AN APPROXIMATE BOUNDARY INTEGRAL METHOD
FOR ACOUSTIC SCATTERING IN SHALLOW OCEANS

By

Yongzhi Xu

and

Yi Yan

IMA Preprint Series # 923
February 1992
An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans

Yongzhi Xu 1 and Yi Yan 2

Abstract

The problem of a time-harmonic acoustic wave scattering from an cylindrical object in shallow oceans is solved by an approximate boundary integral method. In the method we employ a Green's function of the Helmholtz equation with sound soft sea level and sound hard sea bottom conditions, and reformulate the problem into a boundary integral equation on the surface of the scattering object. The kernel of the integral equation is given by a infinite series, and is approximated by an appropriate truncation. The integral equation is then fully discretized by applying a quadrature rule. The method has an $O(N^{-3})$ rate of convergence. Various numerical examples are presented.

1 Introduction

This paper studies an approximate boundary integral method of the scattering problem which describes the scattering of acoustic waves from an cylindrical object with a sound soft boundary in a shallow ocean. This scattering problem is essentially a two dimensional problem, and is modelled as a boundary value problem in a waveguide, where the governing equation is the Helmholtz equation.

Let $\mathbb{R}^2_d = \{(x_1, x_2); \ x_1 \in \mathbb{R}, 0 \leq x_2 \leq d\}$ be a region corresponding to the finite depth ocean, where d is the ocean depth. Consider an object Ω imbedded in \mathbb{R}^2_d, which is a bounded, simply connected domain with a C^2 boundary $\partial\Omega$. An incoming wave u^i is incident on $\partial\Omega$, and is scattered to produce a propagating wave u as well as its far-field pattern. If the object has a sound soft boundary $\partial\Omega$, this problem can be formulated as a Dirichlet boundary value problem for the scattering of time-harmonic acoustic waves in $\Omega_e := \mathbb{R}^2_d \setminus \overline{\Omega}$, namely to find a solution $u \in C^2(\Omega_e) \cap C(\overline{\Omega_e})$ for the Helmholtz equation

$$\triangle_2 u + k^2 u = 0, \text{ in } \mathbb{R}^2_d \setminus \overline{\Omega}, \quad (1.1)$$

such that u satisfies the boundary conditions

$$u = 0, \text{ as } x_2 = 0, \quad (1.2)$$

$$\frac{\partial u}{\partial x_2} = 0, \text{ as } x_2 = d, \quad (1.3)$$

$$u = -u^i, \text{ on } \partial\Omega. \quad (1.4)$$

Here k is a positive constant known as the wave number. We assume in this paper that $k \neq (2n-1)\pi/(2d)$

For $(x_1, x_2) \in \mathbb{R}^2_d$ such that $|x_1|$ large enough, the scattered wave has the modal representation

$$u = \sum_{n=1}^{\infty} \phi_n(x_2) u_n(x_1), \quad (1.5)$$

1Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455.

This author's research was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation, the Minnesota Supercomputer Institute and the Alliant Techsystem Co.

2Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.

This author's work was supported in part by the National Science Foundation Grant RII-8610671 and the Commonwealth of Kentucky through the University of Kentucky's Center for Computational Sciences.

AMS(MOS) subject classifications: Primary 35A40, 35J05; Secondary 65N99, 65R20, 76Q05, 76-08.
where

$$\phi_n(x_2) = \sin[k(1 - a_n^2)^{1/2}x_2]$$

(1.6)

with

$$a_n = \left[1 - \frac{(2n - 1)^2\pi^2}{4k^2d^2}\right]^{1/2},$$

(1.7)

and the n^{th} mode of u, $u_n(x_1)$, satisfies the radiation condition

$$\lim_{r \to \infty} \left(\frac{\partial u_n}{\partial r} - ika_n u_n\right) = 0, \quad r = |x_1|, \quad n = 1, 2, ..., \infty.$$

(1.8)

For the radiation problem, the condition (1.4) is replaced by the condition $u = f$ on $\partial \Omega$, where f is a known function defined on $\partial \Omega$. We call the problem (1.1)-(1.4) and (1.8) as problem D.

This problem, or more generally the direct and inverse scattering problems in a shallow ocean, has been discussed in a series papers of Gilbert and Xu (ref. [8],[7],[11],[12]) due to their importance in ocean acoustics. A finer analysis for similar problems in parallel waveguides has also been given in Morgenrother and Werner [10]. A difficulty in solution of the scattering problems in such a waveguide comes from the two parallel unbounded boundaries. The usual boundary integral (BIE) method uses the fundamental solution of (1.1) and reformulates the solution u as a layer potential. The BIE method has the spirit of reducing the problem to a problem in a lower dimensional space, but leads to an integral equation on both the boundary $\partial \Omega$ and the two unbounded boundaries. As result, a complicated Wiener-Hopf integral equations system needs to be solved. To avoid the integral equation on the two unbounded boundaries, instead of using the fundamental solution, we may use the Green's function of the Helmholtz equation in \mathbb{R}^3

$$G(x, y) = G(x_1, x_2; y_1, y_2) = \sum_{n=1}^{\infty} \frac{i}{\pi k a_n} \phi_n(x_2) \phi_n(y_2) e^{ika_n|x_2-y_2|}$$

(1.9)

which satisfies the boundary conditions (1.2), (1.3) and the radiation condition (1.8). Let $\nu_x = (\nu_1, \nu_2)$ denote the outward normal vector (toward the interior of Ω) at the point $x = (x_1, x_2)$. By Green's formula we have that

$$\int_{\partial \Omega} \{u(y) \frac{\partial G}{\partial \nu_y}(x, y) - \frac{\partial u}{\partial \nu_y}(y)G(x, y)\} d\sigma_y = \begin{cases} 0 & \text{if } x \in \Omega, \\ u(x) & \text{if } x \in \mathbb{R}^3 \setminus \Omega, \end{cases}$$

(1.10)

for any function u satisfying (1.1), (1.2), (1.3) and (1.8).

For problem D, we know that (see [8]) if $x_1 \nu_1 \geq 0$ holds for any $(x_1, x_2) \in \partial \Omega$, then problem D has a unique solution. Moreover, defining a double layer potential

$$u(x) = \int_{\partial \Omega} \frac{\partial G(x, y)}{\partial \nu_y} \psi(y) d\sigma_y, \quad x \in \Omega,$$

(1.11)

we know that the solution of problem D is given by (1.11) if ψ is the solution of the boundary integral equation

$$\psi(x) + 2 \int_{\partial \Omega} \frac{\partial G(x, y)}{\partial \nu_y} \psi(y) d\sigma_y = -2u^i(x), \quad x \in \partial \Omega.$$

(1.12)

Equation (1.12) has a unique solution when k is not an eigenvalue of the interior Neumann problem in Ω.

Numerical methods for solving the boundary integral equations arising from the Helmholtz equation (1.1) with only the boundary condition (1.4) have been presented and studied by many authors, for example, see [3], [4], [2], [1], [9]. Recently Yan [13] [14] developed a fast method to solve these boundary integral equations. This method is fully discrete, involves no integrals, and has a polynomial order of convergence, which demonstrates a high computational efficiency. However, it
is a challenge to develop an efficient numerical method for solving the boundary integral equation (1.12) where its kernel function is given in an infinite series while a ready method for efficient evaluation of this series does not exist. A good method for evaluation of the infinite series requires an appropriate truncation which preserves a certain accuracy on one hand, and minimizes arithmetic operations on the other. In this paper, we shall focus on a good method for evaluation of the kernel of the boundary integral equation (1.12), and then present a quadrature method for solving this equation. The method is fully discrete, and is estimated to have a \(O(N^{-3}) \) rate of convergence, where \(N \) is the number of the quadrature knots distributed along the boundary. Our numerical experiments show that the method has a good accuracy and involves a fine CPU time.

In the next section, we investigate with a great care the approximation of the kernel in (1.12). Using the approximation results we discretize in section 3 the integral equation (1.12) by a quadrature method. In the quadrature method we manage to get with possibly least arithmetic operations for the kernel approximated within \(O(N^{-3}) \) error estimates, and consequently to get a \(O(N^{-3}) \) truncation errors. Some numerical results and convergence discussion are presented in the last section.

2 Approximation of the Integral Kernel in (1.12)

Numerical solution of equation (1.12) involves inevitably the evaluation of the kernel \(\frac{\partial G(x,y)}{\partial y} \). Since \(G(x,y) \) is given only as a sum of the infinite series, this evaluation can only be done approximately. In this section we shall provide an approximation to the kernel \(\frac{\partial G(x,y)}{\partial y} \). The evaluation of the kernel is the most expensive part in numerical solution of equation (1.12), so requires a careful treatemnt in the approximation.

We shall split \(G \) into \(G = G_0 + M \), where \(G_0 \) is the Green's function for the Laplace equation (1.1) with \(k = 0 \) and the conditions (1.2)-(1.3). \(G_0(x,y) \) is singular at \(x = y \), and \(M(x,y) \) is continuous, and hence \(G_0 \) is the dominant term in the splitting. It should be emphasized that the Green's function (1.9) is given only for wave number \(k \neq (2n - 1)\pi/(2d) \). Otherwise one of the coefficients in the expression (1.9), \(i/(\pi ka_n) \), will become infinite. For simplicity, we assume that the depth \(d = \pi \), and use the same notation \(\phi_n \) as in (1.6) for \(d = \pi \), i.e.,

\[
\phi_n(x_2) = \sin \left[(n - \frac{1}{2})x_2 \right].
\]

The function \(G_0 \) is defined by

\[
G_0(x,y) := G_0(x_1,x_2;y_1,y_2) = \sum_{n=1}^{\infty} \frac{1}{\pi(n - \frac{1}{2})} \phi_n(x_2) \phi_n(y_2) e^{-(n-\frac{1}{2})|x_1-y_1|}, \tag{2.1}
\]

and the function \(M \) by

\[
M(x,y) := G(x,y) - G_0(x,y)
= \sum_{n=1}^{\infty} \frac{1}{\pi} \phi_n(x_2) \phi_n(y_2) \left(\frac{i}{ka_n} e^{i\pi a_n |x_1-y_1|} - \frac{1}{n - \frac{1}{2}} e^{-(n-\frac{1}{2})|x_1-y_1|} \right), \tag{2.2}
\]

where \(a_n = \left[1 - \frac{(2n-1)^2\pi^2}{4k^2} \right]^{\frac{1}{2}} \). \(G_0(x,y) \) has a simple expression (see, for example, 1.448.4 in [6])

\[
G_0(x,y) = -\frac{1}{4\pi} \left\{ F(x_1 - y_1, x_2 - y_2) - F(x_1 - y_1, x_2 + y_2) \right\}, \tag{2.3}
\]

where

\[
F(s,t) = \log \frac{\cosh \frac{s}{2} - \cos \frac{t}{2}}{\cosh \frac{s}{2} + \cos \frac{t}{2}}.
\]
Now we split the kernel into
\[
\frac{\partial G}{\partial \nu_y} = \frac{\partial G_0}{\partial \nu_y} + \frac{\partial M}{\partial \nu_y}.
\]
(2.4)

Because \(G_0 \) has an analytic expression (2.3), \(\frac{\partial G_0}{\partial \nu_y} \) can be evaluated analytically. A straightforward calculation leads to useful properties
\[
\int_{\partial \Omega} \frac{\partial G_0(x, y)}{\partial \nu_y} \, d\sigma_y = \begin{cases}
0 & \text{if } x \in \Omega_c \\
-1 & \text{if } x \in \Omega \\
-\frac{1}{2} & \text{if } x \in \partial \Omega,
\end{cases}
\]
(2.5)

and, for \((x, y) \in \mathbb{R}^2_x \times \partial \Omega,\)
\[
\left| \frac{\partial G_0(x, y)}{\partial \nu_y} \right| \leq \frac{1}{8\pi \sinh^2 \frac{a}{2} \frac{r}{a} + \sin^2 \frac{r}{a}} + C,
\]
(2.6)

where \(C \) is a constant.

Now we focus on the approximation of \(\frac{\partial M}{\partial \nu_y} \). Let
\[
a_{k,n} = (n - \frac{1}{2}) + ika_n = \frac{k^2}{n - \frac{1}{2} - ika_n}.
\]

Then
\[
e^{ika_n|x_1 - y_1|} - e^{-(n-\frac{1}{2})|x_1 - y_1|} = e^{-(n-\frac{1}{2})|x_1 - y_1|} \left(e^{a_{k,n}|x_1 - y_1|} - 1 \right).
\]

A direct calculation follows
\[
\nabla M := \left(\frac{\partial M}{\partial y_1}, \frac{\partial M}{\partial y_2} \right) = I_1 + I_2 + I_3 + I_4 + I_5 + I_6,
\]
where
\[
I_1 = \frac{k^2}{2\pi} \sum_{n=1}^{\infty} \frac{1}{(n - \frac{1}{2})^2} \phi_n(x_2) e^{-(n-\frac{1}{2})|x_1 - y_1|} \left(\frac{\text{sgn}(x_1 - y_1) \phi_n(y_2), \phi_n'(y_2)}{n - \frac{1}{2}} \right),
\]
\[
I_2 = \frac{|x_1 - y_1|}{2\pi} \sum_{n=1}^{\infty} \frac{a_{k,n}^2 \phi_n(x_2) e^{-(n-\frac{1}{2})|x_1 - y_1|}}{(n - \frac{1}{2})^2} \left(\frac{\text{sgn}(x_1 - y_1) \phi_n(y_2), \phi_n'(y_2)}{n - \frac{1}{2}} \right),
\]
\[
I_3 = \frac{1}{\pi} \sum_{n=1}^{\infty} \left(e^{a_{k,n}|x_1 - y_1|} - a_{k,n}|x_1 - y_1| - 1 \right) \phi_n(x_2) e^{-(n-\frac{1}{2})|x_1 - y_1|} \left(\frac{\text{sgn}(x_1 - y_1) \phi_n(y_2), \phi_n'(y_2)}{n - \frac{1}{2}} \right),
\]
\[
I_4 = \frac{k^2}{2\pi} \sum_{n=1}^{\infty} \frac{1}{(n - \frac{1}{2})^2} \phi_n(x_2) \phi_n'(y_2) e^{-(n-\frac{1}{2})|x_1 - y_1|} (0, 1),
\]
\[
I_5 = \frac{k^2}{2\pi} \sum_{n=1}^{\infty} \frac{1}{(n - \frac{1}{2})^2} \phi_n(x_2) \phi_n'(y_2) e^{-(n-\frac{1}{2})|x_1 - y_1|} \left(e^{a_{k,n}|x_1 - y_1|} - 1 \right) (0, 1),
\]
and
\[
I_6 = \frac{1}{2\pi} \sum_{n=1}^{\infty} \frac{i a_{k,n} [(n - \frac{1}{2})a_{k,n} + k^2]}{(n - \frac{1}{2})^3} \phi_n(x_2) \phi_n'(y_2) e^{ika_n|x_1 - y_1|} (0, 1).
\]

A good exercise in calculus gives the following lemmas.

Lemma 1
\[
I_1 = \frac{k^2}{2} ((x_1 - y_1) G_0(x, y), |x_1 - y_1| G_1(x, y)),
\]
(2.7)
where $G_0(x, y)$ is given by (2.3), and

$$G_1(x, y) := G_1(x_1, x_2; y_1, y_2) = \frac{1}{2\pi} \left\{ \arctan \frac{\frac{x_2 - y_2}{2}}{\sinh \frac{|x_1 - y_1|}{2}} + \arctan \frac{\frac{x_2 + y_2}{2}}{\sinh \frac{|x_1 - y_1|}{2}} \right\}$$

(see, for example, 1.448.3 in [6]).

Lemma 2

$$I_4 = \frac{k^2}{4\pi} [\phi(x_1 - y_1, x_2 - y_2) + \phi(x_1 - y_1, x_2 + y_2)](0, 1), \quad (2.8)$$

where

$$\phi(s, t) = -\frac{t}{2} F(s, t) + \frac{\cosh \frac{z}{2}}{2} \int_0^t \frac{z \sin \frac{z}{2}}{\sinh^2 \frac{z}{2} + \sin^2 \frac{z}{2}} dz.$$

Lemma 3 Define

$$I_2^p = \frac{|x_1 - y_1|}{2\pi} \sum_{n=1}^{p-1} \frac{a_{k,n}^2}{(n - \frac{1}{2})} \phi_n(x_2) e^{-(n - \frac{1}{2})|x_1 - y_1|} \left(\text{sgn}(x_1 - y_1) \phi_n(y_2), \frac{\phi_n'(y_2)}{n - \frac{1}{2}} \right),$$

and

$$R_2 = I_2 - I_2^p.$$

Then

$$|R_2| \leq \begin{cases} \frac{k^2}{2\pi (p-1)^2} e^{-(p-1)|x_1 - y_1|} & \text{if } |x_1 - y_1| \neq 0, \\ 0 & \text{if } |x_1 - y_1| = 0. \end{cases} \quad (2.9)$$

Lemma 4 Define

$$I_3^p = \frac{1}{\pi} \sum_{n=1}^{p-1} \left(e^{a_{k,n} |x_1 - y_1|} - a_{k,n} |x_1 - y_1| - 1 \right) \phi_n(x_2) e^{-(n - \frac{1}{2})|x_1 - y_1|} \left(\text{sgn}(x_1 - y_1) \phi_n(y_2), \frac{\phi_n'(y_2)}{n - \frac{1}{2}} \right),$$

and

$$R_3 = I_3 - I_3^p.$$

Then

$$|R_3| \leq \frac{k^4}{\pi (p-1)^2} |x_1 - y_1| e^{(n^2/(p-1) - (p-1))|x_1 - y_1|}. \quad (2.10)$$

Lemma 5 Define

$$I_5^p = \frac{k^2}{2\pi} \sum_{n=1}^{p-1} \frac{1}{(n - \frac{1}{2})^2} \phi_n(x_2) \phi_n'(y_2) e^{-(n - \frac{1}{2})|x_1 - y_1|} \left(e^{a_{k,n} |x_1 - y_1|} - 1 \right)(0, 1),$$

and

$$R_5 = I_5 - I_5^p.$$

Then

$$|R_5| \leq \begin{cases} \frac{k^4}{\pi (p-1)^2} e^{(n^2/(p-1) - (p-1))|x_1 - y_1|} & \text{if } |x_1 - y_1| \neq 0, \\ 0 & \text{if } |x_1 - y_1| = 0. \end{cases} \quad (2.11)$$

Lemma 6 Define

$$I_6^p = \frac{1}{2\pi} \sum_{n=1}^{p-1} i a_{k,n} \frac{(n - \frac{1}{2}) a_{k,n} + k^2}{(n - \frac{1}{2})^3 k a_n} \phi_n(x_2) \phi_n'(y_2) e^{ika_n|x_1 - y_1|}(0, 1),$$

$$R_6 = I_6 - I_6^p.$$
and

\[R_6 = I_6 - I_6^p. \]

Then, for \(p > \sqrt{3} \kappa + 1 \),

\[|R_6| \leq \begin{cases} \frac{2|k|^4 e^{(x^2/(p-1)-(p-1))|x_1-y_1|}}{\pi (p-1)^3} & \text{if } |x_1-y_1| \neq 0, \\ \frac{k^4}{2\pi (p-1)^2} & \text{if } |x_1-y_1| = 0. \end{cases} \] (2.12)

Using these lemmas, we approximate \(\frac{\partial M}{\partial \nu_y} \) in the way that \(\nabla M \) is approximated by \(I_1 + I_2^p + I_3^p + I_4 + I_5^p + I_6^p \), where \(I_1 \) is evaluated analytically, and \(I_4 \) is evaluated by Gaussain-Legendre quadrature rule. The choice of \(p \) relies on the size of \(|x_1-y_1| \), which will be discussed in detail in next section.

3 Numerical Solution of BIE (1.12)

By use of the splitting (2.4), equation (1.12) can be written in the form

\[\psi(x) + 2 \int_{\partial \Omega} \frac{\partial G_0(x,y)\psi(y)dy}{\partial \nu_y} + 2 \int_{\partial \Omega} \frac{\partial M(x,y)\psi(y)dy}{\partial \nu_y} = -2u'(x), \text{ for } x \in \partial \Omega. \] (3.1)

In this section we discretize this equation by a quadrature method, and replace the kernel \(\frac{\partial M}{\partial \nu_y} \) by a good approximation.

We assume that the boundary \(\partial \Omega \) is given by a \(2\pi \)-periodic parametric representation

\[\gamma(s) = (\gamma_1(s), \gamma_2(s)), \; s \in \mathbb{R}, \]

with \(|\gamma'(s)| \neq 0 \) for all \(s \). Furthermore, we assume that \(\gamma \) is a \(C^\infty \) function. Denote the kernel of the integral equation (3.1) by

\[K_0(x,y) = 2 \frac{\partial}{\partial \nu_y} G_0(x,y), \quad K_1(x,y) = 2 \frac{\partial}{\partial \nu_y} M(x,y). \] (3.2)

Set

\[w(s) = \psi(\gamma(s)), \quad g(s) = -2u'(|\gamma(s)|), \]

\[L_0(s,\sigma) = K_0(\gamma(s), \gamma(\sigma)) |\gamma'(\sigma)|, \quad L_1(s,\sigma) = K_1(\gamma(s), \gamma(\sigma)) |\gamma'(\sigma)|. \]

Thus equation (3.1) reduces to

\[w(s) + \int_{-\pi}^{\pi} w(\sigma)L_0(s,\sigma)d\sigma + \int_{-\pi}^{\pi} w(\sigma)L_1(s,\sigma)d\sigma = g(s), \quad s \in [-\pi, \pi]. \] (3.3)

Recall from [5] that for a \(C^2 \) boundary \(\partial \Omega \), there is a constant \(C > 0 \) such that

\[|(\nu_y, x-y)| \leq C |x-y|^2, \; x, y \in \partial \Omega. \]

Therefore, \(L_0(s,\sigma) \) is continuous for \((s, \sigma) \in [-\pi, \pi] \times [-\pi, \pi] \) by (2.5). The continuity of \(L_1(s,\sigma) \) is obvious since, from Lemma 1 - Lemma 6, we know that \(I_j, j = 1, \ldots, 6 \) are all uniformly convergent serieses. Moreover, letting

\[J(x,y) = I_2 + I_3 + I_5 + I_6, \]
it can be showed that \(\frac{\partial^2 J}{\partial y^2} \), for \(j=1,2,3 \), and \(\frac{\partial J}{\partial y_i} \) are continuous functions of \(x \) and \(y \), and that \(\frac{\partial^2 J}{\partial y_1^2} \), \(j=2,3 \), are continuous except at points where \(y_1 = x_1 \). In addition, for \(x = \gamma(s) \) and \(y = \gamma(\sigma) \), the function \((I_1 + I_4)(x, y) \) can be split as

\[
I_1 + I_4 = -\frac{k^2}{4\pi}(x_1 - y_1, x_2 - y_2) \log |2 \sin \frac{s - \sigma}{2} |
\]

\[
- (0, 1) \frac{k^2}{4\pi}(x_1 - y_1) \left(\arctan \cot \frac{s + \sigma}{2} + \text{sgn}(s^2 - \sigma^2) \frac{\pi}{2} \right)
\]

\[
+ I_{1,4}(s, \sigma),
\]

where \(I_{1,4}(s, \sigma) \) is a smooth function of \((s, \sigma) \). Then

\[
L_1(s, \sigma) = -a(s, \sigma) \log |2 \sin \frac{s - \sigma}{2}| + b(s, \sigma) \left(\arctan \cot \frac{s + \sigma}{2} + \text{sgn}(s^2 - \sigma^2) \frac{\pi}{2} \right) + L_2(s, \sigma),
\]

where

\[
a(s, \sigma) = \frac{k^2}{2\pi}(x_1 - y_1, x_2 - y_2) \cdot \nu_y |\gamma'(\sigma)|,
\]

\[
b(s, \sigma) = -\frac{k^2}{2\pi}(0, x_1 - y_1) \cdot \nu_y |\gamma'(\sigma)|
\]

and

\[
L_2(s, \sigma) = 2(I_{1,4}(s, \sigma) + J(\gamma(s), \gamma(\sigma))) \cdot \nu_y |\gamma'(\sigma)|.
\]

For this reason, we shall use the ordinary rectangular formula

\[
\int_{-\pi}^{\pi} v(\sigma)d\sigma \approx h \sum_{k=-N/2+1}^{N/2} v(t_k),
\]

the weighted quadrature formula

\[
-\int_{-\pi}^{\pi} v(\sigma) \log |2 \sin \frac{s - \sigma}{2}|d\sigma \approx h \sum_{k=-N/2+1}^{N/2} R^1(s - t_k)v(t_k),
\]

and the weighted quadrature formula

\[
\int_{-\pi}^{\pi} v(\sigma) \left(\arctan \cot \frac{s + \sigma}{2} + \text{sgn}(s^2 - \sigma^2) \frac{\pi}{2} \right) d\sigma \approx h \sum_{k=-N/2+1}^{N/2} R^2(s, t_k)v(t_k),
\]

where \(t_k = kh \) with \(h = \frac{2\pi}{N} \) and \(N \) an even integer are the equidistant quadrature knots and the weights are given by

\[
R^1(s) = \sum_{l=1}^{N/2-1} \frac{1}{l} \cos ls + \frac{1}{N} e^{i\frac{N}{2}s}
\]

and

\[
R^2(s, t_k) = \sum_{l=-N/2+1}^{N/2} \left(\frac{\sin l|s|}{l} + \frac{ie^{-ili}s}{2l} \right) e^{-ilt_k} + |s| - \frac{\pi}{2}.
\]
Applying the quadrature formula (3.4), (3.5) and (3.6) to the integrals in (3.3), we replace the integral equation (3.3) by the linear system

$$w_j + h \sum_{k=-N/2+1}^{N/2} (R_1(t_{j-k})a(t_j, t_k) + R_2(t_j, t_k)b(t_j, t_k) + L_0(t_j, t_k) + L_2(t_j, t_k))w_k = g_j,$$

$$j = -\frac{N}{2} + 1, \ldots, \frac{N}{2},$$

for the approximate values \(w_j \) to \(w(t_j) \), where \(g_j = g(t_j) \). This linear system has an \(O(h^3) \) truncation, and so can produce an \(O(h^3) \) rate of convergence for \(w_j \) to \(w(t_j) \).

The linear system (3.7) involve the calculation of functions \(a, b, L_0 \) and \(L_2 \) at the points \((t_j, t_k) \), and the calculation of the weights. The evaluations of \(a(t_j, t_k) \) and \(b(t_j, t_k) \) are direct. \(L_0(t_j, t_k) \) can be evaluated using the explicit formula (2.3). \(R_1(t_{j-k}) \) and \(R_2(t_j, t_k) \) can be evaluated using FFT with only \(O(N \log N) \) arithmetic operations. A difficulty and expensive part is the evaluation of \(L_2(t_j, t_k) \), because \(J(x, y) \) is an infinite series function which has to be truncated properly.

The following theorem provides an \(O(1/N^3) \) approximation to \(L_2 \).

Theorem 1 Let

$$J^p(x, y) = \begin{cases} P_2^p + P_3^p + P_5^p + P_6^p & \text{if } |x_1 - y_1| \neq 0, \\ P_6^p & \text{if } |x_1 - y_1| = 0, \end{cases}$$

and

$$L^p_2(s, \sigma) = 2(I_1, 4(s, \sigma) + J^p(\gamma(s), \gamma(s))) \cdot \nu(\gamma(\sigma))|\gamma'(\sigma)|,$$

where \(P_2^p, P_3^p, P_5^p \) and \(P_6^p \) are defined as in last section, and \(p \) is chosen as

$$p = \begin{cases} N + 1 \\ 2 + \left[\kappa + \frac{2}{\pi|x_1 - y_1|} \log(N|x_1 - y_1|) \right] \end{cases} \quad \text{if } |x_1 - y_1| = 0 \text{ or } \left| x_1 - y_1 \right| - \frac{1}{N} \leq \frac{e^{-1}}{N},$$

Then for any \(s, \sigma \in [-\pi, \pi] \), there is a constant \(C \) independent of \(N, s \) and \(\sigma \) such that

$$|(L_2 - L_2^p)(s, \sigma)| \leq CN^{-3}.$$

Proof: It is clear that we only need to prove

$$|(J - J^p)(x, y)| \leq CN^{-3}, \quad \text{for } x, y \in \partial \Omega.$$

For \(|x_1 - y_1| \geq (1 + e^{-1})/N \), we have from (2.9), (2.10), (2.11) and (2.12) that

$$|J - J^p| \leq |I_2 - I_2^p| + |I_3 - I_3^p| + |I_5 - I_5^p| + |I_6 - I_6^p|$$

$$\leq \left(\frac{k^4}{54\pi \log^3(N|x_1 - y_1|)} + \frac{k^4}{9\pi \log^2(N|x_1 - y_1|)} \right) + \frac{k^4}{27\pi \log^3(N|x_1 - y_1|)} + \frac{2k^4}{81\pi \log^4(N|x_1 - y_1|)} \frac{1}{N^3}.$$

The proof for other cases follows similarly. These then complete the proof of the lemma. \(\square \)
The choice (3.10) of \(p \) is made in order to save arithmetic operations when the truncation \(J^p \) is used to approximate \(J \). Employing the approximation \(L^p(s, \sigma) \) of \(L_2(s, \sigma) \) into (3.7), we arrive at a linear system

\[
w_j + h \sum_{k=-N/2+1}^{N/2} \left(R_1(t_{j-k})a(t_j, t_k) + R_2(t_j, t_k)b(t_j, t_k) + L_0(t_j, t_k) + L^*_0(t_j, t_k) \right) w_k = g_j, \quad (3.13)\]

\[
j = \frac{-N}{2} + 1, ..., \frac{N}{2},
\]

for the approximation values \(w_j \) to \(w(t_j) \). From Theorem 1, the system (3.13) has a \(O(1/N^2) \) rate of convergence.

4 Numerical Examples

We consider an object \(\Omega \) centered at \((0, z_0)\), in the finite depth ocean with \(d = \pi \) The boundary of \(\Omega \) is given by

\[
\partial \Omega = \left\{ (x_1, x_2) : \frac{x_1^2}{\beta_1^2} + \frac{(x_1 - z_0)^2}{\beta_2^2} = 1 \right\}.
\]

The incident wave \(u^i(x) \) is given for test by

\[
u^i(x) = -G(x_1, x_2; 0, z_0),
\]

so the solution of the boundary value problem is

\[
u(x) = G(x_1, x_2; 0, z_0).
\]

We approximate the scattering wave represented as the double layer potential (1.11) by

\[
u_h(x) = \frac{h}{2} \sum_{j=-N/2+1}^{N/2} w_j(K_0(x, \gamma(t_j)) + K^*_1(x, \gamma(t_j)))|\gamma'(t_j)|
\]

(4.1)

for \(x \) away from the boundary, where \(K_1^*(x, y) \) is an approximation to \(K_1(x, y) \), given by

\[
K_1^*(x, y) = 2(I_1 + I_2^p + I_3^p + I_4 + I_5^p + I_6^p) \cdot \nu(y).
\]

For \(x \) near the boundary, (4.1) is replaced by

\[
u_h(x) = -u^i(x), \quad x \in \partial \Omega
\]

(4.2)

and

\[
u_h(x) = \frac{h}{2} \sum_{j=-N/2+1}^{N/2} \{w_j(K_0(x, \gamma(t_j)) + K^*_1(x, \gamma(t_j))) - w_rK_0(x, \gamma(t_j))\},
\]

(4.3)

for \(1 < \frac{x_1^2}{\beta_1^2} + \frac{(x_2 - z_0)^2}{\beta_2^2} \leq 1.1, \)

where \(r \) is chosen such that

\[
|x - \gamma(t_r)| = \min_j |x - \gamma(t_j)|.
\]

9
We calculated the error \(e_h(x) = u(x) - u_h(x) \), where \(u(x) \) is approximately evaluated by

\[
u(x) = G_0(x_1, x_2; 0, z_0) + M(x_1, x_2; 0, z_0)
\]

with \(M \) truncated at its 30th term in (2.2). The boundary \(\partial \Omega \) is subdivided uniformly with respect to the parameter \(\tau \) by \(N \) quadrature knots, where \(N \) is chosen respectively as \(N = 2^l, l = 2, \ldots, 8 \). The CPU time with respect to the values of \(N \) and the points are reported. All calculations were performed in double precision on the University of Kentucky's IBM 3090-600J using vectorization.

In Tables 1.1, 1.2 and 1.3, we choose \(z_0 = \pi/2 \) and \((\beta_1, \beta_2) = (1, 1) \), and report the results at the points \(x = (1.01, \pi/2), (2, \pi/2), \text{and} (4, \pi/2) \) for wave number \(\kappa = 2, 5, 10 \), respectively. The potential points \(x = (1.01, \pi/2), (2, \pi/2), (4, \pi/2) \) are chosen so that the distance between \(x \) and \(\Omega \) are 0.01, 1, 3, respectively.

Table 1.1. \(z_0 = \pi/2, (\beta_1, \beta_2) = (1, 1), \kappa = 2. \)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e_h(1.01, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(2, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(4, \pi/2))</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.26E -2</td>
<td>0.03</td>
<td>1.11E -1</td>
<td>0.03</td>
<td>1.57E -1</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>2.58E -1</td>
<td>0.09</td>
<td>6.90E -4</td>
<td>0.08</td>
<td>2.01E -3</td>
<td>0.07</td>
</tr>
<tr>
<td>16</td>
<td>7.32E -2</td>
<td>0.44</td>
<td>4.34E -4</td>
<td>0.39</td>
<td>8.37E -4</td>
<td>0.38</td>
</tr>
<tr>
<td>32</td>
<td>1.41E -2</td>
<td>2.45</td>
<td>1.50E -4</td>
<td>2.26</td>
<td>3.27E -4</td>
<td>2.24</td>
</tr>
<tr>
<td>64</td>
<td>1.31E -3</td>
<td>14.88</td>
<td>3.20E -5</td>
<td>14.37</td>
<td>6.65E -5</td>
<td>14.32</td>
</tr>
<tr>
<td>128</td>
<td>2.26E -5</td>
<td>98.20</td>
<td>2.45E -6</td>
<td>96.86</td>
<td>2.03E -6</td>
<td>96.68</td>
</tr>
<tr>
<td>256</td>
<td>1.18E -6</td>
<td>691.59</td>
<td>6.97E -7</td>
<td>687.46</td>
<td>6.97E -7</td>
<td>687.83</td>
</tr>
</tbody>
</table>

Table 1.2. \(z_0 = \pi/2, (\beta_1, \beta_2) = (1, 1), \kappa = 5. \)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e_h(1.01, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(2, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(4, \pi/2))</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1.69E -1</td>
<td>0.45</td>
<td>4.61E -3</td>
<td>0.40</td>
<td>3.92E -3</td>
<td>0.39</td>
</tr>
<tr>
<td>32</td>
<td>9.43E -3</td>
<td>2.47</td>
<td>6.50E -4</td>
<td>2.29</td>
<td>1.51E -3</td>
<td>2.27</td>
</tr>
<tr>
<td>64</td>
<td>5.52E -4</td>
<td>14.95</td>
<td>3.27E -4</td>
<td>14.58</td>
<td>4.27E -4</td>
<td>14.49</td>
</tr>
<tr>
<td>128</td>
<td>5.19E -5</td>
<td>98.58</td>
<td>7.60E -5</td>
<td>98.08</td>
<td>4.06E -5</td>
<td>97.67</td>
</tr>
<tr>
<td>256</td>
<td>1.85E -5</td>
<td>694.05</td>
<td>4.60E -5</td>
<td>694.77</td>
<td>4.43E -5</td>
<td>693.19</td>
</tr>
</tbody>
</table>

Table 1.3. \(z_0 = \pi/2, (\beta_1, \beta_2) = (1, 1), \kappa = 10. \)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e_h(1.01, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(2, \pi/2))</th>
<th>CPU(sec)</th>
<th>(e_h(4, \pi/2))</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1.68E -1</td>
<td>15.19</td>
<td>1.53E -2</td>
<td>14.67</td>
<td>1.02E -2</td>
<td>14.64</td>
</tr>
<tr>
<td>128</td>
<td>7.02E -2</td>
<td>99.58</td>
<td>4.51E -3</td>
<td>98.38</td>
<td>3.39E -3</td>
<td>99.51</td>
</tr>
<tr>
<td>256</td>
<td>2.20E -3</td>
<td>696.83</td>
<td>9.22E -4</td>
<td>694.84</td>
<td>5.34E -4</td>
<td>694.99</td>
</tr>
</tbody>
</table>

In Tables 2.1, 2.2 and 2.3, we choose \(z_0 = 1 \) and \((\beta_1, \beta_2) = (0.5, 0.5) \), and report the results at the points \(x = (0.51, 1), (2, 1), \text{and} (4, 1) \) for wave number \(\kappa = 2, 5, 10 \), respectively. The potential points \(x = (0.51, 1), (2, 1), (4, 1) \) are chosen so that the distance between \(x \) and \(\Omega \) are 0.01, 1.5, 3.5, respectively.

Table 2.1. \(z_0 = 1, (\beta_1, \beta_2) = (0.5, 0.5), \kappa = 2. \)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(e_h(0.51, 1))</th>
<th>CPU(sec)</th>
<th>(e_h(2, 1))</th>
<th>CPU(sec)</th>
<th>(e_h(4, 1))</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.43E -2</td>
<td>0.03</td>
<td>1.89E -2</td>
<td>0.03</td>
<td>1.74E -2</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>5.21E -2</td>
<td>0.10</td>
<td>1.07E -3</td>
<td>0.08</td>
<td>1.07E -3</td>
<td>0.08</td>
</tr>
<tr>
<td>16</td>
<td>6.19E -3</td>
<td>0.50</td>
<td>4.31E -4</td>
<td>0.42</td>
<td>3.86E -4</td>
<td>0.41</td>
</tr>
<tr>
<td>32</td>
<td>8.04E -4</td>
<td>2.81</td>
<td>1.30E -4</td>
<td>2.53</td>
<td>1.17E -4</td>
<td>2.53</td>
</tr>
<tr>
<td>64</td>
<td>6.70E -5</td>
<td>17.29</td>
<td>2.52E -5</td>
<td>16.48</td>
<td>2.24E -5</td>
<td>16.54</td>
</tr>
<tr>
<td>128</td>
<td>1.86E -6</td>
<td>113.24</td>
<td>9.01E -7</td>
<td>110.86</td>
<td>7.72E -7</td>
<td>111.27</td>
</tr>
<tr>
<td>256</td>
<td>1.40E -6</td>
<td>778.61</td>
<td>6.85E -7</td>
<td>774.12</td>
<td>9.25E -7</td>
<td>775.04</td>
</tr>
</tbody>
</table>
Table 2.2. $z_0 = 1$, $(\beta_1, \beta_2) = (0.5, 0.5)$, $\kappa = 5$.

<table>
<thead>
<tr>
<th>N</th>
<th>$e_h(0.51,1)$</th>
<th>CPU(sec)</th>
<th>$e_h(2,1)$</th>
<th>CPU(sec)</th>
<th>$e_h(4,1)$</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2.90E-2</td>
<td>0.51</td>
<td>2.96E-3</td>
<td>0.43</td>
<td>1.71E-3</td>
<td>0.42</td>
</tr>
<tr>
<td>32</td>
<td>3.51E-3</td>
<td>2.84</td>
<td>8.71E-4</td>
<td>2.56</td>
<td>4.97E-4</td>
<td>2.55</td>
</tr>
<tr>
<td>64</td>
<td>1.39E-4</td>
<td>17.41</td>
<td>1.72E-4</td>
<td>16.64</td>
<td>8.10E-5</td>
<td>16.59</td>
</tr>
<tr>
<td>128</td>
<td>1.83E-5</td>
<td>113.51</td>
<td>1.24E-5</td>
<td>111.46</td>
<td>2.00E-5</td>
<td>111.05</td>
</tr>
<tr>
<td>256</td>
<td>2.11E-6</td>
<td>781.31</td>
<td>2.45E-5</td>
<td>776.88</td>
<td>2.38E-5</td>
<td>776.52</td>
</tr>
</tbody>
</table>

Table 2.3. $z_0 = 1$, $(\beta_1, \beta_2) = (0.5, 0.5)$, $\kappa = 10$.

<table>
<thead>
<tr>
<th>N</th>
<th>$e_h(0.51,1)$</th>
<th>CPU(sec)</th>
<th>$e_h(2,1)$</th>
<th>CPU(sec)</th>
<th>$e_h(4,1)$</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6.16E-2</td>
<td>0.52</td>
<td>1.09E-3</td>
<td>0.44</td>
<td>6.59E-3</td>
<td>0.44</td>
</tr>
<tr>
<td>32</td>
<td>4.09E-3</td>
<td>2.88</td>
<td>4.15E-4</td>
<td>2.61</td>
<td>1.94E-3</td>
<td>2.60</td>
</tr>
<tr>
<td>64</td>
<td>3.66E-4</td>
<td>17.59</td>
<td>3.32E-5</td>
<td>16.82</td>
<td>4.95E-4</td>
<td>16.81</td>
</tr>
<tr>
<td>128</td>
<td>3.68E-5</td>
<td>114.12</td>
<td>9.09E-5</td>
<td>112.09</td>
<td>1.56E-4</td>
<td>112.39</td>
</tr>
<tr>
<td>256</td>
<td>1.22E-5</td>
<td>785.44</td>
<td>1.67E-5</td>
<td>778.49</td>
<td>6.78E-5</td>
<td>778.92</td>
</tr>
</tbody>
</table>

In Tables 3.1, 3.2 and 3.3, we choose $z_0 = \pi/2$ and $(\beta_1, \beta_2) = (0.25, 1)$, and report the results at the points $x = (0.27, \pi/2)$, $(\pi/2, 2\pi)$, and $(4\pi/2)$ for wave number $\kappa = 2, 5, 10$, respectively. The potential points $x = (0.27, \pi/2)$, $(\pi/2, 2\pi)$, $(4\pi/2)$ are chosen so that the distance between x and Ω are 0.02, 1.75, 3.75, respectively.

Table 3.1. $z_0 = \pi/2$, $(\beta_1, \beta_2) = (0.25, 1)$, $\kappa = 2$.

<table>
<thead>
<tr>
<th>N</th>
<th>$e_h(0.27, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(2, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(4, \pi/2)$</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>6.96E-1</td>
<td>0.58</td>
<td>6.18E-4</td>
<td>0.48</td>
<td>6.58E-4</td>
<td>0.47</td>
</tr>
<tr>
<td>32</td>
<td>1.10E-1</td>
<td>3.43</td>
<td>3.20E-3</td>
<td>3.10</td>
<td>2.65E-3</td>
<td>3.10</td>
</tr>
<tr>
<td>64</td>
<td>1.10E-2</td>
<td>21.76</td>
<td>7.11E-5</td>
<td>20.79</td>
<td>8.46E-5</td>
<td>20.88</td>
</tr>
<tr>
<td>128</td>
<td>7.18E-4</td>
<td>142.65</td>
<td>7.08E-5</td>
<td>139.46</td>
<td>8.44E-5</td>
<td>140.08</td>
</tr>
<tr>
<td>256</td>
<td>3.63E-5</td>
<td>960.53</td>
<td>7.08E-5</td>
<td>950.90</td>
<td>8.44E-5</td>
<td>953.76</td>
</tr>
</tbody>
</table>

Table 3.2. $z_0 = \pi/2$, $(\beta_1, \beta_2) = (0.25, 1)$, $\kappa = 5$.

<table>
<thead>
<tr>
<th>N</th>
<th>$e_h(0.27, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(2, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(4, \pi/2)$</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4.43E-1</td>
<td>0.59</td>
<td>1.73E-3</td>
<td>0.49</td>
<td>1.77E-3</td>
<td>0.48</td>
</tr>
<tr>
<td>32</td>
<td>5.01E-2</td>
<td>3.46</td>
<td>1.17E-3</td>
<td>3.14</td>
<td>1.39E-3</td>
<td>3.10</td>
</tr>
<tr>
<td>64</td>
<td>6.47E-3</td>
<td>21.83</td>
<td>4.32E-4</td>
<td>20.98</td>
<td>3.33E-4</td>
<td>20.76</td>
</tr>
<tr>
<td>128</td>
<td>3.96E-4</td>
<td>142.38</td>
<td>4.39E-4</td>
<td>140.27</td>
<td>3.35E-4</td>
<td>139.81</td>
</tr>
<tr>
<td>256</td>
<td>6.17E-5</td>
<td>961.18</td>
<td>4.39E-4</td>
<td>956.35</td>
<td>3.35E-4</td>
<td>952.31</td>
</tr>
</tbody>
</table>

Table 3.3. $z_0 = \pi/2$, $(\beta_1, \beta_2) = (0.25, 1)$, $\kappa = 10$.

<table>
<thead>
<tr>
<th>N</th>
<th>$e_h(0.27, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(2, \pi/2)$</th>
<th>CPU(sec)</th>
<th>$e_h(4, \pi/2)$</th>
<th>CPU(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>5.61E-1</td>
<td>3.52</td>
<td>1.00E-2</td>
<td>3.20</td>
<td>4.67E-3</td>
<td>3.17</td>
</tr>
<tr>
<td>64</td>
<td>6.20E-2</td>
<td>21.99</td>
<td>6.09E-3</td>
<td>21.09</td>
<td>3.83E-3</td>
<td>21.06</td>
</tr>
<tr>
<td>128</td>
<td>2.76E-3</td>
<td>143.65</td>
<td>5.52E-3</td>
<td>141.16</td>
<td>3.43E-3</td>
<td>140.94</td>
</tr>
<tr>
<td>256</td>
<td>1.65E-3</td>
<td>966.38</td>
<td>5.42E-3</td>
<td>958.63</td>
<td>3.37E-3</td>
<td>955.96</td>
</tr>
</tbody>
</table>

Based on our observation of these numerical results, the quadrature method introduced in Section 3 works well for the wave number at least within the arrange $k \leq 10$. The method is convergent, and has a good accuracy, though the accuracy is affected when the wavenumber k becomes large. The involved CPU time is reasonable and affordable. The majority of the CPU time is spent on the matrix generation of equation (3.13). It is possible to improve the approximation method in the matrix generation, and then to reduce the CUP time. This, however, requires more rigorous research.
References

Recent IMA Preprints

Author/s Title

Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation of boundaries

Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain

Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem

Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several space dimensions

Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts

Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation

Marco Birolì and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type

Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations

H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals

R. Natalini and A. Tesei, On a class of perturbed conservation laws

Paul K. Newton and Shin-Ya Watanabe, The geometry of nonlinear Schrödinger standing waves

S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow

Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations

Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane

F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution

Erasmus Langer, Numerical simulation of MOS transistors

Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n

Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures

Chao-Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient

D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model

Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4

Walter Schempp, Quantum holography and neurocomputer architectures

D.V. Anosov, An introduction to Hilbert's 21st problem

Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes

Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves

Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs

Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic tangles of two dimensional quasiperiodic vector fields: theory and applications

Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws

Gui-Qiang Chen and Jian-Guo Liu, Convergence of second-order schemes for isentropic gas dynamics

Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion

Jerzy Luszka, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion

Mitchell Luskin and Tsorng-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals

Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions

Richard A. Brualdi and Keith L. Chavey, Rectangular L-matrices

Xinfu Chen, Arner Friedman and Bei Hu, The thermistor problem with zero–one conductivity II

Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle

Raoul LePage, Controlling for optimum growth with time dependent returns

Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey

V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval

Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media

Kaustik Bhattacharya, Self-accommodation in martensite

D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment

Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling

David C. Dobson, Phase reconstruction via nonlinear least-squares

Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation

Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns

B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems

Charles M. Elliott and Stefan Luckhaus, 'A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy'

Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods

LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity

Jerry Donato, The Boltzmann equation with lie and cartan

Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, A method for resolving the laser induced local heating of moving magneto-optical recording media

E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions

T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium

Reinhold von Schwerin, Two metal deposition on a microdisk electrode

Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows

Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations

Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations

Hong-Ming Yin, Global solutions of Maxwell's equations in an electromagnetic field with the temperature-dependent electrical conductivity

Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs

Miroslav Fiedler, Structure-ranks of matrices

Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices

Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices

Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions

Pierre-Alain Gremaud, Thermal contraction as a free boundary problem

K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays

Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation

LeRoy B. Beasley, Richard A. Bruzdl and Bryan L. Shader, Combinatorial orthogonality

Richard A. Bruzdl and Bryan L. Shader, Strong hall matrices

Håkan Wernerström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability

Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices

Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals

Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems

Steve Kirkland and Bryan L. Shader, On Multiparticle Tournament Matrices with Constant Team Size

Richard A. Bruzdl and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices

Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion

Kazuo Murota, Mixed Matrices Irreducibility and Decomposition

Richard A. Bruzdl and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations

Carl D. Meyer, Sensitivity of Markov Chains

Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations

B. Leinkuhler and A. Ruehli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation

Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Doubly Obstacle Problem

Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans

Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides

Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration

F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders

Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions

D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick's Inequality and Tournaments

J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization

Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation

Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices

Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains