CONSTRUCTING UNIFORM ORIENTED MATROIDS
WITHOUT THE ISOTOPY PROPERTY

By

Bernd Sturmfels
and
Neil White

IMA Preprint Series # 432
July, 1988
CONSTRUCTING UNIFORM ORIENTED MATROIDS WITHOUT THE ISOTOPY PROPERTY*

BERND STURMFELLS¹ AND NEIL WHITE²

Abstract. A simple procedure is given for producing a uniform rank 3 oriented matroid with disconnected realization space from a non-uniform example.

Very recently B. Jaggi and P. Mani-Levitska [4] solved the longstanding isotopy problem for simple line arrangements [7]. Using the well-known correspondence between line arrangements, order types in the projective plane [5] and realizable oriented matroids [2, 3, 6], their main theorem is stated as follows. We write \(R(M) \) for the space of all vector realizations \((x_1, \ldots, x_n) \in (\mathbb{R}^3)^n \) of a rank 3 oriented matroid \(M \) on \(n \) points. (In other words, \(R(M) \) is the set of \(3 \times n \)-matrices whose maximal minors have signs given by the alternating map \(M : \{1, 2, \ldots, n\}^3 \to \{-, 0, +\} \).

If \(M \) is uniform (i.e. all minors are non-zero) then \(R(M) \) is an open subset of \(\mathbb{R}^{3n} \). N. White’s earlier paper [8] gives a non-uniform oriented matroid \(M_W \) with \(R(M_W) \) disconnected and \(n = 42 \), while the new uniform oriented matroid \(M_{JM} \) of Jaggi and Mani-Levitska [4] has \(n = 17 \) and \(R(M_{JM}) \) disconnected. It is the objective of the present note to describe an easy general construction for uniform oriented matroids without the isotopy property.

A rank 3 oriented matroid \(M \) is said to be constructible if \((x_1, x_2, x_3, x_4)\) is a projective basis and the point \(x_t \) is incident to at most two lines spanned by \(\{x_1, x_2, \ldots, x_{t-1}\} \) for \(t = 5, 6, \ldots, n \). Using the configuration \(\lambda_1 = \Omega(17, 15, 13)[\lambda_0] \) in [4] or a similar modification of White’s example [8], we easily get a constructible oriented matroid whose realization space has two connected components. For example, the space \(R(\lambda_1) \) modulo the connected group \(PGL(\mathbb{R}^3) \) equals the set of matrices

\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 5 & 5 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & 1 & 0 & -1 & 2 & 2 & 6 & 0 & -1 & t & -t & t \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 6 & 5 & 1 & 0 & t & -1
\end{pmatrix}
\]

with \(\frac{1}{5} < t < \frac{1}{2}(1 - \frac{1}{\sqrt{5}}) \) or \(\frac{1}{2}(1 + \frac{1}{\sqrt{5}}) < t < \frac{4}{5} \). Hence it suffices to prove the following

*This research was conducted while both authors visited the Institute for Mathematics and its Applications, University of Minnesota
¹Research Institute for Symbolic Computation, Johannes-Kepler Universität, A-4040 Linz, Austria
²Department of Mathematics, University of Florida, Gainesville, FL 32611, U.S.A.
Theorem. Let M be a constructible rank 3 oriented matroid on n points. Then there exists a uniform rank 3 oriented matroid \widetilde{M} on at most $4(n-3)$ points and a continuous surjective map $\mathcal{R}(\widetilde{M}) \to \mathcal{R}(M)$. Hence $\mathcal{R}(\widetilde{M})$ is disconnected whenever $\mathcal{R}(M)$ is disconnected.

Proof. We define a sequence $M =: M_n, M_{n-1}, M_{n-2}, \ldots, M_3, M_4 =: \widetilde{M}$ of oriented matroids and maps between their realization spaces. Let $n \geq t \geq 5$. Then M_{t-1} is constructed from M_t as follows. First suppose that x_i is incident to exactly two lines $x_i \vee x_j$ and $x_k \vee x_l$ with $1 \leq i, j, k, l < t$. Using the notation of Billera & Munson [1], we let M'_t be the oriented matroid obtained from M_t by the four successive principal extensions

$$(1) \quad x_{t,1} := [x_i^+, x_j^+, x_k^+], \quad x_{t,2} := [x_i^+, x_l^+, x_k^-], \quad x_{t,3} := [x_i^+, x_l^-, x_k^-], \quad x_{t,4} := [x_i^+, x_l^-, x_k^+].$$

These extensions can be carried out for every vector realization of M_t by setting $x_{t,1} := x_i + \varepsilon_1 x_i + \varepsilon_2 x_k, x_{t,2} := x_l + \varepsilon_3 x_i - \varepsilon_4 x_k, x_{t,3} := x_l - \varepsilon_5 x_i - \varepsilon_6 x_k, x_{t,4} := x_l - \varepsilon_7 x_i + \varepsilon_8 x_k$ where $1 \gg \varepsilon_1 \gg \varepsilon_2 \gg \ldots \gg \varepsilon_8 > 0$. This implies that the deletion map $\Pi : \mathcal{R}(M'_t) \to \mathcal{R}(M_t)$ is surjective. Geometrically speaking, in every affine realization of M'_t, the intersection point x_t is "caught" in the quadrangle $(x_{t,1}, x_{t,2}, x_{t,3}, x_{t,4})$. Define $M_{t-1} := M'_t \setminus x_t$ by deletion of that point, and let $\pi : \mathcal{R}(M'_t) \to \mathcal{R}(M_{t-1})$ denote the corresponding map.

Figure. Illustration of the oriented matroids M_t, M'_t and M_{t-1}.

2
Next consider an arbitrary realization $X := (x_1, \ldots, x_{t-1}, x_t, x_t^+, x_t^-, x_{t+3}, x_{t+4}, x_{t+1}, \ldots, x_n)$ of M_{t-1}. As a consequence of the principal extension construction used in (1), $x_i \lor x_j$ and $x_k \lor x_l$ are the only lines spanned by $\{x_1, \ldots, x_{t-1}, x_{t+1}, \ldots, x_n\}$ which intersect the quadrangle $(x_{t+1}, x_{t+2}, x_{t+3}, x_{t+4})$. For any other such line the intersection point $x_t := (x_i \lor x_j) \land (x_k \lor x_l)$ is on the same side as x_{t+1}, \ldots, x_{t+4}. Therefore $\sigma_t(X) := (x_1, \ldots, x_t, x_{t+1}, \ldots, x_n) \in R(M_t)$.

Hence we have a well-defined continuous map $\sigma_t : R(M_{t-1}) \to R(M_t)$, $X \mapsto \sigma_t(X)$. Moreover, σ_t is surjective because $\Pi = \sigma_t \circ \pi$ is surjective.

It remains to define M_{t-1} and σ_t when x_t is incident to less than two lines in M_t. If x_t is on no such line, then we define $M_{t-1} := M_t$ and σ_t as the identity map. Finally, suppose that x_t is on only one line $x_i \lor x_j, 1 \leq i, j < t$. In that case we replace (1) by setting $x_{t,1} := [x_i^+, x_k^+], x_{t,2} := [x_i^+, x_i^-, x_k^-], x_{t,3} := [x_i^+, x_i^-, x_i^-]$ for some $x_k \not\in x_i \lor x_j$, and in the definition of the map σ_t we set $x_t := (x_i \lor x_j) \land (x_k \lor x_l)$.

Iterating these constructions resolves all previous dependencies, and we obtain a uniform oriented matroid $\widetilde{M} := M_4$ on $4(n - 3)$ or fewer points. Moreover, we have a continuous surjection $\sigma := \sigma_n \circ \sigma_{n-1} \circ \ldots \circ \sigma_3$ from $R(\widetilde{M})$ onto $R(M)$.

Some remarks.

(1) Using a fairly straightforward procedure for doubling oriented matroids, one gets the following corollary: Given any integer C, there exists a uniform rank 3 oriented matroid \widetilde{M}_C with $4(n - 3)C$ points such that $R(\widetilde{M}_C)$ has at least 2^C connected components.

(2) The local modification $M_t \mapsto M_{t-1}$ is quite similar to a twofold application of the Ω-"opening" operation of Jaggi and Mani-Levitska which would produce precisely one of the points $x_{t,i}$. The crucial difference: the above opening operation splits each intersection point into four new points and thereby ensures the existence of a well-defined closing map $\sigma_t : R(M_{t-1}) \to R(M_t)$. For the Ω-operation the desired closing map $R(\Omega(i,j,k)(M)) \to R(M)$ does not exist in general.
REFERENCES

