MODELS FOR FLOW AND TRANSPORT THROUGH POROUS MEDIA DERIVED BY HOMOGENIZATION

By

Ulrich Hornung

IMA Preprint Series # 1148
June 1993
Models for Flow and Transport through Porous Media
Derived by Homogenization

Ulrich HORNUNG
P.O. Box 1222
W-8014 Neubiberg, Germany

May 12, 1993

Abstract
Models for diffusion are considered such as two-continua, first-order kinetic, and double permeability models. It is shown that all these different models can be derived from a single micro model using homogenization and two-scale convergence.

1 Introduction

The purpose of this paper is to show that a large family of problems for flow and transport in porous media can be formulated and derived in a unified way using the concept of two-scale convergence. This concept was first implicitly used in the paper [3], then explicitly formulated in [13], and generalized in [1] and [2]. The notion of two-scale convergence combines the method of asymptotic expansions, i.e., the formal method of expanding into a series in terms of a small scale parameter ε, with the energy method of L. Tartar. This notion is a generalization of weak convergences, but at the same time it captures rapid oscillations of functions; for details see section 11.

In the context of diffusion type processes there are essentially five different macro models (dropping convection, chemical reactions, and distributed sources; for details of notations see section 2):

1. Diffusion through anisotropic media (section 3) is described by

$$C \partial_t u = \nabla \cdot (D \nabla u).$$

(1)
2. The two-continua model (section 4) is

\[
\begin{cases}
C_i \partial_t u_i + B_i = \nabla \cdot (D_i \nabla u_i), & x \in \Omega, \ i = 1, 2, \\
B_i = -B_2 - S_1 u_1 + S_2 u_2, & x \in \Omega
\end{cases}
\]

(2)

3. The first-order kinetic model (section 5) is

\[
\begin{cases}
C_1 \partial_t u_1 + |\Gamma| \partial_t u_0 = \nabla \cdot (D \nabla u_1), & x \in \Omega \\
c_0 \partial_t u_0 = s_1 u_1 + s_0 u_0, & x \in \Omega
\end{cases}
\]

(3)

4. The double permeability model (section 6) is

\[
\begin{cases}
C \partial_t u_1 + B = \nabla \cdot (D \nabla u_1), & x \in \Omega \\
B = -\int_{\Gamma'} \nu \cdot d_2 \nabla_y u_2 \, d\Gamma(y), & x \in \Omega \\
c_2 \partial_t u_2 = \nabla_y \cdot (d_2 \nabla_y u_2), & x \in \Omega, \ y \in \Omega \\
u_1 = u_2, & x \in \Omega, \ y \in \Gamma
\end{cases}
\]

(4)

5. The double permeability model with Robin type transmission conditions (section 7) is

\[
\begin{cases}
C \partial_t u_1 + B = \nabla \cdot (D \nabla u_1), & x \in \Omega \\
B = -\int_{\Gamma'} b \, d\Gamma(y), & x \in \Omega \\
c_2 \partial_t u_2 = \nabla_y \cdot (d_2 \nabla_y u_2), & x \in \Omega, \ y \in \Omega \\
\n \cdot d_2 \nabla_y u_2 = b = s_1 u_1 + s_2 u_2, & x \in \Omega, \ y \in \Gamma
\end{cases}
\]

(5)

We also consider certain combinations of the models described above (sections 8 through 10). It will be shown that these models can all be derived from a single micro model, namely system (6), using homogenization. Comparisons of some of the macro models have been carried out in [8] and [15], see also [10].

2 The General Diffusion Problem

Notations: Let \(Y \) be the unit cube in \(\mathbb{R}^3 \). For \(i = 1, 2 \) we consider two disjoint open subsets \(Y_i \subset Y \) with common smooth boundary \(\Gamma \) such that \(Y = Y_1 \cup Y_2 \cup \Gamma \). The vector \(\nu \) denotes the normal on \(\Gamma \) outward w.r.t. \(Y_1 \), i.e., inward w.r.t. \(Y_2 \). A two-dimensional section of \(Y \) is shown in figure 1. The tangential gradient on \(\Gamma \) is denoted by \(\nabla^{\Gamma} \), and \(\nabla^{\Gamma} \cdot \) denotes the divergence operator with respect to \(\Gamma \). Furthermore, the surface measure on
Γ is denoted by $d\Gamma$. Now we repeat Y_i and Γ periodically in all \mathbb{R}^3 (whenever we use the word *periodic* we mean Y-periodic) and use the same symbols Y_i and Γ. In all cases except the last two (sections 9 and 10) we assume that Y_i is connected in \mathbb{R}^3; in sections sections 9 and 10 we assume that Γ is connected. For the multi-continua model (section 4) we assume that the sets Y_2 and Γ are also connected. Obviously, the boundary $\partial \Gamma$ is void in any case. The spaces $L^2_\#(Y_i)$, $H^1_\#(Y_i)$, $L^2_\#(\Gamma)$, $H^1_\#(\Gamma)$ are the spaces of periodic functions with scalar products

$$(u, v)_{L^2_\#(Y_i)} = \int_{Y_i} uv \, dy \text{ and } (u, v)_{H^1_\#(Y_i)} = \int_{Y_i} (uv + \nabla u \cdot \nabla v) \, dy,$$

$$(u, v)_{L^2_\#(\Gamma)} = \int_{\Gamma} \varepsilon uv \, d\Gamma(y) \text{ and } (u, v)_{H^1_\#(\Gamma)} = \int_{\Gamma} \varepsilon (uv + \nabla_{\Gamma} u \cdot \nabla_{\Gamma} v) \, d\Gamma(y),$$

where the integration takes place over one Y-period.

We assume that functions $c_i, d_i \in L^\infty_\#(Y_i)$ (the spaces of periodic essentially bounded functions), $i = 1, 2$ and $c_0, d_0, s_{i,j} \in L^\infty_\#(\Gamma), i = 1, 2$, $j = 0, 1, 2$ and numbers $e_i \in \{0, 1\}$ for $i = 0, 1, 2$ are given. We assume $c_i, d_i \geq 0$, the numbers $s_{i,j}$ may be negative. We use the shorthand notation
b_i = \sum_{j=0,1,2} s_{ij} u_j$ for $i = 1, 2$, where u_j are the unknowns of the problems described later; i.e., b_i denotes a linear combination of the variables u_j.

From now on we consider an open set $\Omega \subset \mathbb{R}^3$ and a small scale parameter $\varepsilon > 0$. We define the subsets of Ω (see figure 2)

$$\Omega^\varepsilon_i = \{x \in \Omega : x \in \varepsilon Y_i\}, \quad i = 1, 2, \text{ and } \Gamma^\varepsilon = \{x \in \Omega : x \in \varepsilon \Gamma\}. $$

As before, the vector ν denotes the normal on Γ^ε outward w.r.t. Ω^ε_1, i.e., inward w.r.t. Ω^ε_2. Instead of ∇^ε we use ∇^ε for short. The surface measure on Γ^ε is denoted by $d\Gamma^\varepsilon$. The spaces $L^2_\#(\Omega^\varepsilon_1)$, $H^1_\#(\Omega^\varepsilon_1)$, $L^2_\#(\Gamma^\varepsilon)$, $H^1_\#(\Gamma^\varepsilon)$ are defined in the usual way.

We use the following functions with εY-periodicity: $c_i^\varepsilon(x) = c_i(\frac{x}{\varepsilon})$, $d_i^\varepsilon(x) = d_i(\frac{x}{\varepsilon})$, $s_{i,j}^\varepsilon(x) = s_{i,j}(\frac{x}{\varepsilon})$. In this way we get $b_i^\varepsilon = \sum_{j=0,1,2} s_{ij}^\varepsilon u_j$.

It should be mentioned that the condition of strict periodicity of the functions may be relaxed by considering functions of the type $c^\varepsilon(x) = c(x, \frac{y}{\varepsilon})$ and $d^\varepsilon(x) = d(x, \frac{y}{\varepsilon})$ where $c(x, y)$ and $d(x, y)$ are periodic w.r.t. y for $x \in \Omega$. This is possible if the functions $c(x, y)$ and $d(x, y)$ satisfy certain “admissibility” conditions, see [2].

Figure 2: The periodic structure
Now we are ready to formulate the general micro problem in strong form.

\[
\begin{align*}
 \varepsilon_i^\varepsilon \partial_t u_i^\varepsilon &= \varepsilon^{2\varepsilon_i} \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon), & x \in \Omega_i^\varepsilon, \ i = 1, 2 \\
 \varepsilon_i^\varepsilon \partial_n u_i^\varepsilon + \nu \cdot (\varepsilon^{2\varepsilon_1} d_1^\varepsilon \nabla u_1^\varepsilon - \varepsilon^{2\varepsilon_2} d_2^\varepsilon \nabla u_2^\varepsilon) &= \varepsilon^{1+2\varepsilon_0} \nabla \cdot (d_0^\varepsilon \nabla u_0^\varepsilon), & x \in \Gamma^\varepsilon \\
 u_0^\varepsilon &= u_1^\varepsilon = u_2^\varepsilon & or & -\nu \cdot \varepsilon^{2\varepsilon_1} d_1^\varepsilon \nabla u_1^\varepsilon = \varepsilon b_1^\varepsilon, & x \in \Gamma^\varepsilon
\end{align*}
\]

(6)

This system models the following situation: In both domains Ω_1^ε and Ω_2^ε a standard diffusion process takes place. On the interface Γ^ε between these two domains there is another diffusion process behaving surface-like, which is similar to flow in a thin Hele-Shaw cell. The coupling between the three diffusion processes is such that the boundary fluxes from Ω_1^ε and Ω_2^ε appear as sources or sinks on the interface Γ^ε; in other words, there is continuity of mass or energy, resp. There are two different types of transmission conditions: If the trace conditions are "on" we have continuity $u_0^\varepsilon = u_1^\varepsilon = u_2^\varepsilon$ of the variables (which is a natural choice if one deals with concentrations, pressures, or temperatures); if the trace conditions are "off" we prescribe Robin type conditions, i.e., the boundary fluxes $-\nu \cdot \varepsilon^{\varepsilon_1} d_1^\varepsilon \nabla u_1^\varepsilon$ and $\nu \cdot \varepsilon^{\varepsilon_2} d_2^\varepsilon \nabla u_2^\varepsilon$ from Ω_1^ε and Ω_2^ε onto the interface Γ^ε depend as ε-multiples of functions $b_i^\varepsilon = \sum_{j=0,1,2} \varepsilon_{ij}^\varepsilon u_j^\varepsilon$, $i = 1, 2$ on the three variables u_j, $j = 0, 1, 2$. The factors $\varepsilon_{ij}^\varepsilon$ govern the relative orders of magnitudes of the diffusivities: whenever $\varepsilon_i^\varepsilon = 1$ the diffusivity $\varepsilon_i^\varepsilon d_i^\varepsilon$ is small compared to those with $\varepsilon_i^\varepsilon = 0$. In this sense, we allow combinations of fast and slow diffusion processes.

The objective of the paper is to show that one can derive all models mentioned in the introduction from this micro problem by using homogenization. Which specific model arises as the homogenized limit depends on the choice of the numbers ε_i and on which type of transmission conditions is chosen on Γ^ε (trace condition on or off). In principle, there are 16 possible combinations. Not all of them are relevant or interesting. It turns out that whenever the trace condition is on, a reasonable choice is $\varepsilon_0 = 0$. The case $\varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 1$ is of no special interest. At this point we summarize the important cases in the following table.
The first step on the way to derive the homogenized equations is to formulate the micro problem in weak form. We say that a triple of functions \((\varphi_0^\varepsilon, \varphi_1^\varepsilon, \varphi_2^\varepsilon)\) is admissible iff \(\varphi_0^\varepsilon = \varphi_1^\varepsilon = \varphi_2^\varepsilon\) provided that the trace conditions are “on”; if the trace conditions are “off” any triple of functions is admissible. Obviously, an equivalent form of problem (6) is to find admissible functions \(u_i^\varepsilon\) such that

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i^\varepsilon} \left(\varepsilon \partial_t u_i^\varepsilon \varphi_i - \varepsilon^2 \varepsilon \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon) \right) \varphi_i \, dx \, dt \\
+ \int_0^T \int_{\Gamma^\varepsilon} \left(\varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon - \varepsilon^2 d_0^\varepsilon \nabla \cdot (d_0^\varepsilon \nabla u_0^\varepsilon) \right) \varphi_0 \\
+ b_1^\varepsilon (\varphi_1 - \varphi_0) + b_2^\varepsilon (\varphi_2 - \varphi_0) \\
+ \bar{v} \cdot \left(\varepsilon^2 d_1^\varepsilon \nabla u_1^\varepsilon \varphi_1 - \varepsilon^2 d_2^\varepsilon \nabla u_2^\varepsilon \varphi_2 \right) \right) \, d\Gamma^\varepsilon(x) \, dt = 0
\]

for all admissible test functions. Using the spaces

\[
V^\varepsilon = \{ \bar{u} = (u_0, u_1, u_2) : u_i \in H^1(\Omega_i^\varepsilon), \, u_i \in H^1(\Omega_i^\varepsilon), \, i = 1, 2 \text{ admissible} \}
\]

\[
V^\varepsilon = \{ \bar{u} \in L^2(0, T; V^\varepsilon) : \partial_t \bar{u} \in L^2(0, T; (V^\varepsilon)') \}
\]

and integrating by parts we get the following.

Problem 1 The weak micro-problem is to find a vector \(\bar{u}^\varepsilon \in V^\varepsilon\) of functions \(u_i^\varepsilon\) such that

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i^\varepsilon} \left(\varepsilon \partial_t u_i^\varepsilon \varphi_i + \varepsilon^2 \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon) \cdot \nabla \varphi_i \right) \, dx \, dt \\
+ \int_0^T \int_{\Gamma^\varepsilon} \left(\varepsilon c_0^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + \varepsilon^2 d_0^\varepsilon \nabla \cdot (d_0^\varepsilon \nabla u_0^\varepsilon) \cdot \nabla \varphi_0 \\
+ b_1^\varepsilon (\varphi_1 - \varphi_0) + b_2^\varepsilon (\varphi_2 - \varphi_0) \right) \, d\Gamma^\varepsilon(x) \, dt = 0
\]
for all admissible $\varphi_i \in C_0^\infty([0,T] \times \Omega)$.

Obviously, if the trace conditions are on, the terms with b_i vanish due to the admissibility of the test functions φ_i; they could be omitted in that situation.

This is where the concept of two-scale convergence comes into play, see section 11. The essential point is that for $\varepsilon \to 0$ the limit functions may depend not only on time t and the global variable x but also on the local variable y. We say that a triple $(\varphi_0, \varphi_1, \varphi_2)$ of functions that depends on t, x, y, periodic w.r.t y, is admissible iff $\varphi_0(t,x,y) = \varphi_1(t,x,y) = \varphi_2(t,x,y)$ holds for all $y \in \Gamma$, provided that the trace conditions are on; otherwise any triple is admissible. Using the spaces

$$V = \{ \bar{u} = (u_0, u_1, u_2) : \begin{array}{l} u_0 \in H^1(\Omega; H^1_\#(\Gamma)), \\ u_i \in H^1(\Omega; H^1_\#(Y_i)), i = 1, 2 \text{ admissible} \end{array} \}$$

$$V' = \{ \bar{u} \in L^2(0,T;V) : \partial_t \bar{u} \in L^2(0,T;V') \}$$

we get the following.

Problem 2 The weak macro-problem is to find triples $\bar{u}, \bar{v} \in V$ of functions u_i and v_i such that

$$\sum_{i=1,2} \int_0^T \int_{\Omega} \int_{Y_i} (c_i \partial_t u_i \varphi_i + (1 - e_i) d_i (\nabla_x u_i + \nabla_y v_i) \cdot (\nabla_x \varphi_i + \nabla_y \psi_i) + e_i d_i \nabla_y u_i \cdot \nabla_y \varphi_i) \, dy \, dx \, dt$$

$$+ \int_0^T \int_{\Omega} \int_{\Gamma} (c_0 \partial_t u_0 \varphi_0 + (1 - e_0) d_0 (\nabla_x u_0 + \nabla_Y v_0) \cdot (\nabla_x \varphi_0 + \nabla_Y \psi_0) + e_0 d_0 \nabla_Y u_0 \cdot \nabla_Y \varphi_0$$

$$+ b_1 (\varphi_1 - \varphi_0) + b_2 (\varphi_2 - \varphi_0) \, d\Gamma(y) \, dy \, dt = 0$$

(8)

for all admissible $\varphi_i, \psi_i \in C_0^\infty([0,T] \times \Omega; C_0^\infty(Y))$.

As for the weak micro problem, the terms with b_i could be omitted if the trace conditions are on.

It is clear that one has to specify initial conditions for $t = 0$ and boundary conditions on the boundary $\partial \Omega$ for $t > 0$ in order to obtain a well-posed initial boundary value problem. Furthermore, it is necessary to make sure that not all of the functions c_i and d_i vanish simultaneously. Under reasonable assumptions of this kind one gets in the usual way existence, uniqueness
and continuous dependence on the data. One can prove the following result (the symbol \(\Rightarrow\) means two-scale convergence, which is explained in section 11).

Theorem 1 Let \(\bar{u}^\varepsilon = (u_0^\varepsilon, u_1^\varepsilon, u_2^\varepsilon)\) be the solution of the micro problem and \(\bar{u} = (u_0, u_1, u_2)\) the solution of the macro problem. Then one has \(u_i^\varepsilon \Rightarrow u_i\), \(i=0,1,2\).

The way to prove this result is using test functions of the form \(\varphi_i(x) + \varepsilon \psi_i(x, \frac{x}{\varepsilon})\) instead of \(\varphi_i(x)\) in the micro problem and then passing to the two-scale limit by taking advantage of the tools mentioned in section 11. It turns out that for \(\varepsilon = 0\) the functions \(u_i\) can be eliminated by expressing them explicitly in terms of \(u_i\), a procedure that is well known in homogenization theory for elliptic or parabolic problems (see section 3). In this case \(u_i\) is a function of \(t\) and \(x\) only, i.e. it is independent of \(y\). It should be mentioned that strong convergence \(u_i \rightharpoonup u\) in \(L^2(0,T;\Omega)\) can be proved after appropriate extension of \(u_i^\varepsilon\) from \(\Omega_i^\varepsilon\) to all \(\Omega\).

Integration by parts gives for the macro problem

\[
\begin{align*}
\sum_{i=1,2} \int_0^T \int_\Omega \int_{Y_i} (c_i \partial_t u_i & - (1 - \varepsilon_i) \nabla_x \cdot (d_i (\nabla_x u_i + \nabla_y v_i)) - e_i \nabla_y \cdot (d_i \nabla_y u_i)) \varphi_i \ dy dx dt \\
+ \int_0^T \int_\Omega \int_{\Gamma} \left((c_0 \partial_t u_0 \\
- (1 - \varepsilon_0) \nabla_x \cdot (d_0 (\nabla_x u_0 + \nabla_y v_0)) - e_0 \nabla_y \cdot (d_0 \nabla_y u_0)) \varphi_0 \\
+ \varepsilon_1 \bar{v} \cdot d_1 \nabla_x u_1 \varphi_1 - \varepsilon_2 \bar{v} \cdot d_2 \nabla_y u_2 \varphi_2 \\
+ b_1(\varphi_1 - \varphi_0) + b_2(\varphi_2 - \varphi_0) \right) d\Gamma(y) dx dt \\
- \sum_{i=1,2} \int_0^T \int_\Omega \int_{Y_i} (1 - \varepsilon_i) \nabla_y \cdot (d_i (\nabla_x u_i + \nabla_y v_i)) \psi_i \ dy dx dt \\
+ \int_0^T \int_\Omega \int_{\Gamma} \left(- (1 - \varepsilon_0) \nabla_y \cdot (d_0 (\nabla_x u_0 + \nabla_y v_0)) \psi_0 \\
+ \bar{v} \cdot (1 - \varepsilon_1) d_1 (\nabla_x u_1 + \nabla_y v_1) \psi_1 \\
- (1 - \varepsilon_2) d_2 (\nabla_x u_2 + \nabla_y v_2) \psi_2 \right) d\Gamma(y) dx dt = 0.
\end{align*}
\]

In the following sections we are going to identify the strong problems that correspond to each of the weak problems for the different situations.
3 Diffusion in Anisotropic Media

Here we have \(e_0 = e_1 = e_2 = 0 \), and the trace conditions are on. The weak micro problem is

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i^\varepsilon \partial_t u_i^\varepsilon \phi_i + d_i^\varepsilon \nabla x u_i^\varepsilon \cdot \nabla \phi_i \right) \, dx dt \\
+ \int_0^T \int_{\Gamma^\varepsilon} \varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon \phi_0 + d_0^\varepsilon \nabla x u_0^\varepsilon \cdot \nabla \phi_0 \right) \, d\Gamma^\varepsilon(x) dt = 0.
\]

The weak macro problem is

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i \partial_t u_i \phi_i + d_i(\nabla x u_i + \nabla y v_i) \cdot (\nabla x \phi_i + \nabla y \psi_i) \right) \, dy dx dt \\
+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \phi_0 + d_0(\nabla x u_0 + \nabla y v_0) \cdot (\nabla x \phi_0 + \nabla y \psi_0) \right) \, d\Gamma(y) dx dt = 0.
\]

The strong micro problem is

\[
\begin{align*}
&\begin{cases}
 c_i^\varepsilon \partial_t u_i^\varepsilon = \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon), & x \in \Omega_i^\varepsilon, \quad i = 1, 2 \\
 \varepsilon c_0^\varepsilon \partial_t u_0^\varepsilon + \tilde{\nu} \cdot (d_0^\varepsilon \nabla u_0^\varepsilon - d_0^\varepsilon \nabla \tilde{u}_0^\varepsilon) = \varepsilon \nabla \cdot (d_0^\varepsilon \nabla \phi_0), & x \in \Gamma^\varepsilon \\
 u_0^\varepsilon = u_1^\varepsilon = u_2^\varepsilon, & x \in \Gamma^\varepsilon
\end{cases}
\end{align*}
\]

(10)

This model describes diffusion in a medium that is a periodic mixture of three different materials one of which is very thin.

The strong macro problem is to find a function \(u(t, x) \) such that

\[
C \partial_t u = \nabla \cdot (D \nabla u), \quad x \in \Omega
\]

(11)

which is the standard diffusion equation (1). Here \(C \) is the average

\[
C = \sum_{i=1,2} \int_{\Omega_i} c_i \, dy + \int_{\Gamma} c_0 \, d\Gamma(y)
\]

and the tensor \(D \) has the coefficients

\[
D_{kl} = \sum_{i=1,2} \int_{\Omega_i} d_i(\nabla y \omega_k + \tilde{\epsilon}_k) \cdot \tilde{\epsilon}_l \, dy + \int_{\Gamma} d_0(\nabla y \omega_k + \tilde{\epsilon}_k) \cdot \tilde{\epsilon}_l \, d\Gamma(y),
\]

and \(\omega_k(y) \) is the periodic solution of the cell problem

\[
\begin{align*}
&\begin{cases}
 \nabla \cdot (d_i(\nabla y \omega_k + \tilde{\epsilon}_k)) = 0, & y \in \Omega_i, \quad i = 1, 2 \\
 \tilde{\nu} \cdot (d_1(\nabla y \omega_k + \tilde{\epsilon}_k) - d_2(\nabla y \omega_k + \tilde{\epsilon}_k)) = \nabla y \cdot (d_0(\nabla y \omega_k + \tilde{\epsilon}_k)), & y \in \Gamma
\end{cases}
\end{align*}
\]

9
The way to derive equation (11) from (9) goes along the following lines (see, e.g., [2]): Since the trace condition is on, we can identify the functions u_0, u_1, and u_2, with one function u. The same is true for the functions v_i and the test functions φ_i and ψ_i. Since φ and ψ can be chosen independently, we get from equation (9)

$$
\sum_{i=1,2} \int_0^T \int_{\Omega_i} d_i(\nabla_x u + \nabla_y v) \cdot \nabla_y \psi \ dy dt + \int_0^T \int_{\Gamma} d_0(\nabla_x u + \nabla_y^\Gamma v) \cdot \nabla_y^\Gamma \psi \ d\Gamma(y) dy dt = 0
$$

(12)

and

$$
\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i \partial_t u \varphi + d_i(\nabla_x u + \nabla_y v) \cdot \nabla_x \varphi \right) \ dy dt + \int_0^T \int_{\Gamma} \left(c_0 \partial_t u \varphi + d_0(\nabla_x u + \nabla_y^\Gamma v) \cdot \nabla_x \varphi \right) \ d\Gamma(y) dy dt = 0
$$

(13)

The strong form of the subproblem (12) is

$$
\begin{cases}
\nabla \cdot \left(d_i(\nabla_x u + \nabla_y v) \right) = 0, & y \in Y_i, \ i = 1, 2 \\
\n\varphi \cdot \left(d_1(\nabla_x u + \nabla_y v) - d_2(\nabla_x u + \nabla_y v) \right) = \nabla^\Gamma \cdot \left(d_0(\nabla_x u + \nabla_y^\Gamma v) \right), & y \in \Gamma
\end{cases}
$$

(14)

and the strong form of the subproblem (13) is

$$
\left(\sum_{i=1,2} \int_{Y_i} c_i \ dy + \int_{\Gamma} c_0 \ d\Gamma(y) \right) \partial_t u = \nabla_x \cdot \left(\sum_{i=1,2} \int_{Y_i} d_i(\nabla_x u + \nabla_y v) \ dy + \int_{\Gamma} d_0(\nabla_x u + \nabla_y^\Gamma v) \ d\Gamma(y) \right)
$$

(15)

From equation (14) one deduces the representation

$$
v(t, x, y) = \sum_{k=1}^3 \omega_k(y) \partial_{x_k} u(t, x).
$$

Plugging this formula into equation (15) directly gives equation (11). This type of argument applies also to the examples in the following sections.

Special Cases:

$c_0 = d_0 = 0$: One gets standard homogenization for anisotropic media. This case is studied in textbooks of homogenization theory, see [5] [7].
\[c_0 = d_0 = c_2 = d_2 = 0: \text{ One has homogenization of diffusion in media with holes.} \]
\[c_2 = d_2 = 0: \text{ This is a system of blocks and fissures.} \]
\[c_1 = d_1 = c_2 = d_2 = 0: \text{ This is a system of fissures only.} \]

In the same way one could also treat a system consisting of small tubes or pipes, i.e., use curves instead of surfaces \(\Gamma \). It is important to notice that in all these cases the homogenized limit is that of diffusion in an anisotropic medium.

4 Multi-Continua

Here we have \(e_0 = e_1 = e_2 = 0 \), and the trace conditions are off. The weak micro problem is

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i^\varepsilon \partial_t u_i^\varepsilon \varphi_i + d_i^\varepsilon \nabla u_i^\varepsilon \cdot \nabla \varphi_i \right) \, dx \, dt \\
+ \int_0^T \int_{\Gamma^\varepsilon} \varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + d_0^\varepsilon \nabla u_0^\varepsilon \cdot \nabla \varphi_0 \\
+ b_1^\varepsilon (\varphi_1 - \varphi_0) + b_2^\varepsilon (\varphi_2 - \varphi_0) \right) \, d\Gamma^\varepsilon (x) \, dt = 0.
\]

The weak macro problem is

\[
\sum_{i=1,2} \int_0^T \int_{\Omega_i} \int_{\Gamma_i} \left(c_i \partial_t u_i (\varphi_i + d_i (\nabla u_i + \nabla v_i) \cdot (\nabla \varphi_i + \nabla \psi_i) \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0 (\nabla u_0 + \nabla v_0) \cdot (\nabla \varphi_0 + \nabla \psi_0) \\
+ b_1 (\varphi_1 - \varphi_0) + b_2 (\varphi_2 - \varphi_0) \right) \, d\Gamma(y) \, dx \, dt = 0.
\]

The strong form of the micro problem is

\[
\begin{cases}
 c_i^\varepsilon \partial_t u_i^\varepsilon = \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon), & x \in \Omega_i^\varepsilon, \ i = 1, 2 \\
 -\nu \cdot d_i^\varepsilon \nabla u_i^\varepsilon = \varepsilon b_i^\varepsilon, & x \in \Gamma^\varepsilon \\
 \nu \cdot d_2^\varepsilon \nabla u_2^\varepsilon = \varepsilon b_2^\varepsilon, & x \in \Gamma^\varepsilon \\
 c_0^\varepsilon \partial_t u_0^\varepsilon - b_1^\varepsilon - b_2^\varepsilon = \nabla \cdot (d_0^\varepsilon \nabla u_0^\varepsilon), & x \in \Gamma^\varepsilon
\end{cases} \quad (16)
\]

This model describes simultaneous diffusion in three continua that are intertwined and between which exchange takes place depending on the variables on the common boundaries.
The strong macro problem is to find functions \(u_i(t, x) \) such that
\[
\begin{align*}
C_i \partial_t u_i + B_i &= \nabla \cdot (D_i \nabla u_i), \quad x \in \Omega, \ i = 0, 1, 2 \\
B_i &= \sum_{j=0,1,2} S_{ij} u_j, \quad x \in \Omega, \ i = 1, 2 \\
B_0 &= -B_1 - B_2, \quad x \in \Omega
\end{align*}
\] (17)

Here
\[
C_i = \int_{Y_i} c_i \, dy, \ i = 1, 2, \quad C_0 = \int_{\Gamma} c_0 \, d\Gamma(y),
\]
\[
S_{ij} = \int_{\Gamma} s_{ij} \, d\Gamma(y), \ i = 1, 2, \ j = 0, 1, 2.
\]
The tensors \(D_i, \ i = 1, 2 \) have the coefficients
\[
D_{ikl} = \int_{Y_i} d_i(\nabla_y \omega_{ik} + \tilde{e}_k) \cdot \tilde{e}_l \, dy
\]
where \(\omega_{ik} \) are the periodic solutions of the cell problem
\[
\begin{align*}
\nabla_y \cdot \left(d_i(\nabla_y \omega_{ik} + \tilde{e}_k) \right) &= 0, \ y \in Y_i \\
\vec{u} \cdot \left(d_i(\nabla_y \omega_{ik} + \tilde{e}_k) \right) &= 0, \ y \in \Gamma
\end{align*}
\]
and the tensor \(D_0 \) has the coefficients
\[
D_{0kl} = \int_{\Gamma} (\nabla_y \omega_{0k} + \tilde{e}_k) \cdot \tilde{e}_l \, d\Gamma(y)
\]
where \(\omega_{0k} \) is the periodic solution of the cell problem
\[
\nabla_y \cdot \left(d_0(\nabla_y \omega_{0k} + \tilde{e}_k) \right) = 0, \ y \in \Gamma.
\]

Special Cases:

\(c_0 = d_0 \): one gets \(b_1^e + b_2^e = 0 \) and \(B_0 = B_1 + B_2 = 0 \). Therefore, a reasonable choice is \(b_1 = -b_2 = s_1 u_1 + s_2 u_2 \) with \(s_1 > 0, s_2 < 0 \). The macro model is
\[
\begin{align*}
C_i \partial_t u_i + B_i &= \nabla \cdot (D_i \nabla u_i), \quad x \in \Omega, \ i = 1, 2 \\
B_i &= \sum_{j=1,2} S_{ij} u_j, \quad x \in \Omega, \ i = 1, 2 \\
B_1 + B_2 &= 0, \quad x \in \Omega
\end{align*}
\] (18)

This is the two-continua model (2) which was proposed in [6]. In [15] this macro model is called the "double porosity parallel model".
\[c_2 = d_2 = 0: \text{one gets } b_2 = 0 \text{ and thus } B_2 = 0. \text{ Therefore, a reasonable choice is } b_1 = -b_0 = s_1 u_1 + s_0 u_0 \text{ with } s_1 > 0, s_0 < 0. \text{ The macro model is}
\]
\[
\begin{aligned}
C_i \partial_t u_i + E_i &= \nabla \cdot (D_i \nabla u_i), \quad x \in \Omega_i, \ i = 0, 1 \\
B_i &= \sum_{j=0,1} S_{ij} u_j, \quad x \in \Omega_i, \ i = 0, 1 \\
B_0 + B_1 &= 0, \quad x \in \Omega
\end{aligned}
\]
\[(19)\]

This is again the two-continua model.

5 First-Order Kinetic

Here we have \(e_0 = 1, e_1 = e_2 = 0 \), and the trace conditions are off. The weak micro problem is
\[
\int_0^T \int_{\Omega_1} \left(c_{1}^\varepsilon \partial_t u_1^\varepsilon \varphi_1 + d_{1}^\varepsilon \nabla u_1^\varepsilon \cdot \nabla \varphi_1 \right) \, dx \, dt \\
+ \int_0^T \int_{\Omega_2} \left(c_{2}^\varepsilon \partial_t u_2^\varepsilon \varphi_2 + d_{2}^\varepsilon \nabla u_2^\varepsilon \cdot \nabla \varphi_2 \right) \, dx \, dt \\
+ \int_0^T \int_{\Gamma} \varepsilon \left(c_{0}^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + \varepsilon^2 d_{0}^\varepsilon \nabla u_0^\varepsilon \cdot \nabla \varphi_0 \\
+ b_1^\varepsilon (\varphi_1 - \varphi_0) + b_2^\varepsilon (\varphi_2 - \varphi_0) \right) \, d\Gamma(x) \, dt = 0.
\]

The weak macro problem is
\[
\int_0^T \int_{\Omega} \int_{Y_1} \left(c_1 \partial_t u_1 \varphi_1 + d_1 (\nabla_x u_1 + \nabla_y v_1) \cdot (\nabla_x \varphi_1 + \nabla_y \psi_1) \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{Y_2} \left(c_2 \partial_t u_2 \varphi_2 + d_2 (\nabla_x u_2 + \nabla_y v_2) \cdot (\nabla_x \varphi_2 + \nabla_y \psi_2) \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0 \nabla_y u_0 \cdot \nabla_y \varphi_0 \\
+ b_1 (\varphi_1 - \varphi_0) + b_2 (\varphi_2 - \varphi_0) \right) \, d\Gamma(y) \, dx \, dt = 0.
\]

The strong form of the micro problem is
\[
\begin{aligned}
&c_{1}^\varepsilon \partial_t u_1^\varepsilon = \nabla \cdot (d_{1}^\varepsilon \nabla u_1^\varepsilon), \quad x \in \Omega_1^\varepsilon, \ i = 1, 2 \\
&-\nu \cdot d_{1}^\varepsilon \nabla u_1^\varepsilon = \varepsilon b_1^\varepsilon, \quad x \in \Gamma^\varepsilon \\
&c_{0}^\varepsilon \partial_t u_0^\varepsilon - b_1^\varepsilon - b_2^\varepsilon = \varepsilon^2 \nabla \cdot (d_{0}^\varepsilon \nabla u_0^\varepsilon), \quad x \in \Gamma^\varepsilon
\end{aligned}
\]
\[(20)\]
This model describes simultaneous diffusion in three intertwined continua similar to the previous section, where now the thin continuum - the interface between the other two - is slow.

The strong macro problem is to find functions $u_1(t, x)$, $u_2(t, x)$ and $u_0(t, x, y)$ such that

$$
\begin{align*}
C_i \partial_t u_i + B_i &= \nabla \cdot (D_i \nabla u_i), \quad x \in \Omega, \; i = 1, 2 \\
c_0 \partial_t u_0 - b_1 - b_2 &= \nabla^{\Gamma} \cdot (d_0 \nabla^{\Gamma} u_0), \quad x \in \Omega, \; y \in \Gamma \\
B_i &= \int_{\Gamma} b_i \, d\Gamma(y), \quad x \in \Omega, \; i = 1, 2
\end{align*}
$$

(21)

Here C_i is the average

$$
C_i = \int_{Y_i} c_i \, dy,
$$

and the tensors D_i, $i = 1, 2$ have the coefficients

$$
D_{ikl} = \int_{Y_i} d_i (\nabla_y \omega_{ik} + \tilde{e}_k) \cdot \tilde{e}_l \, dy
$$

where ω_{ik} are the periodic solutions of the cell problem

$$
\begin{align*}
\nabla_y \cdot \left(d_i (\nabla_y \omega_{ik} + \tilde{e}_k) \right) &= 0, \quad y \in Y_i \\
\nu \cdot \left(d_i (\nabla_y \omega_{ik} + \tilde{e}_k) \right) &= 0, \quad y \in \Gamma
\end{align*}
$$

Special Case:

$c_2 = d_2$: One gets $b_2 = 0$ and therefore $B_2 = C_2 = D_2 = 0$. Therefore, the macro model is

$$
\begin{align*}
C \partial_t u_1 + B &= \nabla \cdot (D \nabla u_1), \quad x \in \Omega \\
c_0 \partial_t u_0 - b_1 &= \nabla \cdot (d_0 \nabla u_0), \quad x \in \Omega, \; y \in \Gamma \\
B &= \int_{\Gamma} b_1 \, d\Gamma(y), \quad x \in \Omega
\end{align*}
$$

This model was studied in [9].

Specializing further by assuming that $b_1 = s_1 u_1 + s_0 u_0$ (with $s_1 > 0, s_0 < 0$) is independent of y and $d_0 = 0$, one gets that u_0 is also y-independent and thus

$$
\begin{align*}
C \partial_t u_1 + |\Gamma| b_1 &= \nabla \cdot (D \nabla u_1), \quad x \in \Omega \\
c_0 \partial_t u_0 &= b_1, \quad x \in \Omega, \; y \in \Gamma
\end{align*}
$$

(22)

In this situation the micro model describes adsorption of chemical species on the surfaces Γ_r. The macro model is the well known first-order kinetic model (3). The degenerate case $C = 0$ is called the “fissured medium system” in [15].
6 Double Permeability

Here we have \(c_0 = c_1 = 0, c_2 = 1 \), and the trace conditions are on. This case is equivalent to \(c_0 = c_2 = 0, c_1 = 1 \). The weak micro problem is

\[
\int_0^T \int_{\Omega_1^\varepsilon} \left(c_1^\varepsilon \partial_t u_1^\varepsilon \varphi_1 + d_1^\varepsilon \nabla u_1^\varepsilon \cdot \nabla \varphi_1 \right) \, dx \, dt \\
+ \int_0^T \int_{\Omega_2^\varepsilon} \left(c_2^\varepsilon \partial_t u_2^\varepsilon \varphi_2 + \varepsilon^2 d_2^\varepsilon \nabla u_2^\varepsilon \cdot \nabla \varphi_2 \right) \, dx \, dt \\
+ \int_0^T \int_{\Gamma^\varepsilon} \varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + d_0^\varepsilon \nabla u_0^\varepsilon \cdot \nabla \varphi_0 \right) \, d\Gamma^\varepsilon(x) \, dt = 0.
\]

The weak macro problem is

\[
\int_0^T \int_{\Omega} \int_{Y_1} \left(c_1 \partial_t u_1 \varphi_1 + d_1 (\nabla_x u_1 + \nabla_y v_1) \cdot (\nabla_x \varphi_1 + \nabla_y \psi_1) \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{Y_2} \left(c_2 \partial_t u_2 \varphi_2 + d_2 \nabla_y u_2 \cdot \nabla_y \varphi_2 \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0 (\nabla_x u_0 + \nabla_y \psi_0) \cdot (\nabla_x \varphi_0 + \nabla_y \psi_0) \right) \, d\Gamma(y) \, dx \, dt = 0.
\]

The strong form of the micro problem is

\[
\begin{align*}
\begin{cases}
 c_1^\varepsilon \partial_t u_1^\varepsilon = \nabla \cdot (d_1^\varepsilon \nabla u_1^\varepsilon), & x \in \Omega_1^\varepsilon \\
 c_2^\varepsilon \partial_t u_2^\varepsilon = \varepsilon^2 \nabla \cdot (d_2^\varepsilon \nabla u_2^\varepsilon), & x \in \Omega_2^\varepsilon \\
 \varepsilon c_0^\varepsilon \partial_t u_0^\varepsilon + \nu \cdot (d_1^\varepsilon \nabla u_1^\varepsilon - \varepsilon^2 d_2^\varepsilon \nabla u_2^\varepsilon) = \varepsilon \nabla \cdot (d_0^\varepsilon \nabla u_0^\varepsilon), & x \in \Gamma^\varepsilon \\
 u_0^\varepsilon = u_1^\varepsilon = u_2^\varepsilon, & x \in \Gamma^\varepsilon
\end{cases}
\end{align*}
\]

(23)

This model describes diffusion in a mixture of three materials one of which is slow.

The strong macro problem is to find functions \(u_1(t, x) \) and \(u_2(t, x, y) \) such that

\[
\begin{align*}
 C \partial_t u_1 + B = \nabla \cdot (D \nabla u_1), & \quad x \in \Omega \\
 B = -\int_{\Gamma} \nu \cdot d_2 \nabla_y u_2 \, d\Gamma(y), & \quad x \in \Omega \\
 c_2 \partial_t u_2 = \nabla_y \cdot (d_2 \nabla_y u_2), & \quad x \in \Omega, \ y \in Y_2 \\
 u_1 = u_2, & \quad x \in \Omega, \ y \in \Gamma
\end{align*}
\]

(24)

which is equation (4). Here \(C \) is the average

\[
C = \int_{Y_1} c_1 \, dy + \int_{\Gamma} c_0 \, d\Gamma(y),
\]

15
and the tensor D has the coefficients

$$D_{kl} = \int_{Y_1} d_1(\nabla_y \omega_k + \tilde{e}_k) \cdot \tilde{e}_l \, dy + \int_{\Gamma} d_0(\nabla_y^{\Gamma} \omega_k + \tilde{e}_k) \cdot \tilde{e}_l \, d\Gamma(y)$$

where ω_k is the periodic solution of the cell problem

$$\begin{cases}
\nabla_y \cdot \left(d_1(\nabla_y \omega_k + \tilde{e}_k) \right) = 0, & y \in Y_1 \\
\sigma \cdot \left(d_1(\nabla_y \omega_k + \tilde{e}_k) \right) = \nabla_y^{\Gamma} \cdot \left(d_0(\nabla_y^{\Gamma} \omega_k + \tilde{e}_k) \right), & y \in \Gamma
\end{cases}$$

Special Case: $c_0 = d_0 = 0$: This is the well known double permeability model which is often called the “double porosity” model, see [3] and [12]. In [15] the macro problem of this section is called the “matched micro-structure model”. An early reference to this idea in the soil sciences is [14]. Nonlinear problems of this type were studied in [4].

7 Double Permeability Model with Robin Type Transmission Conditions

Here we have $e_0 = e_1 = 0$, $e_2 = 1$, and the trace conditions are off. This case is equivalent to $e_0 = e_2 = 0$, $e_1 = 1$. The weak micro problem is

$$\int_0^T \int_{\Omega_1} \left(c_1^0 \partial_t u_1^0 \varphi_1 + d_1^0 \nabla u_1^0 \cdot \nabla \varphi_1 \right) \, dx \, dt$$
$$+ \int_0^T \int_{\Omega_2} \left(c_2^0 \partial_t u_2^0 \varphi_2 + \varepsilon^2 d_2^0 \nabla u_2^0 \cdot \nabla \varphi_2 \right) \, dx \, dt$$
$$+ \int_0^T \int_{\Gamma_\varepsilon} \varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + d_0^\varepsilon \nabla u_0^\varepsilon \cdot \nabla \varphi_0 \right)$$
$$+ b_1^\varepsilon (\varphi_1 - \varphi_0) + b_2^\varepsilon (\varphi_2 - \varphi_0) \, d\Gamma^\varepsilon(x) \, dt = 0.$$

The weak macro problem is

$$\int_0^T \int_{\Omega} \int_{Y_1} \left(c_1 \partial_t u_1 \varphi_1 + d_1(\nabla_x u_1 + \nabla_y v_1) \cdot (\nabla_x \varphi_1 + \nabla_y \psi_1) \right) \, dy \, dx \, dt$$
$$+ \int_0^T \int_{\Omega} \int_{Y_2} \left(c_2 \partial_t u_2 \varphi_2 + d_2 \nabla_y u_2 \cdot \nabla \varphi_2 \right) \, dy \, dx \, dt$$
$$+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0(\nabla_x u_0 + \nabla_y v_0) \cdot (\nabla_x \varphi_0 + \nabla_y \psi_0) \right)$$
$$+ b_1(\varphi_1 - \varphi_0) + b_2(\varphi_2 - \varphi_0) \, d\Gamma(y) \, dx \, dt = 0.$$
The strong form of the micro problem is
\[
\begin{align*}
\epsilon^2 \partial_t u_1^\epsilon &= \nabla \cdot (d_1^\epsilon \nabla u_1^\epsilon), & x &\in \Omega^\epsilon \\
\epsilon^2 \partial_t u_2^\epsilon &= \nabla \cdot (d_2^\epsilon \nabla u_2^\epsilon), & x &\in \Omega_2^\epsilon \\
-\tilde{\nu} \cdot d_1^\epsilon \nabla u_1^\epsilon &= \epsilon b_1^\epsilon, \quad \epsilon \tilde{\nu} \cdot d_2^\epsilon \nabla u_2^\epsilon &= b_2^\epsilon, & x &\in \Gamma^\epsilon \\
\epsilon \tilde{\nu} \cdot d_0^\epsilon \nabla u_0^\epsilon - b_1^\epsilon - b_2^\epsilon &= \nabla \cdot (d_0^\epsilon \nabla u_0^\epsilon), & x &\in \Gamma^\epsilon
\end{align*}
\] (25)

This model describes simultaneous diffusion in three intertwined continua one of which is slow.

The strong macro problem is to find functions \(u_0(t, x), u_1(t, x)\) and \(u_2(t, x, y)\) such that
\[
\begin{align*}
C_i \partial_t u_i + B_i &= \nabla \cdot (D_i \nabla u_i), & x &\in \Omega, \quad i = 0, 1 \\
B_0 &= -B_1 - \int_{\Gamma} b_2 \, d\Gamma(y), & x &\in \Omega \\
B_0 &= -B_1 - \int_{\Gamma} b_2 \, d\Gamma(y), & x &\in \Omega \\
c_2 \partial_t u_2 &= \nabla_y \cdot (d_2 \nabla_y u_2), & x &\in \Omega, \quad y \in Y_2 \\
\tilde{\nu} \cdot d_2 \nabla_y u_2 &= b_2, & x &\in \Omega, \quad y \in \Gamma
\end{align*}
\] (26)

Here we have
\[
C_1 = \int_{Y_1} c_1 \, dy, \quad C_0 = \int_{\Gamma} c_0 \, d\Gamma(y).
\]

The tensor \(D_1\) has the coefficients
\[
D_{1kl} = \int_{Y_1} d_1 (\nabla_y \omega_{1k} + \tilde{e}_k) \cdot \tilde{e}_l \, dy
\]
where \(\omega_{1k}\) is the periodic solution of the cell problem
\[
\begin{align*}
\nabla_y \cdot (d_i (\nabla_y \omega_{1k} + \tilde{e}_k)) &= 0, & y &\in Y_i \\
\tilde{\nu} \cdot (d_i (\nabla_y \omega_{1k} + \tilde{e}_k)) &= 0, & y &\in \Gamma
\end{align*}
\]
and the tensor \(D_0\) has the coefficients
\[
D_{0kl} = \int_{\Gamma} (\nabla^\Gamma_y \omega_{0k} + \tilde{e}_k) \cdot \tilde{e}_l \, d\Gamma(y)
\]
where \(\omega_{0k}\) is the periodic solution of the cell problem
\[
\nabla^\Gamma_y \cdot (d_0 (\nabla^\Gamma_y \omega_{0k} + \tilde{e}_k)) = 0, \quad y \in \Gamma.
\]

Special Case: \(c_0 = d_0 = 0\). Then the macro model is
\[
\begin{align*}
C \partial_t u_1 + B &= \nabla \cdot (D \nabla u_1), & x &\in \Omega \\
B &= \int_{\Gamma} b_2 \, d\Gamma(y), & x &\in \Omega \\
c_2 \partial_t u_2 &= \nabla_y \cdot (d_2 \nabla_y u_2), & x &\in \Omega, \quad y \in Y_2 \\
\tilde{\nu} \cdot d_2 \nabla_y u_2 &= b_2, & x &\in \Omega, \quad y \in \Gamma
\end{align*}
\] (27)
Then one gets a double permeability model with Robin type transmission conditions, see equation (5). In [15] this macro model is called the "regularized micro-structure model". Models of this kind with nonlinear transmission conditions were studied in [11].

8 Slow Membranes

Here we have \(\epsilon_1 = 0, \epsilon_0 = \epsilon_2 = 1 \), and the trace conditions are off. This case is equivalent to \(\epsilon_0 = \epsilon_1 = 1, \epsilon_2 = 0 \). The weak micro problem is

\[
\int_0^T \int_{\Omega_1^\epsilon} \left(c_1^\epsilon \partial_t u_1^\epsilon \varphi_1 + d_1^\epsilon \nabla u_1^\epsilon \cdot \nabla \varphi_1 \right) \, dx \, dt \\
+ \int_0^T \int_{\Omega_2^\epsilon} \left(c_2^\epsilon \partial_t u_2^\epsilon \varphi_2 + \epsilon^2 d_2^\epsilon \nabla u_2^\epsilon \cdot \nabla \varphi_2 \right) \, dx \, dt \\
+ \int_0^T \int_{\Gamma^\epsilon} \epsilon \left(c_0^\epsilon \partial_t u_0^\epsilon \varphi_0 + \epsilon^2 d_0^\epsilon \nabla u_0^\epsilon \cdot \nabla \varphi_0 \\
+ b_1^\epsilon (\varphi_1 - \varphi_0) + b_2^\epsilon (\varphi_2 - \varphi_0) \right) \, d\Gamma^\epsilon(x) \, dt = 0.
\]

The weak macro problem is

\[
\int_0^T \int_{\Omega} \int_{Y_1} \left(c_1 \partial_t u_1 \varphi_1 + d_1 (\nabla_x u_1 + \nabla_y u_1) \cdot (\nabla_x \varphi_1 + \nabla_y \psi_1) \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{Y_2} \left(c_2 \partial_t u_2 \varphi_2 + d_2 \nabla_y u_2 \cdot \nabla_y \varphi_2 \right) \, dy \, dx \, dt \\
+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0 \nabla^\Gamma_y u_0 \cdot \nabla^\Gamma_y \varphi_0 \\
+ b_1 (\varphi_1 - \varphi_0) + b_2 (\varphi_2 - \varphi_0) \right) \, d\Gamma(y) \, dx \, dt = 0.
\]

The strong form of the micro problem is

\[
\begin{cases}
 c_1^\epsilon \partial_t u_1^\epsilon = \nabla \cdot (d_1^\epsilon \nabla u_1^\epsilon), & x \in \Omega_1^\epsilon \\
 c_2^\epsilon \partial_t u_2^\epsilon = \epsilon^2 \nabla \cdot (d_2^\epsilon \nabla u_2^\epsilon), & x \in \Omega_2^\epsilon \\
 -\vec{\eta} \cdot d_1^\epsilon \nabla u_1^\epsilon = \epsilon b_1^\epsilon, \epsilon \vec{\eta} \cdot d_2^\epsilon \nabla u_2^\epsilon = b_2^\epsilon, & x \in \Gamma^\epsilon \\
 c_0^\epsilon \partial_t u_0^\epsilon - b_1^\epsilon - b_2^\epsilon = \epsilon^2 \nabla^\epsilon \cdot (d_0^\epsilon \nabla^\epsilon u_0^\epsilon), & x \in \Gamma^\epsilon
\end{cases}
\]

(28)

This model describes simultaneous diffusion in three intertwined continua two of which - including the thin one - are slow.
The strong macro is to find functions \(u_1(t, x)\) and \(u_2(t, x, y), u_0(t, x, y)\) such that

\[
\begin{align*}
C_1 \partial_t u_1 + B &= \nabla \cdot (D \nabla u_1), & x \in \Omega \\
B &= \int_{\Gamma} b_1 \ d\Gamma(y), & x \in \Omega \\
c_2 \partial_t u_2 &= \nabla_y \cdot (d_2 \nabla_y u_2), & x \in \Omega, \ y \in Y_2 \\
\nu \cdot d_2 \nabla_y u_2 &= b_2, & x \in \Omega, \ y \in \Gamma \\
c_0 \partial_t u_0 - b_1 - b_2 &= \nabla \Gamma \cdot (d_0 \nabla \Gamma u_0), & x \in \Omega, \ y \in \Gamma
\end{align*}
\] (29)

Here \(C_1\) is the average

\[
C = \int_{Y_1} c_1 \ dy,
\]

and the tensor \(D\) has the coefficients

\[
D_{k\ell} = \int_{Y_1} d_1 (\nabla_y \omega_k + \bar{\epsilon}_k) \cdot \bar{\epsilon}_\ell \ dy
\]

where \(\omega_k\) are the periodic solutions of the cell problem

\[
\begin{align*}
\nabla_y \cdot \left(d_1 (\nabla_y \omega_k + \bar{\epsilon}_k) \right) &= 0, & y \in Y_1 \\
\nu \cdot \left(d_1 (\nabla_y \omega_k + \bar{\epsilon}_k) \right) &= 0, & y \in \Gamma
\end{align*}
\]

Special Cases: \(c_0 = d_0\): Then one gets \(b_1 + b_2 = 0\). Therefore, the macro model is

\[
\begin{align*}
C_1 \partial_t u_1 + B &= \nabla \cdot (D \nabla u_1), & x \in \Omega \\
B &= -\int_{\Gamma} b_2 \ d\Gamma(y), & x \in \Omega \\
c_2 \partial_t u_2 &= \nabla_y \cdot (d_2 \nabla_y u_2), & x \in \Omega, \ y \in Y_2 \\
\nu \cdot d_2 \nabla_y u_2 &= b_2, & x \in \Omega, \ y \in \Gamma
\end{align*}
\] (30)

This is the same as the special case in section 7.

\(c_2 = d_2 = 0\). Then one gets

\[
\begin{align*}
C \partial_t u_1 + B &= \nabla \cdot (D \nabla u_1), & x \in \Omega \\
B &= \int_{\Gamma} b_1 \ d\Gamma(y), & x \in \Omega \\
c_0 \partial_t u_0 - b_1 &= \nabla \cdot (d_0 \nabla u_0), & x \in \Omega, \ y \in \Gamma
\end{align*}
\] (31)

This is the same as the special case of section 5.
9 Systems of Fast Fissures and Slow Blocks

Here we have $e_0 = 0$, $e_1 = e_2 = 1$, and the trace conditions are on. The weak micro problem is

$$\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i^\varepsilon \partial_t u_i^\varepsilon \varphi_i + \varepsilon^2 d_i^\varepsilon \nabla u_i^\varepsilon \cdot \nabla \varphi_i \right) \, dx \, dt$$

$$+ \int_0^T \int_{\Gamma^\varepsilon} \varepsilon \left(c_0^\varepsilon \partial_t u_0^\varepsilon \varphi_0 + d_0^\varepsilon \nabla u_0^\varepsilon \cdot \nabla \varphi_0 \right) \, d\Gamma^\varepsilon(x) \, dt = 0.$$

The weak macro problem is

$$\sum_{i=1,2} \int_0^T \int_{\Omega} \int_{Y_i} \left(c_i \partial_t u_i \varphi_i + d_i \nabla_y u_i \cdot \nabla \varphi_i \right) \, dy \, dx \, dt$$

$$+ \int_0^T \int_{\Omega} \int_{\Gamma} \left(c_0 \partial_t u_0 \varphi_0 + d_0 (\nabla_x u_0 + \nabla_y \nu_0) \cdot (\nabla_x \varphi_0 + \nabla_y \psi_0) \right) \, d\Gamma(y) \, dx \, dt = 0.$$

The strong form of the micro problem is

$$\begin{cases}
 c_i^\varepsilon \partial_t u_i^\varepsilon = \varepsilon^2 \nabla \cdot (d_i^\varepsilon \nabla u_i^\varepsilon), & x \in \Omega_i, \ i = 1, 2 \\
 c_0^\varepsilon \partial_t u_0^\varepsilon + \varepsilon \nu \cdot (d_1^\varepsilon \nabla u_1^\varepsilon - d_2^\varepsilon \nabla u_2^\varepsilon) = \nabla^\varepsilon \cdot (d_0^\varepsilon \nabla \varphi_0^\varepsilon), & x \in \Gamma^\varepsilon \\
 u_0^\varepsilon = u_1^\varepsilon = u_2^\varepsilon, & x \in \Gamma^\varepsilon
\end{cases} \quad (32)$$

This model describes diffusion in a mixture of fast fissures that are surrounded by slow blocks.

The strong macro problem is to find functions $u_0(t, x)$ and $u_1(t, x, y), u_2(t, x, y)$ such that

$$\begin{cases}
 C \partial_t u_0 + B = \nabla \cdot (D \nabla u_0), & x \in \Omega \\
 B = \int_{\Gamma} \nu \cdot (d_1 \nabla_y u_1 - d_2 \nabla_y u_2) \, d\Gamma(y), & x \in \Omega \\
 c_i \partial_t u_i = \nabla_y \cdot (d_i \nabla_y u_i), & x \in \Omega, \ y \in Y_i, \ i = 1, 2 \\
 u_0 = u_1 = u_2, & x \in \Omega, \ y \in \Gamma \quad (33)
\end{cases}$$

Here C is the average

$$C = \int_{\Gamma} c_0 \, d\Gamma(y),$$

and the tensor D has the coefficients

$$D_{kl} = \int_{\Gamma} d_0 (\nabla_y \omega_k + \varepsilon_k) \cdot \varepsilon_l \, d\Gamma(y).$$
where ω_k is the periodic solution of the cell problem

$$\nabla_y^\Gamma \cdot \left(\epsilon_0 (\nabla_y \omega_k + \tilde{e}_k) \right) = 0, \ y \in \Gamma.$$

Special Case: $c_1 = d_1 = 0$. Then the macro model is

$$\begin{cases}
C \partial_t u_0 + B = \nabla \cdot (D \nabla u_0), & x \in \Omega \\
B = -\int_{\Gamma} \nu \cdot d_2 \nabla_y u_2 \ d\Gamma(y), & x \in \Omega \\
c_2 \partial_t u_2 = \nabla_y \cdot (d_2 \nabla_y u_2), & x \in \Omega, \ y \in Y_2 \\
u_0 = u_2, & x \in \Omega, \ y \in \Gamma
\end{cases}$$

This is the same double permeability model as in section 6. The micro model of this section was used in [16]; it seems likely that using the homogenized model could save quite some computer time in such situations.

10 Fast Membranes

Here we have $\epsilon_0 = 0$, $\epsilon_1 = \epsilon_2 = 1$, and the trace conditions are off. The weak micro problem is

$$\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(\epsilon_i \partial_t u_i \varphi_i + \epsilon^2 d_i \nabla \nabla \varphi_i \right) \ dx \ dt$$

$$+ \int_0^T \int_{\Gamma^\epsilon} \left(c_0 \partial_t u_0 \varphi_0 + d_0 \nabla \varphi_0 \right) \ dx \ dt = 0.$$

The weak macro problem is

$$\sum_{i=1,2} \int_0^T \int_{\Omega_i} \left(c_i \partial_t u_i \varphi_i + d_i \nabla_y \nabla \varphi_i \right) \ dy \ dx \ dt$$

$$+ \int_0^T \int_{\Omega} \left(c_0 \partial_t u_0 \varphi_0 + d_0 (\nabla_x u_0 + \nabla_y^\Gamma \psi_0) \cdot (\nabla_x \varphi_0 + \nabla_y^\Gamma \psi_0) \right) \ d\Gamma(y) dx dt = 0.$$

The strong form of the micro problem is

$$\begin{cases}
\epsilon_i \partial_t u_i = \epsilon^2 \nabla \cdot (d_i \nabla u_i^\epsilon), & x \in \Omega_i, \ i = 1, 2 \\
-\epsilon \tilde{\nu} \cdot d_i \nabla u_i^\epsilon = b_i, & x \in \Gamma^\epsilon \\
c_0 \partial_t u_0 - b_1 - b_2 = \nabla \cdot (d_0 \nabla u_0^\epsilon), & x \in \Gamma^\epsilon
\end{cases} \tag{34}$$
This system describes simultaneous diffusion in three intertwined continua where the thin one is fast and the other two are slow.

The strong macro problem is to find functions $u_0(t, x)$ and $u_1(t, x, y), u_2(t, x, y)$ such that

\[
\begin{aligned}
C\partial_t u_0 + B &= \nabla \cdot (D\nabla u_0), \quad x \in \Omega \\
B &= -\sum_{i=1,2} \int_{\Gamma} b_i \, d\Gamma(y), \quad x \in \Omega \\
c_i \partial_t u_i &= \nabla_y \cdot (d_i \nabla_y u_i), \quad x \in \Omega, \; y \in Y_i, \; i = 1, 2 \\
-\tilde{\nu} \cdot d_1 \nabla_y u_1 &= b_1, \quad x \in \Omega, \; y \in \Gamma \\
\tilde{\nu} \cdot d_2 \nabla_y u_2 &= b_2, \quad x \in \Omega, \; y \in \Gamma
\end{aligned}
\]
(35)

Here

\[
C = \int_{\Gamma} c_0 \, d\Gamma(y),
\]

and the tensor D has the coefficients

\[
D_{kl} = \int_{\Gamma} (\nabla_y^\Gamma \omega_k + \tilde{e}_k) \cdot \tilde{e}_l \, d\Gamma(y)
\]

where ω_k is the periodic solution of the cell problem

\[
\nabla_y^\Gamma \cdot \left(d_0 (\nabla_y^\Gamma \omega_k + \tilde{e}_k) \right) = 0, \; y \in \Gamma.
\]

Special Case: $c_1 = d_1 = 0$. Then the macro model is

\[
\begin{aligned}
C\partial_t u_0 + B &= \nabla \cdot (D\nabla u_0), \quad x \in \Omega \\
B &= -\int_{\Gamma} b_2 \, d\Gamma(y), \quad x \in \Omega \\
c_2 \partial_t u_2 &= \nabla_y \cdot (d_2 \nabla_y u_2), \quad x \in \Omega, \; y \in Y_2 \\
\tilde{\nu} \cdot d_2 \nabla_y u_2 &= b_2, \quad x \in \Omega, \; y \in \Gamma
\end{aligned}
\]

This is the same model as in the special case of sections 7.

11 Two-Scale Convergence

Definition 1 We say that a sequence of functions $u^\varepsilon \in L^2(\Omega)$ two-scale converges to a function $u \in L^2(\Omega; L^2(Y))$ if and only if we have

\[
\int_{\Omega} u^\varepsilon(x) \varphi(x, \frac{x}{\varepsilon}) \, dx \to \int_{\Omega} \int_Y u(x, y) \varphi(x, y) \, dy \, dx
\]

for any test-function $\varphi \in C_0^\infty(\Omega; C_0^\infty(Y))$. We use the symbolic notation $u^\varepsilon \Rightarrow u$.

22
The following lemma is very useful; proofs for the time-independent case can be found in Allaire ([2], 1992, Theorem 1.2 and Proposition 1.14).

Lemma 1 (a) For any bounded sequence \(u^\varepsilon \in L^2(\Omega) \) there exists a function \(u \in L^2(\Omega; L^2_\#(Y)) \) such that for a subsequence \(u^\varepsilon \to u \).

(b) Let \(u^\varepsilon \in H^1(\Omega) \) be a bounded sequence which converges weakly to a limit \(u \in H^1(\Omega) \). Then \(u^\varepsilon \) two-scale converges to \(u \), and there exists a function \(v \in L^2(\Omega; H^1_\#(Y)/\mathbb{R}) \) such that for a subsequence \(\nabla u^\varepsilon \to \nabla_x u + \nabla_y v \).

(c) Let \(u^\varepsilon \) and \(\varepsilon \nabla u^\varepsilon \) be bounded sequences in \(L^2(\Omega) \). Then there exists a function \(u \in L^2(\Omega; H^1_\#(Y)) \) such that for a subsequence \(u^\varepsilon \to u \), and \(\varepsilon \nabla u^\varepsilon \to \nabla_y u \).

We generalize this notion by introducing time and allowing subsets \(Y_i \subset Y \) or surfaces \(\Gamma \subset Y \).

Definition 2 (a) We say that a sequence of functions \(u^\varepsilon \in L^2(0, T; L^2(\Omega^\varepsilon_i)) \) two-scale converges to a function \(u \in L^2([0, T] \times \Omega; L^2(Y_i)) \) iff we have

\[
\int_0^T \int_{\Omega^\varepsilon_i} u^\varepsilon(t, x) \varphi(t, x, \frac{x}{\varepsilon}) \, dx \, dt \to \int_0^T \int_{Y_i} u(x, y) \varphi(t, x, y) \, dy \, dx \, dt
\]

for any test-function \(\varphi \in C_0^\infty([0, T] \times \Omega; C_\#^\infty(Y)) \).

(b) We say that a sequence of functions \(u^\varepsilon \in L^2(0, T; L^2(\Gamma^\varepsilon)) \) two-scale converges to a function \(u \in L^2([0, T] \times \Omega; L^2(\Gamma)) \) iff we have

\[
\int_0^T \int_{\Gamma^\varepsilon} \varepsilon u^\varepsilon(t, x) \varphi(t, x, \frac{x}{\varepsilon}) \, d\Gamma^\varepsilon(x) \, dt \to \int_0^T \int_{\Gamma} u(t, x, y) \varphi(t, x, y) \, d\Gamma(y) \, dx \, dt
\]

for any test-function \(\varphi \in C_0^\infty([0, T] \times \Omega; C_\#^\infty(Y)) \).

Similar results as lemma 1 hold in these situations. It is clear that the trace conditions for triples of functions, i.e., the conditions for admissibility, carry over from \((u_0^\varepsilon, u_1^\varepsilon, u_2^\varepsilon) \) to \((u_0, u_1, u_2) \).

12 Conclusions

The advantage of the approach presented in this paper is that not only a common framework is given for deriving a variety of different macro models; but it is also made clear which assumptions are being made on the micro scale in order to obtain each individual macro model. These assumptions
are twofold: the type of macro model depends on the particular scaling and on the transmission conditions, i.e., the trace conditions. The scaling by the small parameter \(\varepsilon \) indicates the order of magnitude of the diffusivities in the different subdomains. On the other hand, the trace conditions specify wether or not jumps of the variables (concentrations, pressures, temperatures, etc.) are allowed between the different subdomains.

Of course, the final answer to the question which model is the “best” can only be given by testing it with adequate experiments. But in any case, it is helpful to know the assumptions on which the macro models are based.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jiongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jiongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logistic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrique Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrique Zuazua</td>
<td>A diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome &</td>
<td>Mixed-RKD finite element methods for the 2-D hydrodynamic model for</td>
</tr>
<tr>
<td></td>
<td>Chi-Wang Shu</td>
<td>semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermosyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnaux & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin</td>
<td>$L^{2,H}(Q)$-estimates for parabolic equations and applications</td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of solutions of the Korteweg-de Vries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.R. Rajagopal</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary feedback via bending moments only</td>
</tr>
<tr>
<td>1086</td>
<td>Mary Ann Horn & Irena Lasiecka</td>
<td>Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback</td>
</tr>
<tr>
<td>1087</td>
<td>Vilmos Komornik</td>
<td>Decay estimates for a petrovski system with a nonlinear distributed feedback</td>
</tr>
<tr>
<td>1088</td>
<td>Jesse L. Barlow</td>
<td>Perturbation results for nearly uncoupled Markov chains with applications to iterative methods</td>
</tr>
<tr>
<td>1089</td>
<td>Jong-Shenq Guo</td>
<td>Large time behavior of solutions of a fast diffusion equation with source</td>
</tr>
<tr>
<td>1090</td>
<td>Tongwen Chen & Li Qiu</td>
<td>H_{∞} design of general multirate sampled-data control systems</td>
</tr>
<tr>
<td>1091</td>
<td>Satyanad Kichenassamy & Walter Littman</td>
<td>Blow-up surfaces for nonlinear wave equations, I</td>
</tr>
<tr>
<td>1092</td>
<td>Nahum Shminkin</td>
<td>Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies</td>
</tr>
<tr>
<td>1093</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>On the density of the range of the semigroup for semilinear heat equations</td>
</tr>
<tr>
<td>1094</td>
<td>Robert F. Stengel, Laura R. Ray & Christopher I. Marrison</td>
<td>Probabilistic evaluation of control system robustness</td>
</tr>
<tr>
<td>1095</td>
<td>H.O. Fattorini & S.S. Sritharan</td>
<td>Optimal chattering controls for viscous flow</td>
</tr>
<tr>
<td>1096</td>
<td>Kathryn E. Lenz</td>
<td>Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs</td>
</tr>
<tr>
<td>1097</td>
<td>Gang Bao & David C. Dobson</td>
<td>Second harmonic generation in nonlinear optical films</td>
</tr>
<tr>
<td>1098</td>
<td>Avner Friedman & Chaohong Huang</td>
<td>Diffusion in network</td>
</tr>
<tr>
<td>1099</td>
<td>Xinfu Chen, Avner Friedman & Tsuchyoshi Kimura</td>
<td>Nonstationary filtration in partially saturated porous media</td>
</tr>
<tr>
<td>1100</td>
<td>Walter Littman & Baisheng Yan</td>
<td>Rellich type decay theorems for equations $P(D)u = f$ with f having</td>
</tr>
<tr>
<td></td>
<td></td>
<td>support in a cylinder</td>
</tr>
<tr>
<td>1101</td>
<td>Satyanad Kichenassamy & Walter Littman</td>
<td>Blow-up surfaces for nonlinear wave equations, II</td>
</tr>
<tr>
<td>1102</td>
<td>Nahum Shminkin</td>
<td>Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing</td>
</tr>
<tr>
<td>1103</td>
<td>A. Narain</td>
<td>Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation</td>
</tr>
<tr>
<td>1104</td>
<td>Andrew Teel & Laurent Praly</td>
<td>Global stabilizability and observability imply semi-global stabilizability by output feedback</td>
</tr>
<tr>
<td>1105</td>
<td>Karen Rudie & Jan C. Willems</td>
<td>The computational complexity of decentralized discrete-event control problems</td>
</tr>
</tbody>
</table>
John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stojanovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems

Yung-Jen Guo & Walter Littman, The null boundary controllability for semilinear heat equations

Q. Zhang & G. Yin, Turnpike sets in stochastic manufacturing systems with finite time horizon

I. Györi, F. Hartung & J. Turi, Stability in delay equations with perturbed time lags

F. Hartung & J. Turi, On the asymptotic behavior of the solutions of a state-dependent delay equation

Pierre-Alain Gremaud, Numerical optimization and quasiconvexity

Jie Tai Yu, Resultants and inversion formula for N polynomials in N variables

Avner Friedman & J.L. Velázquez, The analysis of coating flows in a strip

Eduardo D. Sontag, Control of systems without drift via generic loops

Yuan Wang & Eduardo D. Sontag, Orders of input/output differential equations and state space dimensions

Scott W. Hansen, Boundary control of a one-dimensional, linear, thermoelastic rod

Robert Lipton & Bogdan Vernescu, Homogenization of two phase emulsions with surface tension effects

Scott Hansen & Enrique Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass

Bei Hu & Jiongmin Yong, Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with piecewise state constraints

Mark H.A. Davis, A deterministic approach to optimal stopping with application to a prophet inequality

M.H.A. Davis & M. Zervos, A problem of singular stochastic control with discretionary stopping

Bernardo Cockburn & Pierre-Alain Gremaud, An error estimate for finite element methods for scalar conservation laws

David C. Dobson & Fadil Santosa, An image enhancement technique for electrical impedance tomography

Jin Ma, Philip Protter, & Jiongmin Yong, Solving forward-backward stochastic differential equations explicitly — a four step scheme

Yong Liu, The equilibrium plasma subject to skin effect

Ulrich Hornung, Models for flow and transport through porous media derived by homogenization

Avner Friedman, Chaocheng Huang, & Jiongmin Yong, Effective permeability of the boundary of a domain

Gang Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics

Angelo Favini, Mary Ann Horn, & Irena Lasiecka, Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation