SOURCE LOCALIZATION PROCESSING IN PERTURBED WAVEGUIDES

By

Yongzhi Xu

and

Yi Yan

IMA Preprint Series # 924

February 1992
Source Localization Processing in perturbed Waveguides

Yongzhi Xu \(^1\) and Yi Yan \(^2\)

Abstract

In this paper, we combine the matched-field processing with the boundary integral equation method from the scattering theory to study a sound source localization problem in a perturbed shallow ocean. We assume that there is an inclusion embedded in a shallow water waveguide. Continuous wave (CW), produced by a sound source, is scattered by the inclusion and then received by a hydrophone array. Because the symmetry of the waveguide has been destroyed by the existence of the inclusion, a proper procedure is required to avoid the mismatching. We present a numerical scheme which makes use of the separation of the source and the detection array, and greatly reduces the computation. A numerical simulation using this method is presented.

1 Introduction

Localization of the acoustic source in waveguides has been studied by many authors in recent years [1] [2] [7][8][9]. One of the most significant progress is probably the “matched-field” method which is proposed by Bucker [2] in 1976. The main idea of the matched-field processing method is, outlined by the title of Bucker’s paper, “use of calculated wave field and matched field detection to locate sound source”. The matched-field processing is usually performed in either “phone space” (matching the total field received by each hydrophone) or in “mode space” (matching the resolved modes).

On the other hand, the classical inverse scattering theories which usually involve more mathematics have been rapidly developed in about the same time [3] [10] [4]. The basic idea of the inverse scattering theory is based on the physical idea of scattering one or more “plane waves” off the unidentified inclusion and then trying to identify the shape of the inclusion or other properties from its far-field patterns. Recently, Gilbert and Xu have generalized this idea to the direct and inverse scattering problems in a shallow ocean (ref. [5][6][11][12]).

However, there is a concern remained, in particular from the engineering’s aspect, in the inverse scattering theory in shallow ocean. That is, a “complete set of data” is required in order to find a reasonable solution. Unfortunately, this “complete data” is not always available in practice. It raises a question, that is, if we can find a compliment between the inverse scattering theory and the matched-field signal processing so that we can use less detected information to estimate the unknown object, or localize the sound source in a more complicate environment.

In this paper, we combine the matched-field processing with the boundary integral equation method from the scattering theory to study a sound source localization problem in a perturbed shallow ocean. We assume that there is an inclusion embedded in a shallow water waveguide. Continuous wave (CW), produced by a sound source, is scattered by the inclusion and then received by a hydrophone array (Figure 1). Because the symmetry of the waveguide has been destroyed by the existence of the inclusion, the methods presented in [1] [2] [7][8][9] are no longer suitable.

\(^1\)Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455.

This author’s research was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation, the Minnesota Supercomputer Institute and the Alliant Techsystem Inc.

\(^2\)Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.

This author’s work was supported in part by the National Science Foundation Grant RII-8610671 and the Commonwealth of Kentucky through the University of Kentucky’s Center for Computational Sciences.

PACS numbers: 43:30Bp, 43:30Wi, 43:20Mv.
section 2, we will formulate the problem and present the theoretical consideration. Then in section 3, some numerical examples are presented. A numerical method for the boundary integral equation which is essential in our computation is included in the Appendix.

2 Modeling and methodology

2.1 Modeling

The synthetic modeling of the perturbed waveguide is depicted in figure 1.

We denote the waveguide with depth d as $\mathbb{R}^2_d = \{(x_1, x_2) | -\infty < x_1 < \infty, 0 \leq x_2 \leq d\}$. An inclusion which is a bounded region located in the waveguide is denoted as Ω. For the sake of exposure of our method, we shall assume that the inclusion has a sound-soft boundary $\partial\Omega$. A time-harmonic acoustic source locates at $x^s = (x^s_1, x^s_2)$. The hydrophone array consists of L hydrophones at $x^l = (x^l_1, x^l_2), l = 1, 2, \cdots, L$. The time-harmonic wave, radiated from x^s and scattered by Ω, propagates outward to $|x_1| \to \infty$. Let $p(x; x^s)$ be the acoustic pressure at $x = (x_1, x_2)$, emitted from the acoustic source at x^s, and $k = 2\pi f/c$ be the wave number, where f is the frequency and c is the speed of the time-harmonic acoustic wave. If the water waveguide has a pressure released surface $x_2 = 0$ and a rigid bottom $x_2 = d$, then the propagation of the outgoing wave is governed by the following system:

$$
\begin{align*}
\Delta p(x; x^s) + k^2 p(x; x^s) &= \delta(x_1 - x^s_1)\delta(x_2 - x^s_2), \ x = (x_1, x_2) \in \mathbb{R}^2_d \setminus \bar{\Omega}, \\
p(x_1, 0; x^s) &= 0, \quad \frac{\partial p}{\partial x_2}(x_1, d; x^s) = 0, \\
p(x; x^s) &= 0 \text{ for } x \in \partial\Omega.
\end{align*}
$$

Moreover, $p(x; x^s)$ satisfies an outgoing radiating condition, i.e., for $|x_1| \to \infty$, $p(x; x^s)$ has an expansion

$$
p(x_1, x_2) = \sum_{n=1}^{\infty} p_n \sin\left[(n - \frac{1}{2})\frac{\pi x_2}{d}\right] e^{ik_n|x_1|},
$$

where $k_n = [k^2 - (n - \frac{1}{2})^2 \frac{x^2}{d^2}]^{1/2}$ is the horizontal wavenumber, and the coefficients p_n depend on x^s and the sign of x_1.

Now we can state our source localization problem as following: given the acoustic pressure at points $x^l, l = 1, 2, \cdots, L$ in the aforementioned perturbed waveguide, to estimate the location of the sound source x^s.

2.2 Construction of the propagator

The propagating acoustic wave emitting from a point source at x^s (which is called propagator) can be constructed in the following way.

Let $p_0(x; x^s)$ be the propagator in an unperturbed waveguide, i.e., $p_0(x, x^s)$ satisfies

$$
\begin{align*}
\Delta p_0(x; x^s) + k^2 p_0(x; x^s) &= \delta(x_1 - x^s_1)\delta(x_2 - x^s_2), \ x = (x_1, x_2) \in \mathbb{R}^2_d \\
p_0(x_1, 0; x^s) &= 0, \quad \frac{\partial p_0}{\partial x_2}(x_1, d; x^s) = 0,
\end{align*}
$$

and $p_0(x; x^s)$ is outgoing. By separation of variables, we can represent $p_0(x; x^s)$ as

$$
p_0(x; x^s) = \sum_{n=1}^{\infty} \frac{i}{\pi k a_n} \sin\left[(n - \frac{1}{2})\frac{\pi x_2}{d}\right] \sin\left[(n - \frac{1}{2})\frac{\pi x^s_2}{d}\right] e^{ik_n|x_1 - x^s_1|},
$$

(2.7)
where
\[a_n = \left[1 - \frac{(2n - 1)2^{1/2}}{4k^2d^2} \right]^2. \]
(2.8)

We write the propagator in the perturbed waveguide as
\[p(x; x^*) = p_0(x; x^*) + p_1(x; x^*). \]
(2.9)

Then \(p_1 = p - p_0 \) is a solution of the problem
\[\Delta p_1(x; x^*) + k^2 p_1(x; x^*) = 0, \quad x \in \mathbb{R}_d^2 \setminus \Omega, \]
(2.10)
\[p_1(x_1, 0; x^*) = 0, \quad \frac{\partial p_1}{\partial x_2}(x_1, d; x^*) = 0, \]
(2.11)
\[p_1(x; x^*) = -p_0(x; x^*) \text{ for } x \in \partial \Omega, \]
(2.12)
and \(p_1(x; x^*) \) is out-going wave. The physical meaning of this problem is that an incident wave \(p_0 \) incidents upon the inclusion \(\Omega \) and produces the scattered wave \(p_1 \). The propagator \(p \) is the composition of the incident wave \(p_0 \) and the scattered wave \(p_1 \).

The scattered wave \(p_1 \) can be constructed by boundary integral equation method. We defining a double layer potential
\[p_1(x; x^*) = \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} \psi(y; x^*) d\sigma_y, \quad \text{for } x \in \mathbb{R}_d^2 \setminus \overline{\Omega}, \]
(2.13)
where \(\psi \) is the solution of the boundary integral equation
\[\psi(x; x^*) + 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} \psi(y; x^*) d\sigma_y = -2p_0(x, x^*), \quad \text{for } x \in \partial \Omega. \]
(2.14)

If \(k \) is not an eigenvalue of the interior Neumann problem in \(\Omega \), then (2.14) has a unique solution. Symbolically we denote the boundary integral equation (2.14) as
\[\psi + K \psi = -2p_0, \]
(2.15)
where \(K \) is the integral operator
\[K \psi(x; x^*) := 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} \psi(y; x^*) d\sigma_y, \quad \text{for } x \in \partial \Omega. \]
(2.16)

If \(k \) is not an eigenvalue of the interior Neumann problem in \(\Omega \), then \(I + K \) is invertible. We can write
\[\psi(x; x^*) = -2(I + K)^{-1}p_0(x; x^*), \]
(2.17)
and
\[p(x; x^*) = p_0(x; x^*) - \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} (I + K)^{-1}p_0(y; x^*) d\sigma_y, \quad \text{for } x \in \mathbb{R}_d^2 \setminus \overline{\Omega}. \]
(2.18)

By the assumption of the boundedness of the inclusion \(\Omega \), we know that for \(|x_1| \) large enough (say, \(|x_1| > x_0 \) for some constant \(x_0 \)), \(p(x; x^*) \) is expressed by a summation of normal modes:
\[p(x; x^*) = \sum_{n=1}^{\infty} A_n(x^*) \sin(\frac{1}{2} \frac{\pi}{d} x_2) e^{i k_n |x_1|}, \]
(2.19)
where \(A_n(x^*) \) is the modal amplitude given by
\[A_n(x^*) = \frac{i}{\pi k a_n} \left(\sin(\frac{1}{2} \frac{\pi}{d} x_2) e^{-i k_n x_1 \text{sgn}(x_1)} \right. \]
\[- \left. \int_{\partial \Omega} \frac{\partial (\sin(\frac{1}{2} \frac{\pi}{d} y_2) e^{-i k_n y_1 \text{sgn}(x_1)})}{\partial \nu_y} (I + K)^{-1}p_0(y; x^*) d\sigma_y \right), \quad \text{for } |x_1| > x_0. \]
(2.20)

An approximate boundary integral equation method for the numerical solution of (2.15) is outlined in the Appendix. For more detail discussion of this method, readers could refer [13].
2.3 Construction of estimators

Using the representations for the propagator and its modal amplitude, we now construct the estimators in both phone space and mode space.

Estimator in phone space Let \(\{ p_{m1}^* \} \) be the detected data set consisting of the acoustic pressure field \(p_{m1}^* \) sampled on each hydrophone located at \((x_1^m, x_2^m)\), \(m = 1, 2, \cdots, M; l = 1, 2, \cdots, L\). The estimator in phone space is defined as follows:

\[
F_p(x_1^s, x_2^s) = \left(\sum_{l=1}^{L} \sum_{m=1}^{M} \left| p(x_1^m, x_2^m; x_1^s, x_2^s) - p_{m1}^* \right|^2 \right)^{-1}, \quad (2.21)
\]

where \(p(x_1^m, x_2^m; x_1^s, x_2^s) \) is the calculated acoustic pressure field at \((x_1^m, x_2^m)\). It can be computed by (2.18) for given \(x^s \) using the method outlined in the Appendix.

Estimator in mode space Let \(\{ p_l^* \} \) be the data set consisting of the acoustic pressure field \(p_l^* \) sampled on each hydrophone located at \(x_1^l, l = 1, 2, \cdots, L \) of a vertical array. Using a mode filtering approach, (for example, by least-squares best-fitting, damped least-squares best-fitting, or singular value decomposition), we obtain a set of complex modal amplitudes \(A_n^*, n = 1, \cdots, N \). The estimator in mode space is defined as follows:

\[
F_m(x_1^s, x_2^s) = \left(\sum_{n=1}^{N} \left| A_n(x_1^s, x_2^s) - A_n^* \right|^2 \right)^{-1}, \quad (2.22)
\]

where \(A_l(x_1^l, x_2^l) \) is the calculated complex modal amplitudes. It can be computed by (2.20) for each given \(x^s \).

2.4 Approximation of the estimators

The estimators presented in the last section provide a tool to localize acoustic source in a perturbed shallow ocean. To scan an area, we may compute the estimator for each chosen point \(x^s \) in the area. If the point \(x^s \) is close to the real location of the acoustic source, the estimator may appear as a large number. For a uniform searching in a rectangular area, this scheme requires a source searching number \(N_1 \times N_2 \), where \(N_1 \) and \(N_2 \) are the gridding numbers of range and depth respectively. We know that in a stratified ocean, some effective source localization processing methods have been discovered. For example, in [9], Shang presented a high-resolution method of source localization processing in mode space, which requires only \(N_1 + N_2 \) searching number. But in a perturbed waveguide, it is no longer proper to separate the depth search and the range search, because the separation of variables is no longer valid in the whole waveguide.

Fortunately, the representation (2.18) can be used to separate the source location and the detecting locations. This will greatly reduce the computation load.

In view of (2.7), we can rewrite (2.18) as (for \(x_1^s < y_1 < x_1 \))

\[
p(x; x^s) = \sum_{n=1}^{\infty} \frac{i}{\pi k a_n} \sin \left[\left(n - \frac{1}{2} \right) \frac{\pi x_2^s}{d} \right] e^{-ik_n x_1^s} \left\{ \sin \left[\left(n - \frac{1}{2} \right) \frac{\pi y_2}{d} \right] e^{ik_n y_1} \right. \\
- \left. \int_{\partial \Omega} \frac{\partial p_l(x, y)}{\partial n}(I + K)^{-1} \left(\sin \left[\left(n - \frac{1}{2} \right) \frac{\pi y_2}{d} \right] e^{ik_n y_1} \right) d\sigma_y \right\}. \quad (2.23)
\]

For other cases of \(x_2^s, y_1, \) and \(x_1 \), we can get a similar representation with a proper change of the signs of \(x_2^s, y_1, \) and \(x_1 \).

Hence, we can approximate \(p(x; x^s) \) by

\[
p_N(x; x^s) = \sum_{n=1}^{N} \frac{i}{\pi k a_n} B_n(x_1, x_2) \sin \left[\left(n - \frac{1}{2} \right) \frac{\pi x_2^s}{d} \right] e^{-ik_n x_1^s}, \quad (2.24)
\]
where
\[
B_n(x_1, x_2) = \sin \left(n - \frac{1}{2} \frac{\pi x_2}{d} \right) e^{ikan x_1} - \int_{\partial \Omega} \frac{\partial p_0(x, y)}{\partial \nu_y} (I + K)^{-1} \left(\sin \left(n - \frac{1}{2} \frac{\pi y_2}{d} \right) e^{ikan y_1} \right) d\sigma_y,
\]
and \(N\) is a properly chosen positive number. Note that \(B_n(x_1, x_2)\) does not depend on \(x^s\). Therefore, we can compute \(p_N(x_1, x_2)\) in two separated steps:

1. Compute \(B_n(x_1, x_2)\) for given \(l = 1, 2, \cdots, L\). First we solve the integral equation (2.15) where the right-hand-side is changed to \(-2 \sin \left(n - \frac{1}{2} \frac{\pi x_2}{d} \right) e^{ikan x_1}\), with \(n = 1, 2, \cdots, N\). Then substituting the solution \((I + K)^{-1}(-2 \sin \left(n - \frac{1}{2} \frac{\pi x_2}{d} \right) e^{ikan x_1})\) into (2.25), we obtain the \(B_n(x_1)\) for \(n = 1, 2, \cdots, N\). This calculation requires to solve the integral equation for only \(N\) times.

2. Compute \(p_N(x_1, x_2)\) for given \(x^s\). After \(B_n(x_1, x_2)\) are obtained, \(p_N(x_1, x_2)\) can be calculated economically using (2.24) for large number of source searching \(x^s\).

3 Computer simulation

Computer simulations using the aforementioned method are carried out on Cray2 of Minnesota Supercomputer Center. In this section we present two examples from our computations.

Example 1: Vertical hydrophone array

The synthetic modeling of the computer simulation is depicted in figure 2.

We assume the waveguide has depth of 100 meters. The sound speed of water is assumed to be 1500m/s. An acoustic source \(S\) located at \((-500/\pi, 100/\pi)\) emitting a time-harmonic wave at the frequency \(f = 30Hz\). The hydrophone array is arranged vertically at \((600/\pi, 2.5j), j = 0, 1, \cdots, 40\). There is an inclusion \(\Omega\) with pressure release surface occupies the region \(\{(x_1, x_2) \mid x_1^2 + (x_2 - 50)^2 \leq (50/\pi)^2\}\). If the waveguide is normalized to depth \(\pi\), then the normalized wave number \(k = 4\), which means there are four propagating modes for the acoustic wave at the given frequency.

We first generate the propagating wave by our approximate boundary integral equation method. More precisely, we solve the integral equation (2.14) for \(\psi(x, x^s)\) where \(p_0(x, x^s)\) is given by (2.7) with truncation at \(n = 30\) and \(x^s = (-500/\pi, 100/\pi)\), and substitute the \(\psi(x, x^s)\) into (2.18) to get the propagating field \(p(x, x^s)\). (A contour plotting of the propagating wave is plotted in figure 3). In particular, we obtain \(p_m^n = p(600/\pi, 2.5m; x^s), m = 0, 1, \cdots, 40\). To make these data more close to the reality, we add some Gaussian noise (generated by a NAG subroutine g05ddf in our computation) to this data and use them as our detected data.

The second step is to compute the estimator. Since there are only four propagating modes, we choose \(N = 10\) and compute \(B_n(x), n = 1, 2, \cdots, 10\). Using these \(B_n(x)\), we search the area of \([-900/\pi, -300/\pi] \times [0, 100]\), and plot the estimator \(F_p(x^s)\) for \(x^s \in [-900/\pi, -300/\pi] \times [0, 100]\). (See figures 4-10).

Figure 4-5: These figures show the estimator \(F_p(x^s)\) for the detected data \(p_m^* = p(600/\pi, 2.5m; x^s), m = 0, 1, \cdots, 40\) without adding Gaussian noise. Though these beautiful plottings have not too much sense in practice, we pose them here as theoretical expectancies and use them for comparison.

Figure 6-7: These figures show the estimator \(F_p(x^s)\) for the detected data \(p_m^* = p(600/\pi, 2.5m; x^s), m = 0, 1, \cdots, 40\) with about 10% Gaussian noise.

Figure 8-10: These figures show the estimator \(F_p(x^s)\) for the detected data \(p_m^* = p(600/\pi, 2.5m; x^s), m = 0, 1, \cdots, 40\) with about 100% Gaussian noise (the signal-noise ratio is about 1). In figure 8, we plot the contour of \(F_p(x^s)\) which shows that the signal is buried by the noise. In figure 9, a filter with the threshold value \(F_p(x^s) = 0.5\) is used, i.e. we set \(F_p(x^s) = 0\) if \(F_p(x^s) < 0.5\). In figure 10, the threshold value is increased to \(F_p(x^s) = 0.55\) and the source is clearly identified.

Example 2: Horizontal hydrophone array

The synthetic modeling of the computer simulation is depicted in figure 11.
We assume the waveguide, the inclusion and the other acoustic parameters are the same as that in example 1 except that the hydrophone array is arranged horizontally at \(((100j + 3000)/6\pi, 25/\pi), j = 0, 1, \cdots, 6\). In the same way as in example 1, we compute the estimator \(F_p(x^*)\) and plot it in figure 12-15.

Figure 12-13: These figures show the estimator \(F_p(x^*)\) for the detected data \(p_m^* = p((100j + 3000)/6\pi, 25/\pi), j = 0, 1, \cdots, 6\) without adding Gaussian noise.

Figure 14-15: These figures show the estimator \(F_p(x^*)\) for the detected data \(p_m^* = p((100j + 3000)/6\pi, 25/\pi), j = 0, 1, \cdots, 6\) with about 10% Gaussian noise.

\[4 \quad \text{Conclusion} \]

1. Matched field signal processing in complex environments are very interesting problems. One of the essential parts of these problems is to find an efficient and accurate algorithm to solve the propagating field. The scheme used here makes use of the separation of the source and the detection array, and greatly reduces the computation.

2. The signal processing method used here is a high resolution method. It localizes the source nicely even when a substantial amount of noise exists.

\[5 \quad \text{Appendix} \]

An approximate boundary integral equation method [13] is included in this Appendix for solving the boundary integral equation

\[\psi(x) + 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} \psi(y) dy = 2f(x), \text{ for } x \in \partial \Omega. \quad (5.1) \]

Let

\[G_0(x; y) := G_0(x_1, x_2; y_1, y_2) = \sum_{n=1}^{\infty} \frac{1}{\pi(n - \frac{1}{2})^2} \sin((n - \frac{1}{2})x_2) \sin((n - \frac{1}{2})y_2) e^{-(n-\frac{1}{2})|x_1-y_1|}, \quad (5.2) \]

and

\[M(x; y) := p_0(x; y) - G_0(x; y) = \sum_{n=1}^{\infty} \frac{1}{\pi} \sin((n - \frac{1}{2})x_2) \sin((n - \frac{1}{2})y_2) \left(\frac{i}{ka_n} e^{i\alpha_n |x_1-y_1|} - \frac{1}{n-\frac{1}{2}} e^{-(n-\frac{1}{2})|x_1-y_1|} \right), \quad (5.3) \]

where \(a_n = [1 - (2n-1)^2/4k^2]^{\frac{1}{2}}\).

we can rewrite (5.1) in the form

\[\psi(x) + 2 \int_{\partial \Omega} \frac{\partial G_0(x; y)}{\partial \nu_y} \psi(y) dy + 2 \int_{\partial \Omega} \frac{\partial M(x; y)}{\partial \nu_y} \psi(y) dy = 2f(x), \text{ for } x \in \partial \Omega. \quad (5.4) \]

We assume that the boundary \(\partial \Omega\) is given by a 2\(\pi\)-periodic parametric representation

\[\gamma(s) = (\gamma_1(s), \gamma_2(s)), s \in \partial \Omega, \]

with \(|\gamma'(s)| \neq 0\) for all \(s\). Furthermore, we assume that \(\gamma\) is a \(C^\infty\) function.

Denote the kernel of the integral equation (5.1) by

\[K_0(x; y) = 2 \frac{\partial}{\partial \nu_y} G(x; y), \quad K_1(x; y) = 2 \frac{\partial}{\partial \nu_y} M(x; y), \quad (5.5) \]
and set
\[w(s) = ψ(γ(s)), \quad g(s) = 2f(γ(s)), \]
\[L_0(s, σ) = K_0(γ(s); γ(σ))[γ′(σ)], \quad L_1(s, σ) = K_1(γ(s); γ(σ))[γ′(σ)]. \]

Thus equation (5.1) reduces to
\[w(s) + \int_{-π}^{π} w(σ)L_0(s, σ)dσ + \int_{-π}^{π} w(σ)L_1(s, σ)dσ = g(s), \quad s ∈ [-π, π]. \tag{5.6} \]

It is shown [13] that \(L_0(s, σ) \) is continuous for \((s, σ) ∈ [-π, π] \times [-π, π],\) and that \(L_1(s, σ) \) can be written as
\[L_1(s, σ) = -a(s, σ)\log|2\sin\frac{s - σ}{2}| + b(s, σ)\left(\arctan cot\frac{s + σ}{2} + \text{sgn}(s^2 - σ^2)\frac{π}{2}\right) + L_2(s, σ), \tag{5.7} \]
where \(a(s, σ), b(s, σ) \) and \(L_2(s, σ) \) are continuous and differentiable for \((s, σ) ∈ [-π, π] \times [-π, π].\)

We use the ordinary rectangular formula
\[\int_{-π}^{π} v(σ)dσ ≈ h \sum_{k=-N/2+1}^{N/2} v(t_k), \tag{5.8} \]
the weighted quadrature formula
\[-\int_{-π}^{π} v(σ)\log|2\sin\frac{s - σ}{2}|dσ ≈ h \sum_{k=-N/2+1}^{N/2} R^1(s - t_k)v(t_k), \tag{5.9} \]
and the weighted quadrature formula
\[\int_{-π}^{π} v(σ)\left(\arctan cot\frac{s + σ}{2} + \text{sgn}(s^2 - σ^2)\frac{π}{2}\right)dσ ≈ h \sum_{k=-N/2+1}^{N/2} R^2(s, t_k)v(t_k), \tag{5.10} \]
where \(t_k = kh \) with \(h = \frac{2π}{N} \) and \(N \) an even integer are the equidistant quadrature knots and the weights are given by
\[R^1(s) = \sum_{l=1}^{N/2-1} \frac{1}{l}\cos ls + \frac{1}{N}e^{i\frac{N}{2}s} \]
and
\[R^2(s, t_k) = \sum_{l=-N/2+1}^{N/2} \left(\frac{\sin l|s|}{l} + \frac{ie^{-il}s}{2l}\right)e^{-ilt_k} + |s| - \frac{π}{2}. \]

Applying the quadrature formula (5.8), (5.9) and (5.10) to the integrals in (5.6), we replace the integral equation (5.6) by the linear system
\[w_j + h \sum_{k=-N/2+1}^{N/2} (R_1(t_{j-k})a(t_j, t_k) + R_2(t_j, t_k)b(t_j, t_k) + L_0(t_j, t_k) + L_2(t_j, t_k))w_k = g_j, \tag{5.11} \]
\[j = -\frac{N}{2} + 1, ..., \frac{N}{2}. \]

for the approximate values \(w_j \) to \(w(t_j), \) where \(g_j = g(t_j). \)

For more detail discussions, the reader could refer [13].
References

Figure 1: Acoustic source in a perturbed waveguide

Figure 2: Detection of acoustic source by vertical hydrophone array
Figure 3: Propagating wave in perturbed waveguide
Figure 4: Theoretical estimator (3-D plotting)

Figure 5: Theoretical estimator (contour plotting)
Figure 6: Estimator when detected data with 10% Gaussian noise (3-D plotting)

Figure 7: Estimator when detected data with 10% Gaussian noise (contour plotting)
Figure 8: Estimator $F_p(x^s)$ (contour plotting)

Figure 9: Estimator $F_p(x^s)$, a filter with threshold value 0.5 is used (contour plotting)
Figure 10: Estimator $F_p(x^s)$, a filter with threshold value 0.55 is used (contour plotting)

Figure 11: Detection of acoustic source by horizontal hydrophone array
Figure 12: Theoretical estimator (3-D plotting)

Figure 13: Theoretical estimator (contour plotting)
Figure 14: Estimator when detected data with 10% Gaussian noise (3-D plotting)

Figure 15: Estimator when detected data with 10% Gaussian noise (contour plotting)
Recent IMA Preprints

Author/s Title
839 Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation of boundaries
840 Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain
841 Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem
842 Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several space dimensions
843 Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts
844 Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation
845 Marco Birol and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type
846 Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations
847 H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals
848 R. Natalini and A. Tesei, On a class of perturbed conservation laws
849 Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves
850 S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow
851 Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations
852 Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
853 F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution
854 Erasmus Langer, Numerical simulation of MOS transistors
855 Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n
856 Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures
857 Chao-Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient
858 D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model
859 Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4
860 Walter Schempp, Quantum holography and neurocomputer architectures
861 D.V. Anosov, An introduction to Hilbert's 21st problem
862 Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes
863 Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves
864 Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs
865 Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic tangles of two dimensional quasiperiodic vector fields: theory and applications
866 Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
867 Gui-Qiang Chen and Jian-Guo Liu, Convergence of second-order schemes for isentropic gas dynamics
868 Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion
869 Jerzy Lyczka, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion
870 Mitchell Luskin and Tsong-Kwai Pan, Nonplanar shear flows for nonaligning nematic liquid crystals
871 Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions
872 Richard A. Bruñald and Keith L. Chavey, Rectangular L-matrices
873 Xinfu Chen, Avner Friedman and Bei Hu, The thermistor problem with zero-one conductivity II
874 Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle
875 Raoul LePage, Controlling for optimum growth with time dependent returns
876 Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey
877 V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval
878 Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media
879 Kaushik Bhattacharya, Self-accommodation in martensite
880 D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment
881 Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling
882 David C. Dobson, Phase reconstruction via nonlinear least-squares
883 Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation
884 Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, 'A generalised diffusion equation for phase separation of a multi-compon mixture with interfacial free energy'
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, A method for resolving the laser induced local heating of moving magneto-optical recording media
E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions
T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium
Reinhold von Schwerin, Two metal deposition on a microdisk electrode
Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows
Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations
Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations
Hong-Ming Yin, Global solutions of Maxwell's equations in an electromagnetic field with the temperature-dependent electrical conductivity
Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs
Miroslav Fiedler, Structure-ranks of matrices
Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices
Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices
Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions
Pierre-Alain Gremaud, Thermal contraction as a free boundary problem
K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays
Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation
LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality
Richard A. Brualdi and Bryan L. Shader, Strong hall matrices
Håkan Wennerström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability
Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multipartite Tournament Matrices with Constant Team Size
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hung-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinhukler and A. Ruehl, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration
F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick's Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains