INTEGRAL TYPE ASYMPTOTIC CONDITIONS FOR
THE SOLVABILITY OF A PERIODIC FOURTH ORDER
BOUNDARY VALUE PROBLEM

By

Chaitan P. Gupta

IMA Preprint Series # 445
August 1988
Integral Type Asymptotic Conditions For the Solvability of a Periodic Fourth Order Boundary Value Problem.

by

Chaitan P. Gupta
Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115

Abstract:
The fourth order periodic boundary value problem

$$\frac{d^4 u}{dx^4} + f(u(x))u'(x) + g(x,u(x)) = e(x), \quad x \in [0,2\pi],$$

$$u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0,$$

is studied when the nonlinearity g satisfies a more general sign condition of integral type instead of the usual sign condition, namely, there exists a $\rho > 0$ such that $g(x,u) u \geq 0$ for a.e. $x \in [0,2\pi]$ and all $u \in \mathbb{R}$ with $|u| \geq \rho$.

1. Introduction.

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function, $g : [0,2\pi] \times \mathbb{R} \to \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(x) \in L^1[0,2\pi]$. This paper is concerned with a study of the boundary value problem

AMS (MOS) Subject Classification: 34B10, 34B15, 34C25.

* part of the work done while visiting the Institute of Mathematics and its Applications at the University of Minnesota.
\[
-\frac{d^4u}{dx^4} + f(u(x))u'(x) + g(x,u(x)) = e(x), \ x \in [0,2\pi],
\]
\[
u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0.
\]

The author has studied (1.1) in [1], [2] where, among other conditions, it is assumed that the function \(g \) satisfy the following sign condition:

\[\text{''there exists a } \rho > 0 \text{ such that } g(x,u)u \geq 0 \text{ for a.e. } x \in [0,2\pi] \text{ and all } u \in \mathbb{R} \text{ with } |u| \geq \rho.''
\]

The purpose of this paper is to replace (1.2) with the following more general sign condition of integral type, "there exists a \(\rho > 0 \) and a \(C^3 \)-function \(m: \mathbb{R} [\rho,\rho] \rightarrow \mathbb{R} \) with \(um(u) > 0, m'(u) \leq 0, m''''(u) \geq 0 \), such that

\[
\int_0^{2\pi} g(x,u(x))m(u(x))dx \geq 0
\]

for all \(C^3 \)-real valued function \(u(x) \) on \([0,2\pi] \), with \(u'''' \) absolutely continuous on \([0,2\pi] \), \(u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0 \) and \(\min_{x \in [0,2\pi]} |u(x)| \geq \rho. \)" We may note that (1.2) implies (1.3) with \(m(u) = sgn \ u = u/|u| \) for \(u \in \mathbb{R} [\rho,\rho] \).

The results of this paper are motivated by some of the results of Mawhin ([3]) for the second order Lienard's equation. The statement and proof of the basic result depend on three lemmas proved in Gupta [2] for which we need the following notations. Besides using the classical spaces \(C[0,2\pi], C^k[0,2\pi], L^k[0,2\pi] \) and \(L^k\infty[0,2\pi] \) of continuous, \(k \)-times continuously differentiable, measurable real-valued functions whose \(k \)-th power of the absolute value is Lebesgue integrable or measurable functions that are essentially-bounded on \([0,2\pi] \), we shall use the Sobolev spaces \(H^k[0,2\pi] \), \((k = 2,3,or 4) \) defined by

\[
H^k[0,2\pi] = \{u:[0,2\pi] \rightarrow \mathbb{R} \mid u^{(j)} \text{ abs.cont.on } [0,2\pi], \ j=0,1,\ldots,k-1, \ u^{(k)} \in L^2[0,2\pi]\}.
\]
with the inner product defined by

\[(u,v)_{H^k} = \sum_{j=1}^{k} \frac{1}{2\pi} \int_0^{2\pi} u^{(j)}(x)v^{(j)}(x)\,dx + \left(\frac{1}{2\pi} \int_0^{2\pi} u(x)dx\right) \left(\frac{1}{2\pi} \int_0^{2\pi} v(x)dx\right),\]

and the corresponding norm denoted by \[|\cdot|_{H^k}.\] We also define, for the sake of convenience, the norm in \(L^k[0,2\pi]\) by

\[|u|_{L^k} = \left(\frac{1}{2\pi} \int_0^{2\pi} |u(x)|^k \,dx\right)^{\frac{1}{k}}.\]

We also use the Sobolev-space \(W^{4,1}[0,2\pi]\) defined by

\[W^{4,1}[0,2\pi] = \{ u : [0,2\pi] \to \mathbb{R} \mid u, u', u'', u''' \text{ abs. cts on } [0,2\pi] \},\]

with norm

\[|u|_{W^{4,1}} = \sum_{j=0}^{4} \int_0^{2\pi} |u^{(j)}(x)| \,dx.\]

For \(u \in L^1[0,2\pi]\), let us write

\[\bar{u} = \frac{1}{2\pi} \int_0^{2\pi} u(x)\,dx\text{ and } \bar{u}'(x) = u(x) - \bar{u},\]

so that

\[\int_0^{2\pi} \bar{u}'(x)\,dx = 0.\]

Let \(\tilde{H}^2[0,2\pi] = \{ u \in H^2[0,2\pi] \mid \bar{u} = 0 \}.\)

The following lemmas are proved in Gupta [2].

Lemma 1: Let \(\Gamma \in L^1[0,2\pi]\) be such that for a.e. \(x \in [0,2\pi]\),

\[\Gamma(x) \leq 1,\]

with strict inequality holding on a subset of \([0,2\pi]\) of positive measure. Then there exists
a \delta = \delta(\Gamma) > 0 such that for all \(\bar{u} \in \tilde{H}^2[0,2\pi] \) with \(\bar{u}(0) - \bar{u}(2\pi) = \bar{u}'(0) - \bar{u}'(2\pi) = 0 \),

\[
B_1(\bar{u}) = \frac{1}{2\pi} \int_0^{2\pi} ((\bar{u}'(x))^2 - \Gamma(x)\bar{u}'(x))^2 dx \geq \delta \| \bar{u} \|_{H^2}^2.
\]

Lemma 2: Let \(\Gamma = \Gamma_0 + \Gamma_1 + \Gamma_\infty \) where \(\Gamma_\infty \in L^{\infty}[0,2\pi] \), \(\Gamma_1 \in L^1[0,2\pi] \) and \(\Gamma_0 \in L^1[0,2\pi] \) is such that \(\Gamma_0(x) \leq 1 \) for a.e. \(x \in [0,2\pi] \) with strict inequality holding on a subset of \([0,2\pi]\) of positive measure. Let \(\delta(\Gamma_0) > 0 \) be given by Lemma 1. Then for every \(\bar{u} \in \tilde{H}^2[0,2\pi] \) with \(\bar{u}(0) - \bar{u}(2\pi) = \bar{u}'(0) - \bar{u}'(2\pi) = 0 \),

\[
B_1(\bar{u}) \geq (\delta(\Gamma_0) - \frac{\pi^2}{3} \| \Gamma_1 \|_{L^1} - \| \Gamma_\infty \|_{L^\infty}) \| \bar{u} \|_{H^2}.
\]

Lemma 3: Let \(\gamma \in L^1[0,2\pi] \), \(\Gamma = \Gamma_0 + \Gamma_1 + \Gamma_\infty \) be as in Lemma 2 and \(\delta(\Gamma_0) \) be given by Lemma 1. Then for all measurable functions \(p(x) \) on \([0,2\pi]\) with \(\gamma \leq \bar{p} \), \(p(x) \leq \Gamma(x) \) for a.e. \(x \in [0,2\pi] \), all continuous functions \(f : \mathbb{R} \to \mathbb{R} \) and all \(u \in W^{4,1}[0,2\pi] \) with \(u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0 \), we have

\[
\frac{1}{2\pi} \int_0^{2\pi} (\bar{u} - \bar{u}(x)) \left[-\frac{d^4u}{dx^4} + f(u(x))u'(x) + p(x)u(x) \right] dx \\
\geq \gamma \| \bar{u} \|^2 + (\delta(\Gamma_0) - \frac{\pi^2}{3} \| \Gamma_1 \|_{L^1} - \| \Gamma_\infty \|_{L^\infty}) \| \bar{u} \|_{H^2}^2
\]

2. Main Results.

Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous and let \(g : [0,2\pi] \times \mathbb{R} \to \mathbb{R} \) be a function satisfying Carathéodory's conditions, namely,

(i) for each \(u \in \mathbb{R} \), the function \(x \in [0,2\pi] \to g(x, u) \in \mathbb{R} \) is measurable on \([0,2\pi]\),

(ii) for a.e. \(x \in [0,2\pi] \), the function \(u \in \mathbb{R} \to g(x, u) \in \mathbb{R} \) is continuous on \(\mathbb{R} \), and

(iii) for each \(r > 0 \), there exists a function \(\alpha_r(x) \in L^1[0,2\pi] \) such that \(|g(x, u)| \leq \alpha_r(x) \) for a.e. \(x \in [0,2\pi] \) and all \(u \in \mathbb{R} \) with \(|u| \leq r \).
We prove the following existence theorem for the boundary value problem (1.1).

Theorem 1: Let \(\gamma \in L^1[0,2\pi] \) with \(\overline{\gamma} = 0 \) and let \(\Gamma = \Gamma_0 + \Gamma_1 + \Gamma_\infty \) with \(\Gamma_1 \in L^1[0,2\pi], \Gamma_\infty \in L^\infty[0,2\pi], \Gamma_0 \) measurable on \([0,2\pi]\), \(\Gamma_0(x) \leq 1 \) for a.e. \(x \in [0,2\pi] \) with strict inequality holding on a subset of \([0,2\pi]\) of positive measure and

\[
\frac{\pi^2}{3} |\Gamma_1| + |\Gamma_\infty| < \delta(\Gamma_0),
\]

where \(\delta(\Gamma_0) \) is given by Lemma 1. Assume that the inequalities

\[
\gamma(x) \leq \liminf_{|u| \to \infty} u^{-1}g(x,u) \leq \limsup_{|u| \to \infty} u^{-1}g(x,u) \leq \Gamma(x),
\]

(2.1)

hold uniformly for a.e. \(x \in [0,2\pi] \).

Also assume that there exists a \(\rho > 0 \) and a \(C^2 \)-function \(m: \mathbb{R} \to \mathbb{R} \) with \(m(u) > 0, m'(u) \leq 0, m''(u) \geq 0 \), such that

\[
\int_0^{2\pi} g(x,u(x))m(u(x))dx \geq 0
\]

(2.2)

for all \(C^2 \)-real-valued functions \(u(x) \) on \([0,2\pi]\) with \(u''' \) absolutely-continuous on \([0,2\pi]\), \(u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0 \), and \(\min_{\pi \in [0,2\pi]} |u(x)| \geq \rho \).

Then for every given \(e(x) \in L^1[0,2\pi] \) with

\[
\int_0^{2\pi} e(x)m(u(x))dx \leq 0,
\]

(2.3)

for all \(C^2 \)-real-valued functions \(u(x) \) on \([0,2\pi]\) as above, the boundary-value problem (1.1) has at least one solution.

Proof: Let \(\eta_0 = \frac{1}{2} \delta(\Gamma_0) - \frac{\pi^2}{3} |\Gamma_1|_{L^1} - |\Gamma_\infty|_{L^\infty} > 0 \). Then, for each \(\eta, 0 < \eta \leq \eta_0 \), we can find \(r(\eta) > 0 \) such that for a.e. \(x \in [0,2\pi] \) and all \(u \) with \(|u| \geq r(\eta) \), we have
\[\gamma(x) - \eta \leq u^{-1}g(x,u) \leq \Gamma(x) + \eta. \]

Define, \(g_\eta: [0,2\pi] \times \mathbb{R} \rightarrow \mathbb{R} \) by \(g_\eta(x,u) = \gamma_\eta(x,u)u \), where,

\[
\gamma_\eta(x,u) = \begin{cases}
 u^{-1}g(x,u) & \text{if } |u| \geq r(\eta), \\
 [r(\eta)]^{-1}g(x,r(\eta))\left[\frac{x}{r(\eta)}\right] + (1 - \frac{x}{r(\eta)})\Gamma(x) & \text{if } 0 \leq x < r(\eta) \\
 [r(\eta)]^{-1}g(x,-r(\eta))\left[\frac{x}{r(\eta)}\right] + (1 + \frac{x}{r(\eta)})\Gamma(x) & \text{if } -r(\eta) < x < 0,
\end{cases}
\]

so that \(g_\eta \) and \(\gamma_\eta \) satisfy Caratheodory's conditions and

\[
\gamma(x) - \eta \leq \gamma(x,u) \leq \Gamma(x) + \eta,
\]

for a.e. \(x \in [0,2\pi] \) and all \(u \in \mathbb{R} \). Let us, next, define \(h_\eta: [0,2\pi] \times \mathbb{R} \rightarrow \mathbb{R} \) by

\[
h_\eta(x,u) = g(x,u) - g_\eta(x,u).
\]

Then, there exists \(\alpha_\eta(x) \in L^1[0,2\pi] \), depending only on \(\gamma, \Gamma \), and \(\alpha_r(\eta) \), such that for a.e. \(x \in [0,2\pi] \) and all \(u \in \mathbb{R} \), we have

\[
|h_\eta(x,u)| \leq \alpha_\eta(x).
\]

Now, the equation in (1.1) is equivalent to

\[
- \frac{d^4u}{dx^4} + f(u(x))u'(x) + \gamma_\eta(x,u(x))u(x) + h_\eta(x,u(x)) = e(x)
\]

We shall use the same degree arguments as the ones used in [2,3] to prove our theorem. Accordingly, it suffices to show that the set of all possible solutions of the family of equations

\[
- \frac{d^4u}{dx^4} + \lambda f(u(x))u'(x) + ((1-\lambda)(\Gamma(x)+\eta) + \lambda \gamma_\eta(x,u(x)))u(x) + \lambda h_\eta(x,u(x)) = \lambda e(x)
\]

\[
+ \lambda h_\eta(x,u(x)) - \lambda e(x) = 0,
\]

\[
u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0,
\]
is, a priori, bounded in $C^1[0,2\pi]$ independently of $\lambda \in [0,1]$. Let, now, $u(x)$ be a possible solution of (2.5) for some $\lambda \in [0,1]$. Multiplying the equation in (2.5) by $(\bar{u} - \bar{u}(x))$ we obtain, on integrating the resulting equation on $[0,2\pi]$ and using (2.4) along with Lemma 3, with Γ_∞ replaced by $\Gamma_\infty + \eta$ and γ replaced by $\gamma - \eta$,

\[
0 = \frac{1}{2\pi} \int_0^{2\pi} \left[\bar{u} - \bar{u}(x) \right] \left\{ -\frac{d^4 u}{dx^4} + \lambda \int (u(x))u'(x) + \left[(1-\lambda)(\Gamma(x) + \eta) + \lambda\gamma(x,u(x)) \right] u(x) \right. \\
+ \left. \lambda h(x,u(x)) - \lambda e(x) \right\} dx \\
= \frac{1}{2\pi} \int_0^{2\pi} \left\{ (\bar{u}'(x))^2 - \left[(1-\lambda)(\Gamma(x) + \eta) + \lambda\gamma(x,u(x)) \right] \bar{u}'(x) \right. \\
+ \left. \left[(1-\lambda)(\Gamma(x) + \eta) + \lambda\gamma(x,u(x)) \right] \bar{u}^2 \right\} dx \\
\geq \eta_0 \left\{ \bar{u}^2 + \eta \bar{u}'^2 - (|\alpha_\eta|_{H^1} + |e|_{H^1}) (|\bar{u}|_{L^1} + |\bar{u}|_{L^\infty}) \right\} dx \\
\geq \eta_0 \left\{ \bar{u}^2 + \eta \bar{u}'^2 - \beta_\eta (|\bar{u}|_{H^2} + |\bar{u}|_{H^2}) \right\},
\]

where $\beta_\eta > 0$, is a constant depending on η and independent of $\lambda \in [0,1]$.

We next show that there exists a $\tau \in [0,2\pi]$ such that $|u(\tau)| < \rho$. Suppose, on the other hand, that $|u(x)| \geq \rho$ for all $x \in [0,2\pi]$. Integrating the equation in (2.4) over $[0,2\pi]$ after multiplying it by $m(u(x))$, we obtain, after noticing that

\[
-\int_0^{2\pi} \frac{d^4 u}{dx^4} m(u(x)) dx = -\int_0^{2\pi} m'(u(x))(u'(x))^2 dx + \int_0^{2\pi} m'''(u(x)) \frac{(u'(x))^4}{3} dx \geq 0, \\
(1-\lambda) \int_0^{2\pi} \left(\Gamma(x) + \eta \right) u(x) m(u(x)) dx + \lambda \int_0^{2\pi} g(x,u(x)) m(u(x)) dx - \lambda \int_0^{2\pi} e(x) m(u(x)) dx \leq 0,
\]

which is impossible, because the first term is positive, the second one is non-negative and the third non-positive, in view of our assumptions. Thus $|u(\tau)| < \rho$ for some
\(\tau \in [0,2\pi] \), and if \(\xi \in [0,2\pi] \) is such that \(\overline{u} = u(\xi) \), we obtain
\[
|\overline{u}| = |u(\xi)| = |u(r) + \int_r^\xi u'(x) \, dx | \\
\leq \rho + \sqrt{2\pi} \left(\int_0^{2\pi} |u'(x)|^2 \, dx \right)^{1/2} \\
\leq \rho + 2\pi |\overline{u}|_{H^2} .
\]
(2.7)

Combining (2.6) and (2.7) with sufficiently small \(\eta > 0 \), we obtain that there is a constant \(C \), independent of \(\lambda \in [0,1] \), such that
\[
|u|_{H^2} \leq C,
\]
which implies that \(|u|_{C_{[0,2\pi]}} \leq C_1 \), for some constant \(C_1 \), independent of \(\lambda \in [0,1] \).

This completes the proof of the theorem. //

We present a few corollaries to Theorem 1 in the following.

Corollary 1: Let the function \(m : \mathbb{R} \to [-\rho, \rho] \to \mathbb{R} \) in Theorem 1 be given by
\[
m(u) = \text{sgn } u = \frac{u}{|u|},
\]
(2.8)
for \(u \in \mathbb{R} \), \(|u| \geq \rho \).

Then for every \(e \in L^1[0,2\pi] \) with \(\bar{e} = 0 \), the boundary value problem (1.1) has at least one solution.

Proof: The corollary is immediate as it is easy to see that all the assumptions of Theorem 1 remain valid. //

The following Corollary gives a necessary and sufficient condition for the boundary-value problem (1.1) to have a solution for a given \(e \in L^1[0,2\pi] \) with \(\bar{e} = 0 \).

Corollary 2: Assume that \(g(x,\cdot) : \mathbb{R} \to \mathbb{R} \) is non-decreasing for a.e. \(x \in [0,2\pi] \) and that
condition (2.1) hold with γ and Γ as in Theorem 1.

Then for any given $c \in L^1[0, 2\pi]$ with $\bar{c} = 0$, the boundary value problem (1.1) has a solution if and only if there exists a $y \in L^\infty[0, 2\pi]$ such that

$$\int_0^{2\pi} g(x, y(x))\, dx = 0. \quad (2.9)$$

Proof: The necessity is immediate if we take for y a solution $u(x)$ and integrate the equation over $[0, 2\pi]$. For sufficiency, let $\rho = |y|_{L^\infty}$ and $m(u) = \frac{u}{|u|}$. Then, if $u \in C^3[0, 2\pi]$ with u''' absolutely continuous and

$$u(0) - u(2\pi) = u'(0) - u'(2\pi) = u''(0) - u''(2\pi) = u'''(0) - u'''(2\pi) = 0,$$

is such that

$$\min_{u \in [0, 2\pi]} |u(x)| > \rho = |y|_{L^\infty} \quad (2.10)$$

we have, by monotonicity

$$\frac{u(x)}{|u(x)|} g(x, u(x)) \geq \frac{u(x)}{|u(x)|} g(x, y(x))$$

for a.e. $x \in [0, 2\pi]$, and hence, as $\frac{u(x)}{|u(x)|}$ is a constant when (2.10) holds, we get using (2.9) that

$$\int_0^{2\pi} g(x, u(x)) \frac{u(x)}{|u(x)|} \, dx \geq 0,$$

for those u, and the result follows from Corollary 1.//

The following Corollary replaces the assumption (2.2) by an integral type asymptotic sign condition on $g(x, u)$.

Corollary 3: Assume that the assumptions of Theorem 1 hold except that (2.2) is
replaced by the existence of \(m : \mathbb{R} \{0\} \rightarrow \mathbb{R} \) of class \(C^3 \) with \(u \ m(u) > 0 \), \(m'(u) \leq 0 \), \(m'''(u) \geq 0 \) and of a function \(\mu(x) \in L^1[0,2\pi] \) such that

\[
\lim_{|u| \to \infty} \inf_{x,u} g(x,u)m(u) \geq \mu(x), \quad (2.11)
\]

uniformly a.e. in \(x \in [0,2\pi] \) and

\[
\int_0^{2\pi} \mu(x)dx > 0.
\]

Then for any given \(e \in L^1[0,2\pi] \) such that there is a \(\rho > 0 \) with

\[
\int_0^{2\pi} e(x)m(u(x))dx \leq 0, \quad (2.12)
\]

for all \(u \in C^3[0,2\pi] \) with \(u''' \) absolutely-continuous on \([0,2\pi] \), \(u(0) = u(2\pi) = u'(0) - u'(2\pi) = u'''(0) - u'''(2\pi) = 0 \) and \(\min_{x \in [0,2\pi]} |u(x)| \geq \rho \); the boundary value problem (1.1) has at least one solution.

Proof: It suffices to check that (2.2) of Theorem 1 holds. This is identical to the proof of Corollary 1 of [3].//

Remark 1: We remark that we have treated the boundary value problem (1.1) with non-zero righthand side, unlike the problem in [3] where the corresponding second order problem is treated with zero right-hand side.

Remark 2: We note that the generality of the integral type asymptotic sign condition (2.2) on \(g(x,u) \) imposed by the function \(m(u) \) of (2.8), slightly limits the class of \(e \in L^1[0,2\pi] \) for which (1.1) is solvable when compared to the class of \(e \) allowed by Theorem 2 of [2] under pointwise asymptotic sign condition on \(g(x,u) \).
Bibliography

2. Gupta, C.P.: Asymptotic Conditions For the Solvability of a Fourth Order Boundary Value Problem With Periodic Boundary Value Problem With Periodic Boundary Condition (Submitted)