A DETERMINISTIC APPROACH TO OPTIMAL STOPPING
WITH APPLICATION TO A PROPHET INEQUALITY

By

Mark H.A. Davis

IMA Preprint Series # 1142
June 1993
A DETERMINISTIC APPROACH TO OPTIMAL STOPPING
WITH APPLICATION TO A PROPHET INEQUALITY

MARK H.A. DAVIS*

Abstract. This paper concerns the optimal stopping problem of maximizing \(EY_\tau \) over the set \(\mathcal{M}_0 \) of all finite-valued stopping times \(\tau \) of a filtration \((\mathcal{F}_k) \), where \(Y_k \) is a non-negative adapted process. It is shown that \(\sup_{\tau \in \mathcal{M}_0} EY_\tau = E[\sup_{k \in Z_+} (Y_k + \lambda_k)] \) for some process \((\lambda_k) \) satisfying \(E\lambda_\tau = 0 \) for all \(\tau \in \mathcal{M}_0 \). Thus \((\lambda_k) \) is the Lagrange multiplier corresponding to the “non-anticipativity constraint” that \(\tau \) is a stopping time (rather than a general non-adapted random time). The basic “prophet inequality” of Krenkel and Sucheston is shown to follow easily from this result.

Key words. Optimal stopping, Snell envelope, discrete-parameter martingales, Lagrange multipliers, randomized stopping rules

AMS(MOS) subject classifications. 62L15, 60G40, 60G42

1. Introduction. Let \((\Omega, \mathcal{F}, P)\) be a complete probability space and \((\mathcal{F}_k)_{k \in Z_+}\) be a filtration, i.e. \(\mathcal{F}_k \) is a sub \(\sigma \)-field of \(\mathcal{F} \) for each \(k \in Z_+ = \{0, 1, 2, \ldots \} \), \(\mathcal{F}_k \subset \mathcal{F}_{k+1} \) and each \(\mathcal{F}_k \) contains all the null sets of \(\mathcal{F} \). \(\mathcal{M}_n, \mathcal{M}_n^N \) will denote the sets of \(\mathcal{F}_k \)-stopping times \(\tau \) such that, respectively, \(P[n \leq \tau < \infty] = 1 \) and \(P[n \leq \tau \leq N] = 1 \). Now let \((Y_k)_{k \in Z_+}\) be a stochastic process such that \(Y_k \) is \(\mathcal{F}_k \)-measurable for each \(k \in Z_+ \), \(Y_k \geq 0 \) a.s. and

\[
M := E \left[\sup_{k \in Z_+} Y_k \right] < \infty.
\]

The general problem of optimal stopping, as discussed in, for example, \([4]-[5]\), is to compute

\[
V = \sup_{\tau \in \mathcal{M}_0} EY_\tau
\]

and to find – if one exists – a stopping time \(\hat{\tau} \) such that \(V = EY_{\hat{\tau}} \).

The problem is of course trivial if \(\mathcal{F}_0 = \mathcal{F} \). Then any \(Z_+ \)-valued random variable is in \(\mathcal{M}_0 \) and \(V = M \), defined by (1). Optimal times take the form \(\hat{\tau}(w) \in \arg\max_k Y_k(w) \) (assuming the maximum is attained) and, as pointed out by Neveu \([4]\) the smallest such time can be expressed as \(\hat{\tau}(w) = \min\{k : Y_k(w) = Z_k(w)\} \) where \(Z_k(w) = \sup_{j \geq k} Y_j(w) \). The essence of the problem is therefore that in general \(\mathcal{F}_k \neq \mathcal{F} \) and the times \(\tau \) must satisfy the non-activativity requirement \(\{\tau \leq k\} \in \mathcal{F}_k, k \in Z_+ \) which can be thought of as a linear equality constraint, i.e. \(P[\tau \leq k | \mathcal{F}_k] = I_{[\tau \leq k]} \). It can be enforced by introducing a suitable Lagrange multiplier process \(\lambda_k \). This idea, originally due to Wets \([6]\) in the context of stochastic programming, has been pursued in a control theory setting in, for example,
In this paper we will show that there is a unique choice of multipliers λ_k such that V defined by (2) is given by

$$V = E \left[\sup_{k \in \mathbb{N}} (Y_k + \lambda_k) \right],$$

while for any stopping time τ, $E[\lambda_\tau] = 0$, so that $E[Y_\tau + \lambda_\tau] = EY_\tau$. Thus optimal or ϵ-optimal stopping times are actually pathwise maximizers of $Y_k + \lambda_k$. λ_k is given explicitly by $\lambda_k = M_\infty - M_k$, where M_k is the martingale component in the Doob decomposition of the Snell envelope Z_k of Y_k. The Snell envelope is described in Section 2 below. Section 3 discusses the finite-horizon case, where it becomes evident from a dynamic programming argument why the multiplier takes the form it does. The general case is treated in Section 4, the main result being Theorem 1 in that section. This is applied in Section 5 to derive the basic "prophet inequality" $M \leq 2V$ of Krengel and Sucheston, valid when the Y_k's are independent random variables.

2. The Snell envelope. This section summarizes information that can be found in chapter VI of Neveu [4]. The Snell envelope of Y_k is the process Z_k defined by

$$Z_k = \text{ess sup}_{\tau \in \mathcal{M}_k} E[Y_\tau | \mathcal{F}_k].$$

Z_k is integrable in view of condition (1). It is a supermartingale, is the smallest non-negative supermartingale dominating Y_k, and satisfies the recursion $Z_k = Y_k \lor E[Z_{k+1} | \mathcal{F}_k]$. The main general result of optimal stopping theory is that an optimal stopping time exists if and only if the stopping time $\sigma_0 := \min \{ k : Y_k = Z_k \}$ is a.s. finite (i.e. belongs to \mathcal{M}_0), and then σ_0 is the smallest optimal time. Even if no optimal time exists, $\sigma_\epsilon := \min \{ k : Z_k - Y_k \leq \epsilon \}$ is in \mathcal{M}_0 for any $\epsilon > 0$ and satisfies $EY_{\sigma_\epsilon} \geq V - \epsilon$, where V is given by (2).

For finite horizon problems the Snell envelope can be defined in an algorithmic manner as follows: let

$$Z_N^N = Y_N$$

$$Z_k^N = Y_k \lor E[Z_{k+1}^N | \mathcal{F}_k], \quad k = N - 1, \ldots, 0.$$}

Then

$$Z_k^N = \text{ess sup}_{\tau \in \mathcal{M}_k^N} EY_\tau.$$}

An optimal stopping time $\hat{\sigma}^N \in \mathcal{M}_0^N$ always exists and is given by

$$\hat{\sigma}^N = \min \{ k \leq N : Y_k = Z_k^N \}.$$
Being a non-negative supermartingale, Z_k has the Doob decomposition $Z_k = M_k - A_k$ where M_k is a martingale and A_k is a predictable increasing process (i.e. A_k is \mathcal{F}_{k-1} measurable, $k = 1, 2, \ldots$). M_k and A_k are given recursively by

\begin{align*}
M_k &= M_{k-1} + (Z_k - E[Z_k|\mathcal{F}_{k-1}]), \quad M_0 = Z_0 \\
A_k &= A_{k-1} + (Z_{k-1} - E[Z_{k-1}|\mathcal{F}_{k-1}]), \quad A_0 = 0
\end{align*}

3. **The finite horizon case.** Here we consider maximizing EY_τ over $\tau \in \mathcal{M}_0^N$. It is instructive to consider an enlarged class of randomized strategies \mathcal{R}^N as discussed by, for example, Shiryaev [5]. An element of \mathcal{R}^N is an adapted sequence $\theta = \{\theta_0, \ldots, \theta_N\}$ with $\theta_k \in [0, 1], k = 0, \ldots, N-1$ and $\theta_N \equiv 1$. One flips a coin with heads probability θ_k in order to decide whether to stop the process at time k given that it was not stopped earlier. An ordinary stopping time τ is the special case $\theta_k = I_{\{\tau = k\}}$. The stopping time distribution is then $\rho_k, k = 0, \ldots, N$ given by

$$\rho_k = \theta_k \prod_{j=0}^{k-1} (1 - \theta_j)$$

and the corresponding reward is

$$J(\theta) = E \sum_{k=0}^{N} Y_k \rho_k,$$

so that $J(\theta) = EY_\tau$ when $\theta_k = I_{\{\tau = k\}}$. It is easily shown that the available reward is not increased by enlarging the class of strategies in this way, i.e.

$$\sup_{\theta \in \mathcal{R}^N} J(\theta) = \sup_{\tau \in \mathcal{M}_0^N} EY_\tau.$$

It is convenient to define

$$\zeta_k = \prod_{j=0}^{k-1} (1 - \theta_j) \quad k = 1, \ldots, N$$

and $\zeta_0 = 1$, so that

\begin{align*}
(7) \\
\zeta_{k+1} &= (1 - \theta_k)\zeta_k, \quad \zeta_0 = 1 \\
\rho_k &= \zeta_k \theta_k
\end{align*}

and the reward is

$$J(\theta) = E \sum_{k=0}^{N} Y_k \zeta_k \theta_k.$$
We now wish to consider *pathwise* optimization, relaxing the adaptedness constraint but introducing a multiplier process. Thus fix \(w \in \Omega \), write \(Y_k := Y_k(w) \) and consider maximizing \(K(w, \theta) \) given by

\[
K(w, \theta) = \sum_{k=0}^{N} (Y_k + \lambda_k) \zeta_k \theta_k
\]

over arbitrary sequences \(\theta \), where \(\zeta_k \) is given by (7). This is an optimal control problem, and elementary application of dynamic programming given the following result.

Lemma 1. Let \(V_k(\zeta) = \max_{\theta_k, \ldots, \theta_{N-1}} \sum_{j=k}^{N} (Y_j + \lambda_j) \zeta_j \theta_j \) subject to (7) with \(\zeta_k = \zeta \). Then \(V_k(\zeta) = \beta_k(\lambda) \zeta \) where

\[
\begin{align*}
\beta_N(\lambda) &= Y_N + \lambda_N \\
\beta_k(\lambda) &= (Y_k + \lambda_k) \lor \beta_{k+1}(\lambda) \quad k = N - 1, \ldots, 0.
\end{align*}
\]

(8)

This shows that, as before, “randomization” has no effect and \(\beta_0(\lambda) = \max_{0 \leq k \leq N} (Y_k + \lambda_k) \).

Most of the remaining argument is based on the simple identity \(a \lor b = b + [a - b]^+ \), where \([c]^+ = c \lor 0 \). We write \(E^k X := E[X | \mathcal{F}_k] \) for integrable r.v.’s \(X \). Take for example \(k = N - 1 \) in (8) and assume \(\lambda_N = 0 \), to give

\[
\beta_{N-1}(\lambda) = Y_N + [Y_{N-1} + \lambda_{N-1} - Y_N]^+
\]

If we choose \(\lambda_{N-1} = Y_N - E^{N-1}Y_N \) then the optimal decision at time \(N - 1 \) is \(\hat{\theta}_{N-1} = I_{\{Y_{N-1} \geq E^{N-1}Y_N\}} \) which coincides with the best non-anticipative decision. Further,

\[
E \sum_{j=N-1}^{N} (Y_j + \lambda_j) \zeta_j \theta_j = E \sum_{j=N-1}^{N} Y_j \zeta_j \theta_j
\]

for any adapted \(\theta \), and these choices of \(\lambda_{N-1}, \lambda_N \) are the only ones for which these two properties hold. The general result is as follows.

Proposition 1. Let \(Z^N_k \) be the Snell envelope for the \(N \)-horizon problem, defined by (5). Define

\[
\begin{align*}
\alpha_N &= Y_N, \quad \lambda_N = 0 \\
\alpha_k &= \alpha_{k+1} + [Y_k - E^k Z^N_{k+1}]^+, \quad k = N - 1, \ldots, 0 \\
\lambda_k &= \alpha_{k+1} - E^k \alpha_{k+1}, \quad k = N - 1, \ldots, 0
\end{align*}
\]

(9) (10)

Then, in the notation of Lemma 1, \(\alpha_k = \beta_k(\lambda) \),

\[
E[\alpha_k | \mathcal{F}_k] = Z^N_k,
\]

(11)
and the strategy \(\hat{\theta}_k = \mathbb{I}_{\{\pi_N(w) = k\}} \) maximizes \(K(w, \theta) \) for almost every \(w \).

Proof. This is proved by a simple induction argument. For example, to verify (11), suppose that \(E[\alpha_{k+1}|\mathcal{F}_{k+1}] = Z^N_{k+1} \); then from (9)

\[
E^k \alpha_k = E^k \alpha_{k+1} + [Y_k - E^k Z^N_{k+1}]^+
\]

\[
= E^k Z^N_{k+1} + [Y_k - E^k Z^N_{k+1}]^+
\]

\[
= (E^k Z^N_{k+1}) \lor Y_k = Z^N_k,
\]

showing that (11) holds for all \(k \), since clearly it holds when \(k = N \). \(\square \)

It is possible to express (9) in more convenient form. Denote temporarily \(Y := Y_k, Z := Z^N_k \) and \(E := E^k Z^N_{k+1} \). Then \(Z = Y \lor E = Y + [E - Y]^+ \) and hence \([Y - E]^+ = [E - Y]^- = [E - Y]^+ - (E - Y) = (Z - Y) - (E - Y) = Z - E\), so that we have

\[
\alpha_N = Z^N_N, \quad \alpha_k = \alpha_{k+1} + Z^N_k - E[Z^N_{k+1}|\mathcal{F}_k]
\]

or

\[
\alpha_k = \sum_{j=k}^{N-1} (Z^N_j - E^j Z^N_{j+1}) + Z^N_N.
\]

4. The general case. We now resume consideration of the infinite-horizon problem. Recall that \(Z_k \) denotes the Snell envelope, defined by (4).

Lemma 2. \(E\{\sum_{k=0}^{\infty} (Z_k - E^k Z_{k+1})\} < \infty \); in particular

\[
\sum_{n=0}^{\infty} (Z_k - E^k Z_{k+1}) < \infty \text{ a.s.}
\]

Proof. Each term in the sum is a.s. non-negative and the \(n \)'th partial sum satisfies

\[
E \sum_{k=0}^{N} (Z_k - E^k Z_{k+1}) = E(Z_0 - Z_{N+1}) \leq EZ_0 < \infty.
\]

The result follows by monotone convergence. \(\square \)

Since \(Z_k \) is a non-negative supermartingale, the limit \(Z_\infty = \lim_{k \to \infty} Z_k \) exists a.s. and in \(L_1 \), and by analogy with (9), (10) we now define

\[
\alpha_k = \sum_{j=k}^{\infty} (Z_j - E^j Z_{j+1}) + Z_\infty
\]

(12)

\[
\lambda_k = \alpha_k - Z_k(= \alpha_{k+1} - E^k Z_{k+1}).
\]

(13)

We see from (6) that \(\lambda_k \) can be expressed as \(\lambda_k = M_\infty - M_k \). This brings us to the main result.
Theorem 1. Suppose that \(Y_k \geq 0 \) and that condition (1) is satisfied. Define \(\alpha_k, \lambda_n \) by (12), (13). so that \(\lambda_k = M_\infty - M_k \) where \(M_k \) is the martingale appearing in the Doob decomposition of the Snell envelope \(Z_k \) of \(Y_k \). Then

\[
\sup_{\tau \in M_0} EY_\tau = E \left\{ \sup_{k \in Z_+} (Y_k + \lambda_k) \right\},
\]

while \(E\lambda_\tau = 0 \) for any stopping time \(\tau \in M_0 \).

Proof. It follows as in the previous section that \(\alpha_k \) defined by (12) satisfies

\[
\alpha_k = \alpha_{k+1} + [Y_k - E^k Z_{k+1}]^+
\]

and hence by a dynamic programming argument that

\[
\alpha_k = \sup_{j \geq k} (Y_j + \lambda_j)
\]

where \(\lambda_j \) is defined by (13). By monotone convergence, and the a.s. and \(L_1 \) convergence of \(Z_k \) to \(Z_\infty \),

\[
E[\alpha_k | \mathcal{F}_k] = \lim_{N \rightarrow \infty} \left[\sum_{j=k}^{N} (Z_j - E^j Z_{j+1}) + Z_\infty | \mathcal{F}_k \right]
\]

\[
= Z_k + \lim_{N \rightarrow \infty} E[Z_\infty - Z_{N+1} | \mathcal{F}_k]
\]

\[
= Z_k.
\]

In particular (a) \(E\alpha_0 = EZ_0 \), from which (14) follows, and (b) \(E[\lambda_k | \mathcal{F}_k] = 0 \), so that for any \(\tau \in M_0 \)

\[
E\lambda_\tau = E \left\{ \sum_{k=0}^{\infty} I_{\{\tau = k\}} \lambda_k \right\}
\]

\[
= E \left\{ \sum_{k=0}^{\infty} I_{\{\tau = k\}} E[\lambda_k | \mathcal{F}_k] \right\} = 0.
\]

This completes the proof. \[\square\]

5. Prophet Inequalities. “Prophet inequalities” are statements of the form \(M \leq cV \), where \(M, V \) are defined by (1), (2), \(c \) is a constant and the inequality holds for all probability measures \(P \) in some set \(\mathcal{C} \). The interpretation then is a “prophet” possessed of complete clairvoyance can obtain a reward which is only \(c \) times that of a player restricted to non-anticipative strategies. An excellent survey of results and techniques in this area can be found in Hill and Kertz [2]. The following classical result of Krengel, Sucheston and Garling [3] follows easily from Theorem 1.
Theorem 2. Suppose that \(Y_k \geq 0 \) for all \(k \), that condition (1) holds and that for each \(k \in \mathbb{Z}_+ \) and \(j > k \) the random variable \(Y_j \) is independent of \(\mathcal{F}_k \). Then \(M \leq 2V \).

Remark. The conditions imply that the r.v.'s \(Y_k \) are mutually independent and constitute a semiamart in the terminology of [4]. It is clear that under these conditions

\[
V = \sup_{\tau \in \mathcal{M}_0'} EY_{\tau}
\]

where \(\mathcal{M}_0' \) denoted the set of finite-valued stopping times of the natural filtration

\[
\mathcal{F}_k' = \sigma\{Y_0, Y_1, \ldots, Y_k\}.
\]

Proof. Under the independence condition stated, it follows from the property \(Z_k = Y_k \lor E(Z_{k+1}|\mathcal{F}_k) \) that there is a sequence of constants \(v_0 \geq v_1 \geq v_2 \cdots \geq 0 \) such that

\[
Z_k = Y_k \lor v_{k+1}
\]

and

\[
v_k = E[Y_k \lor v_{k+1}]
\]

Thus, from (12) and (13)

\[
Y_k + \lambda_k = \sum_{j=k}^{\infty} [Y_j - v_{j+1}]^+ + Y_k - Y_k \lor v_{k+1} + Z_\infty
\]

(15)

\[
= \sum_{j=k+1}^{\infty} [Y_j - v_{j+1}]^+ + Y_k - v_{k+1} + Z_\infty,
\]

where the second equality follows from the representation \(Y_k \lor v_{k+1} = v_{k+1} + [Y_k - v_{k+1}]^+ \). Thus from (14) and using (15)

\[
V = E\{ \sup_{k \in \mathbb{Z}_+} (Y_k + \lambda_k) \}
\]

\[
\geq E\{ \sup_{k \in \mathbb{Z}_+} (Y_k - v_{k+1}) \}
\]

\[
\geq E\{ \sup_{k \in \mathbb{Z}_+} (Y_k - v_0) \}
\]

\[
= M - V
\]

Thus \(M \leq 2V \), as claimed. \(\Box \)

Acknowledgement. This paper was provoked by conversations with Ioannis Karatzas and Victor de la Peña during a visit to Columbia University, April 1993. It was written at the Institute for Mathematics and its Applications, University of Minnesota, where the author was supported by funds provided by the NSF.
REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jiongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jiongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with logistic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion equations</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrique Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrique Zuazua</td>
<td>An diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu</td>
<td>Mixed-RDKG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string equation</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermostyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnans & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control problems</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin</td>
<td>$L^q(Q)$-estimates for parabolic equations and applications</td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.K. Rajagopal</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary feedback acting via bending moments only</td>
</tr>
<tr>
<td>1086</td>
<td>Mary Ann Horn & Irena Lasiecka</td>
<td>Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback</td>
</tr>
<tr>
<td>1087</td>
<td>Vilmos Komornik</td>
<td>Decay estimates for a petrovski system with a nonlinear distributed feedback</td>
</tr>
<tr>
<td>1088</td>
<td>Jesse L. Barlow</td>
<td>Perturbation results for nearly uncoupled Markov chains with applications to iterative methods</td>
</tr>
<tr>
<td>1089</td>
<td>Jong-Shenq Guo</td>
<td>Large time behavior of solutions of a fast diffusion equation with source</td>
</tr>
<tr>
<td>1090</td>
<td>Tongwen Chen & Li Qiu</td>
<td>H_∞ design of general multirate sampled-data control systems</td>
</tr>
<tr>
<td>1091</td>
<td>Satyanad Kichenassamy & Walter Littman</td>
<td>Blow-up surfaces for nonlinear wave equations, I</td>
</tr>
<tr>
<td>1092</td>
<td>Nahum Shimkin</td>
<td>Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies</td>
</tr>
<tr>
<td>1093</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua</td>
<td>On the density of the range of the semigroup for semilinear heat equations</td>
</tr>
<tr>
<td>1094</td>
<td>Robert F. Stengel, Laura R. Ray & Christopher I. Morrison</td>
<td>Probabilistic evaluation of control system robustness</td>
</tr>
<tr>
<td>1095</td>
<td>H.O. Fattorini & S.S. Sritharan</td>
<td>Optimal chattering controls for viscous flow</td>
</tr>
<tr>
<td>1096</td>
<td>Kathryn E. Lenz</td>
<td>Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs</td>
</tr>
<tr>
<td>1097</td>
<td>Gang Bao & David C. Dobson</td>
<td>Second harmonic generation in nonlinear optical films</td>
</tr>
<tr>
<td>1098</td>
<td>Avner Friedman & Chaocheng Huang</td>
<td>Diffusion in network</td>
</tr>
<tr>
<td>1099</td>
<td>Xinfu Chen, Avner Friedman & Tsuyoshi Kimura</td>
<td>Nonstationary filtration in partially saturated porous media</td>
</tr>
<tr>
<td>1100</td>
<td>Walter Littman & Baisheng Yan</td>
<td>Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder</td>
</tr>
<tr>
<td>1101</td>
<td>Satyanad Kichenassamy & Walter Littman</td>
<td>Blow-up surfaces for nonlinear wave equations, II</td>
</tr>
<tr>
<td>1102</td>
<td>Nahum Shimkin</td>
<td>Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing</td>
</tr>
<tr>
<td>1103</td>
<td>A. Narain</td>
<td>Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation</td>
</tr>
<tr>
<td>1104</td>
<td>Andrew Teel & Laurent Praly</td>
<td>Global stabilizability and observability imply semi-global stabilizability by output feedback</td>
</tr>
<tr>
<td>1105</td>
<td>Karen Rudie & Jan C. Willems</td>
<td>The computational complexity of decentralized discrete-event control problems</td>
</tr>
</tbody>
</table>
John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strongly nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stojevic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems

Yung-Jen Guo & Walter Littman, The null boundary controllability for semilinear heat equations

Q. Zhang & G. Yin, Turnpike sets in stochastic manufacturing systems with finite time horizon

I. Györi, F. Hartung & J. Turi, Stability in delay equations with perturbed time lags

F. Hartung & J. Turi, On the asymptotic behavior of the solutions of a state-dependent delay equation

Pierre-Alain Gremaud, Numerical optimization and quasiconvexity

Jie Tai Yu, Resultants and inversion formula for \(N \) polynomials in \(N \) variables

Avner Friedman & J.L. Velázquez, The analysis of coating flows in a strip

Eduardo D. Sontag, Control of systems without drift via generic loops

Yuan Wang & Eduardo D. Sontag, Orders of input/output differential equations and state space dimensions

Scott W. Hansen, Boundary control of a one-dimensional, linear, thermoelastic rod

Robert Lipton & Bogdan Vernescu, Homogenization of two phase emulsions with surface tension effects

Scott Hansen & Enrique Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass

Bei Hu & Jiongmin Yong, Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints

Mark H.A. Davis, A deterministic approach to optimal stopping with application to a prophet inequality

M.H.A. Davis & M. Zervos, A problem of singular stochastic control with discretionary stopping

Bernardo Cockburn & Pierre-Alain Gremaud, An error estimate for finite element methods for scalar conservation laws

David C. Dobson & Fadil Santosa, An image enhancement technique for electrical impedance tomography

Jin Ma, Philip Protter, & Jiongmin Yong, Solving forward-backward stochastic differential equations explicitly — a four step scheme

Yong Liu, The equilibrium plasma subject to skin effect

Ulrich Hornung, Models for flow and transport through porous media derived by homogenization

Avner Friedman, Chaocheng Huang, & Jiongmin Yong, Effective permeability of the boundary of a domain

Gang Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics

Angelo Favini, Mary Ann Horn, & Irena Lasiecka, Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation