sin^2 \varphi \sin^2 \theta \cos \varphi = 0
\]

(10)

\[
\varphi_{zzz_2} \sin \varphi \sin \theta \cos^2 \varphi \cos \theta - \varphi_{zz} \varphi_{z_2} \sin \theta \cos^3 \varphi \cos \theta
+ \varphi_{z_2} \theta_{z_2} \sin \varphi (1 - \sin^2 \varphi \sin^2 \theta) + \theta_{zzz_2} \sin^2 \varphi \cos \varphi \cos^2 \theta = 0
\]

(11)

\[
\varphi_{zzz_1} \sin \varphi \sin \theta \cos \theta - \varphi_{zz} \varphi_{z_1} \sin \theta \cos \varphi \cos \theta
+ \varphi_{z_1} \theta_{z_1} \sin \varphi \sin^2 \theta - \varphi_{z_1} \theta_{z_1} \sin \varphi \cos^2 \theta = 0
\]

(12)

Equation (5) is trivially satisfied.

We conclude that for \(v \) given as in (6), the intrinsic generalized equations reduce to a system of second order differential equations (7)-(12) for two functions \(\varphi, \theta \) depending on \(z_1, z_2, z_3 \).

We observe that taking \(\varphi = \pi/2 \) and \(\theta \) depending on two variables, \(\theta(x_1, x_2) \), then the system of equations reduce to the classical wave or sine-Gordon equations. In fact equation (7) reduces to

\[
\theta_{z_1 z_1} - \theta_{z_2 z_2} = -k \sin \theta \cos \theta,
\]

and the others are trivially satisfied.
2. Solutions for the IGWE and IGSGE.

In this section we recall the transformations obtained in [3], which provide new solutions for the IGWE and IGSGE from a given one. Considering the three dimensional case, \(n = 3 \), we obtain 1-soliton solutions for the equations and the corresponding functions \(\varphi \) and \(\theta \) that were introduced in the previous section.

In order to state the results, we rewrite (1)-(5) in matrix notation. Let \(e_j \) be the \((n \times n)\)-matrix given by \((e_j)_{k \ell} = \delta_{kj}\delta_{ij}\), and \(h \) an off-diagonal matrix. We define the matrix 1-forms

\[
E = \sum_{j=1}^{n} e_j dx_j \\
B = -Eh + h^t E \\
C = hE - Eh^t
\]

Using this notation in (1)-(5), the IGWE is given by

\[
vv^t = 1 \\
dv = -vB \\
dC = C \wedge C \\
dB = B \wedge B,
\]

and the IGSGE is written as

\[
vv^t = 1 \\
dv = -vB \\
dC = C \wedge C + \frac{1}{2} E \wedge QE \\
dB = B \wedge B,
\]

where

\[
Q = 2v^t v - I
\]

and \(I \) denotes the \(n \times n \) identity matrix.

In the following results \(Y^0 \) denotes the off-diagonal part of the matrix \(Y \).

Theorem 1. Suppose \(\Omega \) is a simply connected domain in \(\mathbb{R}^n \) and \(\{v, h\} \) is a solution of the IGWE defined on \(\Omega \). Then for each \(z \in \mathbb{R} \), the system of equations

\[
dY = z(E - YEY) - YC + BY
\]
has a unique solution \(Y : \Omega \rightarrow M_n(\mathbb{R}) \) having a prescribed value at a given point of \(\Omega \). If this prescribed value is an orthogonal matrix, then the solution \(Y \) is in \(O(n) \). Moreover, \(\{\tilde{v}, \tilde{h}\} \) defined by

\[
\tilde{v} = vY \\
\tilde{h} = h^t - zY^0
\]

(18)

is a new solution for the IGWE.

The analogous result for the IGSGE is given by

Theorem 2. Suppose \(\Omega \) is a simply connected domain in \(\mathbb{R}^n \) and \(\{v, h\} \) is a solution of the IGSGE defined on \(\Omega \). Then for each \(z \in \mathbb{R} \setminus 0 \), the system of equations

\[
dY = \frac{z}{2}(E - YEY) + \frac{1}{2z}(QE - YEQY) - YC + BY
\]

(19)

has a unique matrix valued solution \(Y : \Omega \rightarrow M_n(\mathbb{R}) \), having a prescribed value at a given point of \(\Omega \). If this prescribed value is in \(O(n) \), then the solution \(Y \) is in \(O(n) \). Moreover, \(\{\tilde{v}, \tilde{h}\} \) defined by

\[
\tilde{v} = vY \\
\tilde{h} = h^t - \frac{z}{2}Y^0 - \frac{1}{2z}(QY)^0
\]

(20)

is a new solution for the IGSGE.

A proof of Theorems 1 and 2 can be found in [3]. Now we restrict ourselves to \(n = 3 \) and we apply the above results to obtain explicit solutions for the IGWE and IGSGE, by starting with the trivial solution \(v = (1, 0, 0) \) and \(h \equiv 0 \) and hence \(B = C = 0 \).

From Theorem 1 we want to solve

\[
dY = z(E - YEY)
\]

(21)

for a given prescribed orthogonal \(Y \) at the origin. So we consider

\[
Y(0) = \frac{1}{a^2 + b^2 + c^2 + 1} \begin{pmatrix}
 a^2 + b^2 - c^2 - 1 & 2(a + bc) & 2(-ac + b) \\
 2(a - bc) & -a^2 + b^2 - c^2 + 1 & -2(ab + c) \\
 -2(ac + b) & 2(ab - c) & -a^2 + b^2 + c^2 - 1
\end{pmatrix}
\]

(22)
where \(a, b, c \) are real constants. Then it is not difficult to see that the unique solution \(Y(x_1, x_2, x_3) \) of (21) with this initial condition is given by

\[
Y = \frac{1}{D} \begin{pmatrix}
\sigma_{12} b^2 - \sigma_{13} c^2 - \sigma_{12}^2 + a^2 & \sigma_{12} (e^{2x_{23}} bc + a) & 2\sigma_{13} (e^{2x_{23}} b - ac)
\
\sigma_{12} (e^{2x_{23}} bc + a) & \sigma_{23} b^2 - \sigma_{13} c^2 + \sigma_{12}^2 - a^2 & -2\sigma_{23} (e^{2x_{1}} c + ab)
\
-2\sigma_{13} (e^{2x_{23}} b + ac) & -2\sigma_{23} (e^{2x_{1}} c + ab) & \sigma_{23} b^2 + \sigma_{13} c^2 - \sigma_{12}^2 - a^2
\end{pmatrix},
\]

where

\[
D = \sigma_{23} b^2 + \sigma_{13} c^2 + \sigma_{12}^2 + a^2.
\]

and

\[
\sigma_{ij} = e^{x_{i+j}} 1 \leq i, j \leq 3.
\]

Therefore, it follows from Theorem 1 that

\[
\tilde{v} = (1, 0, 0)Y
\]

\[
\tilde{h} = -zY^0
\]

is a new solution for the IGWE. If we consider \(\tilde{v} \) given by (6) then we obtain the functions

\[
\varphi = \arctan \frac{\sqrt{(e^{2x(x_2 + x_3)} b^2 - e^{2x}(x_1 + x_2) c^2 - e^{2x}(x_1 + x_2) + a^2)^2 + 4 e^{2x}(x_1 + x_2)(e^{2x_{23}} bc + a)^2}}}{2 e^{x}(x_1 + x_2)(e^{2x_{23}} b - ac)}
\]

\[
\theta = \arctan \frac{e^{2x(x_2 + x_3)} b^2 - e^{2x}(x_1 + x_2) c^2 - e^{2x}(x_1 + x_2) + a^2}{2 e^{x}(x_1 + x_2)(e^{2x_{23}} bc + a)}
\]

where \(a, b, c \in \mathbb{R} \) and \(z \in \mathbb{R} \setminus \{0\} \), and \(\varphi, \theta \) satisfy the system of equations (7)-(12) with \(k = 0 \).

Similarly, starting with the trivial solution for the IGSGE, we solve (19) with \(B = C = 0 \), i.e.

\[
dY = \frac{z}{2} (E - YEY) + \frac{1}{2z} (QE - YEQY)
\]

(23)

for a given prescribed orthogonal matrix \(Y \) at the origin. Considering \(Y(0) \) as in (22), it is not difficult to see that the unique solution of (23) with this initial condition is given by
\[Y = \frac{1}{\tilde{D}} \begin{pmatrix} \tilde{\delta}_{13}^2 b^2 - \tilde{\delta}_{13}^2 c^2 - \tilde{\delta}_{12}^2 + a^2 \\ 2\tilde{\delta}_{12}(e^{\tilde{c}z_k} bc + a) \\ -2\tilde{\delta}_{13}(e^{\tilde{c}z_k} b + ac) \end{pmatrix} \begin{pmatrix} 2\tilde{\delta}_{12}(e^{\tilde{c}z_k} bc + a) \\ -2\tilde{\delta}_{23}(e^{\tilde{c}z_k} c + ab) \\ 2\tilde{\delta}_{23}(e^{\tilde{c}z_k} b + ac) \end{pmatrix}, \]

where

\[\tilde{D} = \tilde{\delta}_{23}^2 b^2 + \tilde{\delta}_{12}^2 c^2 + \tilde{\delta}_{12}^2 - a^2, \]

\[\tilde{\delta}_{12} = e^{\lambda z_k + \delta z_k}, \]
\[\tilde{\delta}_{13} = e^{\lambda z_k + \delta z_k}, \]
\[\tilde{\delta}_{23} = e^{\delta (z_k + z_k)}, \]

and

\[\lambda = \frac{1}{2}(z + \frac{1}{z}) \quad \delta = \frac{1}{2}(z - \frac{1}{z}). \]

(24)

Therefore, it follows from Theorem 2 that

\[\tilde{v} = (1, 0, 0)Y \]
\[\tilde{h} = - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \delta & 0 \\ 0 & 0 & \delta \end{pmatrix} Y^0 \]

is a new solution for the IGSGE. If we consider \(\tilde{v} \) given by

\[\tilde{v} = (\sin \varphi \sin \tilde{\theta}, \sin \varphi \cos \tilde{\theta}, \cos \varphi), \]

then we obtain the functions

\[\tilde{\varphi} = \arctan \frac{\sqrt{e^{2\tilde{c}(x_k + z_k)} b^2 - e^{2(\lambda z_k + \delta z_k)} c^2 - e^{2(\lambda z_k + \delta z_k)} + a^2}^2 + 4e^{2(\lambda z_k + \delta z_k)}(e^{2\tilde{c}z_k} bc + a)^2}{2e^{\lambda z_k + \delta z_k}(e^{2\tilde{c}z_k} b - ac)} \]

\[\tilde{\theta} = \arctan \frac{e^{2\tilde{c}(x_k + z_k)} b^2 - e^{2(\lambda z_k + \delta z_k)} c^2 - e^{2(\lambda z_k + \delta z_k)} + a^2}{2e^{\lambda z_k + \delta z_k}(e^{2\tilde{c}z_k} bc + a)} \]

where \(a, b, c \in \mathbb{R}, \quad z \in \mathbb{R} \setminus \{0\} \) and \(\lambda, \delta \) are given by (24). Then \(\varphi, \tilde{\theta} \) satisfy the system of equations (7)-(12) with \(k = -1 \).

In what follows, we fix the constants \(a, b, c \) and \(z \) and provide a graph of the solutions \(\varphi, \theta, \varphi, \tilde{\theta} \). We observe that the sign of the product \(abc \) affects the continuity of the functions.
3. Graphs associated to solutions of the IGWE and IGSGE.

Below we present the graph of solutions $\varphi(x_1, x_2, x_3)$, $\theta(x_1, x_2, x_3)$ for the IGWE and $\hat{\varphi}(x_1, x_2, x_3)$, $\hat{\theta}(x_1, x_2, x_3)$ of the IGSGE for fixed values of constants a, b, c and z. Each column is a sequence of graphs in \mathbb{R}^3 where the observer is at a fixed position and one of the variables is constant assuming the sequence of values $-6, -3, 0, 3, 6$. The other variables vary in $[-8, 8]$. In the first column x_1 is fixed, in the second and third columns x_2 and x_3 are fixed respectively.

a) For $a = 1$, $b = -1$, $c = 1$ and $z = 4$, θ is not continuous and φ has the following graph:
b) For \(a = b = c = 1 \) and \(z = 4 \), \(\varphi \) is not continuous and \(\theta \) has the following graph:
c) For $a = 1$, $b = -1$, $c = 1$ and $z = 0.2$, θ is not continuous and $\tilde{\theta}$ has the following graph:
d) For $a = b = c = 1$ and $z = 0.2$, $\tilde{\phi}$ is not continuous and $\tilde{\theta}$ has the following graph:
e) For $a = 0$, $b = -1$, $c = 1$ and $z = 4$, then b, $φ$ have the following graphs:
References

Universidade de Brasilia
Departamento de Matemática
70910 Brasilia, D.F. Brasil
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>495</td>
<td>Lucas Hsu, Niky Kamran and Peter J. Olver</td>
<td>Equivalence of Higher Order Lagrangians II. The Cartan Form for Particle Lagrangians</td>
</tr>
<tr>
<td>496</td>
<td>D.J. Kaup and Peter J. Olver</td>
<td>Quantization of BiHamiltonian Systems</td>
</tr>
<tr>
<td>497</td>
<td>Metin Arik, Fahrünisa Neyzi, Yavuz Nutku, Peter J. Olver and John M. Verosky</td>
<td>Multi-Hamiltonian Structure of the Born-Infeld Equation</td>
</tr>
<tr>
<td>498</td>
<td>David H. Wagner</td>
<td>Detonation Waves and Deflagration Waves in the One Dimensional ZND Model for High Mach Number Combustion</td>
</tr>
<tr>
<td>499</td>
<td>Jerrold R. Griggs and Daniel J. Kleitman</td>
<td>Minimum Cutsets for an Element of a Boolean Lattice</td>
</tr>
<tr>
<td>500</td>
<td>Dieter Jungnickel</td>
<td>On Affine Difference Sets</td>
</tr>
<tr>
<td>501</td>
<td>Pierre Leroux</td>
<td>Reduced Matrices and q-log Concavity Properties of q-Stirling Numbers</td>
</tr>
<tr>
<td>502</td>
<td>A. Narain and Y. Kizilyalli</td>
<td>The Flow of Pure Vapor Undergoing Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>503</td>
<td>Donald A. French</td>
<td>On the Convergence of Finite Element Approximations of a Relaxed Variational Problem</td>
</tr>
<tr>
<td>504</td>
<td>Yisong Yang</td>
<td>Computation, Dimensionality, and Zero Dissipation Limit of the Ginzburg-Landau Wave Equation</td>
</tr>
<tr>
<td>505</td>
<td>Jürgen Sprekels</td>
<td>One-Dimensional Thermomechanical Phase Transitions with Non-Convex Potentials of Ginzburg-Landau Type</td>
</tr>
<tr>
<td>506</td>
<td>Yisong Yang</td>
<td>A Note On Nonabelian Vortices</td>
</tr>
<tr>
<td>507</td>
<td>Yisong Yang</td>
<td>On the Abelian Higgs Models with Sources</td>
</tr>
<tr>
<td>508</td>
<td>Chjan. C. Lim</td>
<td>Existence of Kam Tori in the Phase Space of Vortex Systems</td>
</tr>
<tr>
<td>509</td>
<td>John Weiss</td>
<td>Bäcklund Transformations and the Painlevé Property</td>
</tr>
<tr>
<td>510</td>
<td>Pu Fu-cho and D.H. Sattinger</td>
<td>The Yang-Baxter Equation for Integrable Systems</td>
</tr>
<tr>
<td>511</td>
<td>E. Bruce Pitman and David G. Schaeffer</td>
<td>Instability and Ill-Posedness in Granular Flow</td>
</tr>
<tr>
<td>512</td>
<td>Brian A. Coomes</td>
<td>Polynomial Flows on \mathbb{C}^n</td>
</tr>
<tr>
<td>514</td>
<td>Peter J. Olver</td>
<td>Invariant Theory, Equivalence Problems, and the Calculus of Variations</td>
</tr>
<tr>
<td>515</td>
<td>Daniel D. Joseph and Thomas S. Lundgren</td>
<td>with an appendix by R. Jackson and D.A. Saville</td>
</tr>
<tr>
<td>516</td>
<td>P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren</td>
<td>Ensemble Averaged and Mixture Theory Equations</td>
</tr>
<tr>
<td>517</td>
<td>Daniel D. Joseph</td>
<td>Generalization of the Foscolo-Gibilaro Analysis of Dynamic Waves</td>
</tr>
<tr>
<td>518</td>
<td>A. Narain and D.D. Joseph</td>
<td>Note on the Balance of Energy at a Phase Change Interface</td>
</tr>
<tr>
<td>519</td>
<td>Daniel D. Joseph</td>
<td>Remarks on inertial radii, persistent normal stresses, secondary motions, and non-elastic extensional viscosities</td>
</tr>
<tr>
<td>520</td>
<td>D. D. Joseph</td>
<td>Mathematical Problems Associated with the Elasticity of Liquids</td>
</tr>
<tr>
<td>521</td>
<td>Henry C. Simpson and Scott J. Spector</td>
<td>Some Necessary Conditions at an Internal Boundary for Minimizers in Finite Elasticity</td>
</tr>
<tr>
<td>522</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>On the 0-1 Maximization of Positive Definite Quadratic Forms</td>
</tr>
<tr>
<td>523</td>
<td>Fu-Cho Pu and D.H. Sattinger</td>
<td>The Yang-Baxter Equations and Differential Identities</td>
</tr>
<tr>
<td>524</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>A Hyperbolic Inverse Problem Arising in the Evolution of Combustion Aerosol</td>
</tr>
<tr>
<td>525</td>
<td>E.G. Kalnins, Raphael D. Levine and Willard Miller, Jr.</td>
<td>Conformal Symmetries and Generalized Recurrences for Heat and Shrödinger Equations in One Spatial Dimension</td>
</tr>
<tr>
<td>526</td>
<td>Wang Jinghua and Gerald Warnecke</td>
<td>On Entropy Consistency of Large Time Step Godunov and Glimm Schemes</td>
</tr>
<tr>
<td>527</td>
<td>C. Guillopé and J.C. Saut</td>
<td>Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law</td>
</tr>
<tr>
<td>528</td>
<td>H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen</td>
<td>Computational Complexity of Norm-Maximization</td>
</tr>
<tr>
<td>529</td>
<td>Li Ta-tsien (Bi Da-qian) and Yu Xin</td>
<td>Life-Span of Classical Solutions to Fully Nonlinear Wave Equations</td>
</tr>
<tr>
<td>530</td>
<td>Jong-Shenq Guo</td>
<td>A Variational Inequality Associated with a Lubrication Problem</td>
</tr>
<tr>
<td>531</td>
<td>Jong-Shenq Guo</td>
<td>On the Semilinear Elliptic Equation $\Delta u - \frac{1}{2} y \cdot \nabla u + \lambda u - u^{-\theta} = 0$ in \mathbb{R}^n</td>
</tr>
<tr>
<td>532</td>
<td>Andrew E. Yagle</td>
<td>Inversion of the Bloch transform in magnetic resonance imaging using asymmetric two-component inverse scattering</td>
</tr>
<tr>
<td>#</td>
<td>Author/s</td>
<td>Title</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>533</td>
<td>Bei Hu</td>
<td>A Fiber Tapering Problem</td>
</tr>
<tr>
<td>534</td>
<td>Peter J. Olver</td>
<td>Canonical Variables for BiHamiltonian Systems</td>
</tr>
<tr>
<td>535</td>
<td>Michael Renardy</td>
<td>A Well-Posed Boundary Value Problem for Supercritical Flow of Viscoelastic Fluids of Maxwell Type</td>
</tr>
<tr>
<td>536</td>
<td>Michael Renardy</td>
<td>Ill-Posedness Resulting from Slip As a Possible Explanation of Melt Fracture</td>
</tr>
<tr>
<td>537</td>
<td>Michael Renardy</td>
<td>Compatibility Conditions at Corners Between Walls and Inflow Boundaries for Fluids of Maxwell Type</td>
</tr>
<tr>
<td>538</td>
<td>Rolf Rees</td>
<td>The Spectrum of Restricted Resolvable Designs with $r = 2$</td>
</tr>
<tr>
<td>539</td>
<td>D. Lewis and J.C. Simo</td>
<td>Nonlinear stability of rotating pseudo-rigid bodies</td>
</tr>
<tr>
<td>540</td>
<td>Robert Hardt and David Kinderlehrer</td>
<td>Variational Principles with Linear Growth</td>
</tr>
<tr>
<td>541</td>
<td>San Yih Lin and Yisong Yang</td>
<td>Computation of Superconductivity in Thin Films</td>
</tr>
<tr>
<td>542</td>
<td>A. Narain</td>
<td>Pressure Driven Flow of Pure Vapor Undergoing Laminar Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>543</td>
<td>P.J. Vassiliou</td>
<td>On Local Equivalence for Vector Field Systems</td>
</tr>
<tr>
<td>544</td>
<td>Brian A. Coomes</td>
<td>On Conditions Sufficient for Injectivity of Maps</td>
</tr>
<tr>
<td>545</td>
<td>Yanchun Zhao</td>
<td>A Class of Global Smooth Solutions of the One Dimensional Gas Dynamics System</td>
</tr>
<tr>
<td>546</td>
<td>H. Holden, L. Holden and N.H. Risebro</td>
<td>Some Qualitative Properties of 2×2 Systems of Conservation Laws of Mixed Type</td>
</tr>
<tr>
<td>547</td>
<td>M. Slemrod</td>
<td>Dynamics of Measured Valued Solutions to a Backward-Forward Heat Equation</td>
</tr>
<tr>
<td>548</td>
<td>Avner Friedman and Jürgen Sprekels</td>
<td>Steady States of Austenitic-Martensitic Domains in the Ginzburg-Landau Theory of Shape Memory Alloys</td>
</tr>
<tr>
<td>549</td>
<td>Avner Friedman and Bei Hu</td>
<td>Degenerate Hamilton-Jacobi-Bellman Equations in a Bounded Domain</td>
</tr>
<tr>
<td>550</td>
<td>E.G. Kalnins, Willard Miller, Jr., and M.V. Tratnik</td>
<td>Families of Orthogonal and Biorthogonal Polynomials on the N-Sphere</td>
</tr>
<tr>
<td>551</td>
<td>Heinrich Freistühler</td>
<td>On Compact Linear Degeneracy</td>
</tr>
<tr>
<td>552</td>
<td>Matthew Witten</td>
<td>Quantifying the Concepts of Rate and Acceleration/Deceleration of Aging</td>
</tr>
<tr>
<td>553</td>
<td>J.P. Albert and J.L. Bona</td>
<td>Total Positivity and the Stability of Internal Waves in Stratified Fluids of Finite Depth</td>
</tr>
<tr>
<td>554</td>
<td>Brian Coomes and Victor Zurkowski</td>
<td>Linearization of Polynomial Flows and Spectra of Derivations</td>
</tr>
<tr>
<td>555</td>
<td>Yuriko Renardy</td>
<td>A Couette-Poiseuille Flow of Two Fluids in a Channel</td>
</tr>
<tr>
<td>556</td>
<td>Michael Renardy</td>
<td>Short wave instabilities resulting from memory slip</td>
</tr>
<tr>
<td>557</td>
<td>Daniel D. Joseph and Michael Renardy</td>
<td>Stokes' first problem for linear viscoelastic fluids with finite memory</td>
</tr>
<tr>
<td>558</td>
<td>Xiaxi Ding</td>
<td>Superlinear Conservation Law with Viscosity</td>
</tr>
<tr>
<td>559</td>
<td>J.L. Ericksen</td>
<td>Liquid Crystals with Variable Degree of Orientation</td>
</tr>
<tr>
<td>560</td>
<td>F. Robert Ore, Jr. and Xinfu Chen</td>
<td>Electro-Optic Modulation in an Arbitrary Cross-Section Waveguide</td>
</tr>
<tr>
<td>561</td>
<td>M.V. Tratnik</td>
<td>Multivariable biorthogonal continuous-discrete Wilson and Racah Polynomials</td>
</tr>
<tr>
<td>562</td>
<td>Yisong Yang</td>
<td>Existence of Solutions for a Generalized Yang-Mills Theory</td>
</tr>
<tr>
<td>563</td>
<td>Peter Gritzmann, Laurent Habsienger and Victor Klee</td>
<td>Good and Bad Radii of Convex Polygons</td>
</tr>
<tr>
<td>564</td>
<td>Martin Golubitsky, Martin Krupa and Chjan. C. Lim</td>
<td>Time-Reversibility and Particle Sedimentation</td>
</tr>
<tr>
<td>565</td>
<td>G. Yin</td>
<td>Recent Progress in Parallel Stochastic Approximations</td>
</tr>
<tr>
<td>566</td>
<td>G. Yin</td>
<td>On H-Valued SA: Finite Dimensional Approximations</td>
</tr>
<tr>
<td>567</td>
<td>Chien-Cheng Chang</td>
<td>Accurate Evaluation of the Effect of Diffusion and Conductivity in Certain Equations</td>
</tr>
<tr>
<td>568</td>
<td>Chien-Cheng Chang and Ruey-Ling Chern</td>
<td>The Effect of Viscous Diffusion in Discrete Vortex Dynamics for Slightly Viscous Flows</td>
</tr>
<tr>
<td>569</td>
<td>Li Ta-Tsien (Li Da-qian) and Zhao Yan-Chun</td>
<td>Global Existence of Classical Solutions to the Typical Free Boundary Problem for General Quasilinear Hyperbolic Systems and its Applications</td>
</tr>
<tr>
<td>570</td>
<td>Thierry Cazenave and Fred B. Weissler</td>
<td>The Structure of Solutions to the Pseudo-Conformally Invariant Nonlinear Schrödinger Equation</td>
</tr>
<tr>
<td>571</td>
<td>Marshall Slemrod and Athanasios E. Tzavaras</td>
<td>A Limiting Viscosity Approach for the Riemann Problem in Isentropic Gas Dynamics</td>
</tr>
<tr>
<td>573</td>
<td>P.J. Vassiliou</td>
<td>On the Geometry of Semi-Linear Hyperbolic Partial Differential Equations in the Plane Integrable by the Method of Darboux</td>
</tr>
<tr>
<td>574</td>
<td>Jerome V. Moloney and Alan C. Newell</td>
<td>Nonlinear Optics</td>
</tr>
<tr>
<td>575</td>
<td>Keti Tenenblat</td>
<td>A Note on Solutions for the Intrinsic Generalized Wave and Sine-Gordon Equations</td>
</tr>
<tr>
<td>576</td>
<td>P. Szmolyan</td>
<td>Heteroclinic Orbits in Singularly Perturbed Differential Equations</td>
</tr>
<tr>
<td>577</td>
<td>Wenxiang Liu</td>
<td>A Parabolic System Arising In Film Development</td>
</tr>
</tbody>
</table>