NOTE ON THE BALANCE OF ENERGY
AT A PHASE CHANGE INTERFACE

By

A. Narain

and

D.D. Joseph

IMA Preprint Series # 518
April 1989
NOTE ON THE BALANCE OF ENERGY
AT A PHASE CHANGE INTERFACE

by

A. Narain* and D. D. Joseph
Department of Aerospace Engineering and Mechanics
University of Minnesota, Minneapolis, MN 55455

* On leave from the Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931

Balance laws across interfaces between different materials or different phases of the same material have been derived by Delhaye [1974]. Film condensation and film boiling are examples of physical processes involving these interface conditions. The balance of energy used by Delhaye, his equation [7], is incomplete since he has omitted the contribution to the energy which arises from the interface and is proportional to the interfacial area. The interfacial contribution to the energy which appears in Delhaye's equation [7] is in the form

$$\frac{d}{dt} \int_{\Sigma} \rho_i (u_i + \frac{1}{2} v_p^2) \, d\Sigma,$$

where the subscript \(i\) stands for the interface, \(\Sigma (= A_i\) in the notation of Delhaye) is the area of the interface intersecting the material volume shown in figure 1, \(\rho_i\) is the area density of the interface, \(u_i\) is the internal energy per unit mass and \(v_p\) is the speed of a point on the interface. The interface term (1) vanishes for the massless interfaces (\(\rho_i=0\)) which are considered in most of the applications. We make a verifiable claim that (1) should be supplemented by the time derivative of the classical surface energy
\[
\frac{d}{dt} \int_{\Sigma} \sigma d\Sigma.
\] (2)

In the usual situation, where \(\rho_l = 0 \), (2) is the only surface energy. This would be the case at the boundary of two fluids, between a fluid and a solid, and at a phase change boundary where \(\Sigma \) is the interface, say, where the density jumps.

It is of interest to see how the interfacial energy balance given by equation [7] of Delhaye is altered by the addition of (2) to the balance. Let \(x = \chi (\xi, \eta, t) \) where \((\xi, \eta) \) are time independent reference coordinates on the interface. If \(F(x, t) = 0 \) is the equation for this interface, then

\[
\frac{dF}{dt} (x (\xi, \eta, t), t) = \frac{\partial F}{\partial t} + \mathbf{v}_{\Sigma} \cdot \nabla F = 0
\] (3)

where \(\mathbf{v}_{\Sigma} = \frac{\partial \chi}{\partial t} \). Hence

\[
\mathbf{v}_{\Sigma} \cdot \mathbf{n}_{12} = \frac{\partial F}{\partial t} / |\nabla F|
\] (4)

when \(\mathbf{n}_{12} \) is the normal of \(F \), pointing from side 1 to side 2 in figure 1.

The mass balance at the interface gives rise to

\[
\rho_1 \mathbf{v}_1 \cdot \mathbf{n}_{12} = \rho_2 \mathbf{v}_2 \cdot \mathbf{n}_{12} = -\mathbf{m}(x, t)
\] (5)
Figure 1. $V = V_1 \cup V_2$ is a material volume and Σ is an interface across which simple jumps are allowed; for and f, $\jump f = f_1 - f_2$ is the jump of f at a point x on Σ. The interface can sustain normal tractions on the boundary of V, N is a unit normal vector, normal to $\partial \Sigma$, in Σ, $n_{12} \cdot N = 0$ and σ is the interfacial tension.

where

$$\tilde{v}_j^{\text{def}} = v_j - v_\Sigma, \ j = 1, 2$$

(6)

is the velocity relative to the moving interface and \hat{m} is positive when there is a net transfer of mass from region 2 to region 1.

The momentum balance at the interface is given by

$$\hat{m}\jump v + \jump T \cdot n_{12} = \nabla_{II} \sigma + 2H \sigma n_{12}$$

(7)

where $\jump \cdot \cdot = (\cdot)_1 - (\cdot)_2$ is the usual notation for the jump across Σ, T is the stress (if T is not symmetric, it should be replaced with the transpose of T), ∇_{II} is the surface gradient,

$$\nabla_{II} \cdot n_{12} = \text{div}_{II} n_{12} = -2H = \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

(8)

where H is the mean curvature and R_1 and R_2 the principal radii of curvature.
The energy balance for the material volume V shown in figure 1, when Σ is a massless interface, is given by

$$\frac{dE}{dt} = \int \left\{ v \cdot (Tn) - q \cdot n \right\} \, da + \int \sigma N \cdot v \, \Sigma \, d\Sigma + \int \rho g \cdot v \, dV,$$ \hspace{1cm} (9)

where g is a body force per unit mass, v is the velocity, q the heat flux, n is the outward normal on V and $n = N$ is also on Σ and

$$E = \int \rho \left(u + \frac{1}{2} |v|^2 \right) \, dv + \int \sigma d\Sigma.$$ \hspace{1cm} (10)

Equation (9) states that the rate of change of the sum of internal, kinetic and surface energy is balanced by the sum of the power of the body force, the power of surface tractions Tn, the heat flow into V, and the power of the surface tension.

Equations (9) and (10) can be extended to include more general problems of change of phase, for example to the growth of silicon crystals. For this type of extension, it is necessary to replace σN with a general traction vector on $\partial \Sigma$, allowing for effects of shear and bending as well as dilatation and σ would be interpreted as a strain energy per unit area.

To reduce (9) further, we eliminate the surface energy with the kinematic identity

$$\frac{d}{dt} \int \sigma d\Sigma = \int \sigma v \cdot N \, d\Sigma + \int \left[\frac{\partial \sigma}{\partial t} - v \cdot \nabla \Sigma - 2H \sigma v \Sigma \cdot n \right] \, d\Sigma$$ \hspace{1cm} (11)

Equation (11) is derived, for example, as equation (55.15) in Joseph [1976], when $x=x$ and $v=v$. The partial time derivative is for fixed (ξ, η), and therefore

$$\frac{\partial \sigma}{\partial t} \bigg|_{\xi, \eta} = \frac{\partial \sigma}{\partial t} \bigg|_x + v \Sigma \cdot \nabla \Sigma.$$ \hspace{1cm} (12)

After combining (10) and (11), we let V tend to zero holding Σ fixed, and we find that
\[
\始建\cdot n_{12} - \left[\nabla \cdot \mathbf{T} n_{12}\right] + \mathbf{v}_\Sigma \cdot \nabla \sigma + 2H\sigma \mathbf{v}_\Sigma \cdot \mathbf{n}_{12} - \frac{\partial \sigma}{\partial t} = \hat{m} \left[u + \frac{1}{2} |v|^2 \right].
\]

(13)

This equation was derived by Joseph [1989] for the case in which the interface is a material surface \(\mathbf{v}_\Sigma = \mathbf{v} \) on \(\Sigma \), as is the case for an interface between two fluids or between, say, a fluid and a solid across which no mass is transported. Equation (13) allows for mass transfer as well. When \(\sigma = 0 \), (13) also expresses the energy balance across a viscous and heat conducting shock wave.

The energy balance (13) may be written relative to an observer moving with the interface
\[
\left[\mathbf{q}\right] \cdot \mathbf{n}_{12} + \left[\mathbf{\tau} \cdot \mathbf{T}\right] \mathbf{n}_{12} = \frac{\partial \sigma}{\partial t} + \hat{m} \left[u + \frac{1}{2} |v|^2 \right].
\]

(14)

To derive (14), subtract the projection of (7) with \(\mathbf{v}_\Sigma \) from (11).

Acknowledgements: Joseph's work was supported by the Department of Energy, Office of Basic Energy Sciences, the National Science Foundation and the Army Research Office. Narain's work was supported by NASA grant NAG 3-711.

REFERENCES

Laurent Habsieger and Dennis Stanton More Zeros of Krawtchouk Polynomials
K.M. Ramachandran Nearly Optimal Control of Queues in Heavy Traffic with Heterogeneous Servers
Y.M. Zhu and G. Yin A New Algorithm for Constrained Adaptive Array Processing
G. Yin and K.M. Ramachandran A Differential Delay Equation with Wideband Noise Perturbations
Chaitan P. Gupta Integral Type Asymptotic Conditions for the Solvability of a Periodic Fourth Order Boundary Value Problem
Chaitan P. Gupta A Two-Point Boundary Value Problem of Dirichlet Type with Resonance at Infinitely Many Eigenvalues
Jong-Shenq Guo On the Quenching Behavior of a Semilinear Parabolic Equation
Bei Hu A Quasi-Variational Inequality Arising in Elastohydrodynamics
E. Somersalo, G. Beylkin, R. Burridge and M. Cheney Inverse Scattering Problem for the Schrödinger Equation in Three Dimensions: Connections Between Exact and Approximate Methods
J.H. Dinitz and D.R. Stinson Some New Perfect One-Factorizations from Starters in Finite Fields
Albert Fässler and René Janneret Optimum Filter for DC/AC-Converter in Electronics
Paul Lemke On the Question of Obtaining Optimal Partitions of Point Sets in \(E^4 \) with Hyperplane Cuts
Paul Lemke and Michael Werman On the Complexity of Inverting the Autocorrelation Function of a Finite Integer Sequence, and the Problem of Locating \(n \) Points on a Line, Given the \(\binom{n}{2} \) Unlabelled Distances Between Them
Chris J. Budd, Avner Friedman, Bryce McLeod and Adam A. Wheeler The Space Charge Problem
Jerrold R. Griggs, Daniel J. Kleitman and Aditya Shastri Spanning Trees With Many Leaves in Cubic Graphs
Akos Seress On \(\lambda \)-designs with \(\lambda = 2P \)
Chjan C. Lim Quasi-periodic Dynamics of Desingularized Vortex Models
Chjan C. Lim On Singular Hamiltonians: The Existence of Quasi-periodic Solutions and Nonlinear Stability
Eugene Fabes, Mitchell Luskin and George R. Sell Construction of Inertial Manifolds by Elliptic Regularization
Matthew Witten A Quantitative Model for Lifespan Curves
Jay A. Wood Self-Orthogonal Codes and The topology of Spinor Group
Avner Friedman and Miguel A. Herrero A Nonlinear Nonlocal Wave Equation Arising in Combustion Theory
Avner Friedman and Victor Isakov On the Uniqueness in the Inverse Conductivity Problem with One Measurement
Yisong Yang Existence, Regularity, and Asymptotic Behavior of the Solutions to the Ginzburg-Landau Equations on \(R^3 \)
Chjan C. Lim On Symplectic Tree Graphs
Wilhelm I. Fushchich, Ivan Krivsky and Vladimir Simulik On Vector and Pseudovector Lagrangians for Electromagnetic Field
Wilhelm I. Fushchich Exact Solutions of Multidimensional Nonlinear Dirac’s and Schrödinger’s Equations
Wilhelm I. Fushchich and Renat Zhidanov On Some New Exact Solutions of Nonlinear D’Allembert and Hamilton Equations
Brian A. Coomes, The Lorenz System Does Not Have a Polynomial Flow
J.W. Helton and N.J. Young Approximation of Hankel Operators: Truncation Error in an \(H^\infty \) Design Method
Gregory Ammar and Paul Gader A Variant of the Gohberg-Semencul Formula Involving Circulant Matrices
R.L. Fosdick and G.P. MacSithigh Minimization in Nonlinear Elasticity Theory for Bodies Reinforced with Inextensible Cords
Fernando Reitich Rapidly Stretching Plastic Jets: The Linearized Problem
Francisco Bernis and Avner Friedman Higher Order Nonlinear Degenerate Parabolic Equations
Xinfu Chen and Avner Friedman Maxwell’s Equations in a Periodic Structure
Avner Friedman and Michael Vogelius Determining Cracks by Boundary Measurements
Yuji Kodama and John Gibbons A Method for Solving the Dispersionless KP Hierarchy and its Exact Solutions II
Yuji Kodama Exact Solutions of Hydrodynamic Type Equations Having Infinitely Many Conserved Densities
Robert Carroll Some Forced Nonlinear Equations and the Time Evolution of Spectral Data
Chjan C. Lim Spanning Binary Trees, Symplectic Matrices, and Canonical Transformations for Classical N-body Problems
E.F. Assmus, Jr. and J.D. Key Translation Planes and Derivation Sets
Matthew Witten Mathematical Modeling and Computer Simulation of the Aging-Cancer Interface
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>483</td>
<td>Matthew Witten and Caleb E. Finch,</td>
<td>Re-Examining The Gompertzian Model of Aging</td>
</tr>
<tr>
<td>484</td>
<td>Bei Hu,</td>
<td>A Free Boundary Problem for a Hamilton-Jacobi Equation Arising in Ions Etching</td>
</tr>
<tr>
<td>485</td>
<td>T.C. Hu, Victor Klee and David Larman,</td>
<td>Optimization of Globally Convex Functions</td>
</tr>
<tr>
<td>486</td>
<td>Pierre Goossens,</td>
<td>Shellings of Tilings</td>
</tr>
<tr>
<td>487</td>
<td>D. David, D. D. Holm, and M.V. Tratnik,</td>
<td>Integrable and Chaotic Polarization Dynamics in Nonlinear Optical Beams</td>
</tr>
<tr>
<td>488</td>
<td>D. David, D.D. Holm and M.V. Tratnik,</td>
<td>Horseshoe Chaos in a Periodically Perturbed Polarized Optical Beam</td>
</tr>
<tr>
<td>489</td>
<td>Laurent Habsieger,</td>
<td>Linear Recurrent Sequences and Irrationality Measures</td>
</tr>
<tr>
<td>490</td>
<td>Laurent Habsieger,</td>
<td>MacDonald Conjectures and The Selberg Integral</td>
</tr>
<tr>
<td>491</td>
<td>David Kinderlehrer and Giorgio Vergara-Caffarelli,</td>
<td>The Relaxation of Functionals with Surface Energies</td>
</tr>
<tr>
<td>492</td>
<td>Richard James and David Kinderlehrer,</td>
<td>Theory of Diffusionless Phase Transitions</td>
</tr>
<tr>
<td>493</td>
<td>David Kinderlehrer,</td>
<td>Recent Developments in Liquid Crystal Theory</td>
</tr>
<tr>
<td>494</td>
<td>Niky Kamran and Peter J. Olver,</td>
<td>Equivalence of Higher Order Lagrangians</td>
</tr>
<tr>
<td></td>
<td>I. Formulation and Reduction</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>Lucas Hsu, Niky Kamran and Peter J. Olver,</td>
<td>Equivalence of Higher Order Lagrangians</td>
</tr>
<tr>
<td></td>
<td>II. The Cartan Form for Particle Lagrangians</td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>D.J. Kaup and Peter J. Olver,</td>
<td>Quantization of BiHamiltonian Systems</td>
</tr>
<tr>
<td>497</td>
<td>Metin Arik, Fahrunisa Neyzi, Yavuz Nutku, Peter J. Olver and John M. Verosky</td>
<td>Multi-Hamiltonian Structure of the Born-Infeld Equation</td>
</tr>
<tr>
<td>498</td>
<td>David H. Wagner,</td>
<td>Detonation Waves and Deflagration Waves in the One Dimension</td>
</tr>
<tr>
<td></td>
<td>ZND Model for High Mach Number Combustion</td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>Jerrold R. Griggs and Daniel J. Kleitman,</td>
<td>Minimum Cutsets for an Element of a Boolean Lattice</td>
</tr>
<tr>
<td>500</td>
<td>Dieter Jungnickel,</td>
<td>On Affine Difference Sets</td>
</tr>
<tr>
<td>501</td>
<td>Pierre Leroux,</td>
<td>Reduced Matrices and q-log Concavity Properties of q-Stirling Numbers</td>
</tr>
<tr>
<td>502</td>
<td>A. Narain and Y. Kizilyalli,</td>
<td>The Flow of Pure Vapor Undergoing Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>503</td>
<td>Donald A. French,</td>
<td>On the Convergence of Finite Element Approximations of a Relaxed Variational Problem</td>
</tr>
<tr>
<td>504</td>
<td>Yisong Yang,</td>
<td>Computation, Dimensionality, and Zero Dissipation Limit of the Ginzburg-Landau Wave Equation</td>
</tr>
<tr>
<td>505</td>
<td>Jürgen Sprekels,</td>
<td>One-Dimensional Thermomechanical Phase Transitions with Non-Convex Potentials of Ginzburg-Landau Type</td>
</tr>
<tr>
<td>506</td>
<td>Yisong Yang,</td>
<td>A Note On Nonabelian Vortices</td>
</tr>
<tr>
<td>507</td>
<td>Yisong Yang,</td>
<td>On the Abelian Higgs Models with Sources</td>
</tr>
<tr>
<td>508</td>
<td>Chjan. C. Lim,</td>
<td>Existence of Kam Tori in the Phase Space of Vortex Systems</td>
</tr>
<tr>
<td>509</td>
<td>John Weiss,</td>
<td>Bäcklund Transformations and the Painlevé Property</td>
</tr>
<tr>
<td>510</td>
<td>Pu Fu-cho and D.H. Sattinger,</td>
<td>The Yang-Baxter Equation for Integrable Systems</td>
</tr>
<tr>
<td>511</td>
<td>E. Bruce Pitman and David G. Schaeffer,</td>
<td>Instability and Ill-Posedness in Granular Flow</td>
</tr>
<tr>
<td>512</td>
<td>Brian A. Coomes,</td>
<td>Polynomial Flows on \mathbb{C}^{n}</td>
</tr>
<tr>
<td>514</td>
<td>Peter J. Olver,</td>
<td>Invariant Theory, Equivalence Problems, and the Calculus of Variations</td>
</tr>
<tr>
<td>515</td>
<td>Daniel D. Joseph and Thomas S. Lundgren with an appendix by R. Jackson and D.A. Saville,</td>
<td>Ensemble Averaged and Mixture Theory Equations</td>
</tr>
<tr>
<td>516</td>
<td>P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren,</td>
<td>Stability of Periodic Arrays of Cylinders Across the Stream by Direct Simulation</td>
</tr>
<tr>
<td>517</td>
<td>Daniel D. Joseph,</td>
<td>Generalization of the Foscolo-Gibilaro Analysis of Dynamic Waves</td>
</tr>
<tr>
<td>518</td>
<td>A. Narain and D.D. Joseph,</td>
<td>Note on the Balance of Energy at a Phase Change Interface</td>
</tr>
<tr>
<td>519</td>
<td>Daniel D. Joseph,</td>
<td>Remarks on inertial radii, persistent normal stresses, secondary motions, and non-elastic extensional viscosities</td>
</tr>
<tr>
<td>520</td>
<td>D. D. Joseph,</td>
<td>Mathematical Problems Associated with the Elasticity of Liquids</td>
</tr>
<tr>
<td>521</td>
<td>Henry C. Simpson and Scott J. Spector,</td>
<td>Some Necessary Conditions at an Internal Boundary for Minimizers in Finite Elasticity</td>
</tr>
<tr>
<td>522</td>
<td>Peter Gritzmann and Victor Klee,</td>
<td>On the 0-1 Maximization of Positive Definite Quadratic Forms</td>
</tr>
</tbody>
</table>