SOME APPLICATIONS OF ELEMENTARY LINEAR ALGEBRA IN COMBINATORICS

By

Richard A. Brualdi

and

Jennifer J.Q. Massey

IMA Preprint Series # 918
February 1992
Some Applications of Elementary Linear Algebra in Combinatorics*

Richard A. Brualdi †
Department of Mathematics
University of Wisconsin
Madison, WI 53706

Jennifer J. Q. Massey‡
Department of Mathematics
University of Wisconsin
Madison, WI 53706

January 21, 1992

Linear algebra has been used with great effectiveness in combinatorics and graph theory. It is sometimes surprising how elementary ideas of linear algebra have far reaching consequences. What are these elementary ideas? Linear independence, rank, determinant, eigenvalues, dimension. Ideas that one learns about in a first course in linear algebra. Many of these applications are accessible to students in a first course. In this note we discuss three such applications. Of these, two can be obtained by purely combinatorial arguments, but all the known arguments for the third use ideas from linear algebra.

Some of the simplest square (symmetric) matrices are \(O_n\) (the zero matrix of order \(n\)), \(I_n\) (the identity matrix of order \(n\)), and \(J_n\) (the all 1’s matrix of order \(n\)). The fundamental linear algebraic invariants of these matrices are easy to determine and are given in the table below (\(e_i\) denotes the \(i\)th standard basis vector of the real \(n\)-dimensional vector space \(\mathbb{R}^n\)).

*This paper is intended for the January 1993 issue of the *College Mathematics Journal* which is being devoted to the teaching of introductory linear algebra. It was written while the authors were visiting the Institute for Mathematics and its Applications of the University of Minnesota.

†Research partially supported by NSF Grant DMS-8901445 and NSA Grant MDA904-89-H-2060.

‡Research partially supported by NSA Grant MDA904-89-H-2060 and an Office of Education Fellowship administered by the Department of Mathematics of the University of Wisconsin-Madison.
<table>
<thead>
<tr>
<th>O_n</th>
<th>I_n</th>
<th>J_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>determinant</td>
<td>0 .</td>
<td>1</td>
</tr>
<tr>
<td>eigenvalues</td>
<td>0 (n times)</td>
<td>1 (n times)</td>
</tr>
<tr>
<td>eigenvectors</td>
<td>e_i ($1 \leq i \leq n$)</td>
<td>e_i ($1 \leq i \leq n$)</td>
</tr>
</tbody>
</table>

In the table we have given n linearly independent eigenvectors for each matrix. Since O_n and I_n each have only one distinct eigenvalue, it follows that every nonzero vector is an eigenvector of both matrices. The vectors $e_i - e_{i+1}$, $(i = 1, 2, \ldots, n - 1)$ span the subspace W of \mathbb{R}^n consisting of those vectors $x = (x_1, x_2, \ldots, x_n)$ with $x_1 + x_2 + \cdots + x_n = 0$ and hence every nonzero vector of W is an eigenvector of J_n with eigenvalue 0.

What happens when we take linear combinations of the matrices? The zero matrix doesn’t contribute anything, so all linear combinations are of the form

$$aI_n + bJ_n \quad (a \text{ and } b \text{ are real numbers}).$$

The vectors $e_i - e_{i+1}$ are eigenvectors of $aI_n + bJ_n$ with eigenvalue $a(1) + b(0) = a$, and $\sum_{i=1}^{n} e_i$ is an eigenvector with eigenvalue $a(1) + b(n) = a + bn$. Hence

$$a \ (n - 1 \text{ times}) \text{ and } a + bn \text{ are the eigenvalues of } aI_n + bJ_n, \quad (1)$$

and because the determinant of a matrix equals the product of its eigenvalues,

$$\det(aI_n + bJ_n) = a^{n-1}(a + bn).$$

Since $aI_n + bJ_n$ is a symmetric matrix, its rank equals the number of nonzero eigenvalues and can be easily determined as a function of a and b using (1).

These calculations involve only elementary linear algebraic notions but nonetheless have a combinatorial consequence which is difficult to obtain without linear algebra. Let A_1, A_2, \ldots, A_n be a family of n distinct subsets of an m-element set $X = \{x_1, x_2, \ldots, x_m\}$. Suppose that

(a) each set A_i contains exactly k elements, and

(b) every pair of sets A_i and A_j with $i \neq j$ has exactly λ elements in common.

Then it turns out that the number of sets A_i is at most the number of elements of X, that is, $n \leq m$. The connection between this result and linear algebra is provided by the incidence matrix of the given sets. The incidence matrix of this family of subsets of X is the n by m matrix $B = [b_{ij}]$ where

$$b_{ij} = \begin{cases} 1 & \text{if } x_j \in A_i \\ 0 & \text{if } x_j \not\in A_i \end{cases}.$$
For example, let $m = 7$ and

$$A_1 = \{x_1, x_2, x_4\}, A_2 = \{x_2, x_3, x_5\}, A_3 = \{x_3, x_4, x_6\}, A_4 = \{x_4, x_5, x_7\},$$

$$A_5 = \{x_5, x_6, x_1\}, A_6 = \{x_6, x_7, x_2\}, A_7 = \{x_7, x_1, x_3\}.$$

(2)

The incidence matrix is

$$B = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}.$$

Since each set contains three elements ($k = 3$), each row of B contains 3 ones. Since each pair of sets has one common element ($\lambda = 1$), the inner product of any two distinct rows of B equals 1. This means that each diagonal element of BB^t equals 3 and each off-diagonal element equals 1. Equivalently,

$$BB^t = 2I_7 + J_7.$$

In general, the matrix BB^t is the intersection matrix of the family of sets A_1, A_2, \ldots, A_n since the entry in row i and column j equals the number of elements of $A_i \cap A_j$. If the sets A_1, A_2, \ldots, A_n have properties (a) and (b), then

$$BB^t = (k - \lambda)I_n + \lambda J_n.$$

Thus (1) implies that the eigenvalues of BB^t are

$$k - \lambda \text{ (n - 1 times) and } k + (n - 1)\lambda.$$

Since the sets are distinct, we have $k > \lambda$. Hence none of the eigenvalues of BB^t equals zero and the rank of the matrix BB^t of order n equals n. Since the rank of a product of matrices does not exceed the rank of either factor, we now conclude that the rank of B is at least n. But the rank cannot exceed the number n of its rows and this implies that the rank of B equals n. The rank of B also cannot exceed the number m of its columns and thus we obtain $n \leq m$. Therefore:

If we have n distinct subsets of cardinality k of a set of m elements such that each pair of sets have λ elements in common, then the number of sets is at most the number of elements.
More generally we see that if \(B \) is any \(n \) by \(m \) real matrix satisfying the equation \(BB^t = aI_n + bJ_n \) where \(a \neq 0 \) and \(a + bn \neq 0 \) (equivalently, \(\det(aI_n + bJ_n) \neq 0 \)), then \(n \leq m. \)\(^1\)

The above result is one form of a famous inequality in the theory of combinatorial designs known as Fisher’s inequality (see e.g. [8]). Although it is possible to prove Fisher’s inequality in other ways, none is as elegant and illuminating as the proof given above based on elementary, but powerful, linear algebra.

An equally famous result in combinatorics is the so-called marriage theorem of P. Hall (see e.g. [1], [6], [8]). Again let \(A_1, A_2, \ldots, A_n \) be a family of \(n \) subsets of a set \(X = \{x_1, x_2, \ldots, x_m\} \) of \(m \) elements. A system of distinct representatives, abbreviated SDR, of \(A_1, A_2, \ldots, A_n \) is a family \(a_1, a_2, \ldots, a_n \) of distinct elements such that \(a_i \in A_i \) for each \(i = 1, 2, \ldots, n \). For example, \(x_1, x_2, x_3, x_4, x_5, x_6, x_7 \) and \(x_2, x_5, x_3, x_4, x_6, x_7, x_1 \) are both SDR’s of the family (2). If the family \(A_1, A_2, \ldots, A_n \) has an SDR, then clearly for each \(k = 1, 2, \ldots, n \) the union of any \(k \) sets contains at least \(k \) elements, that is,

\[
| \bigcup_{i \in J} A_i | \geq |J| \quad (J \subseteq \{1, 2, \ldots, n\})\]

To show that condition (3) is sufficient for there to be an SDR, we replace the 1’s in the incidence matrix \(B \) by numbers which are chosen to be far from identical. Let \(R = [r_{ij}] \) be the \(n \) by \(m \) matrix where \(r_{ij} = 0 \) if and only if \(x_j \not\in A_i \). We choose the nonzero elements of \(R \) to be real numbers which are algebraically independent over the field of rational numbers \(\mathbb{Q} \).\(^2\)

Suppose that the rank of \(R \) equals \(n \). Then some submatrix \(S \) of \(R \) of order \(n \) has rank \(n \) and hence \(\det S \neq 0 \). To simplify the notation, assume that the columns of \(S \) are the first \(n \) columns of \(R).\(^3\) Then

\[
\det S = \sum_{(i_1, i_2, \ldots, i_n)} \pm r_{1i_1} r_{2i_2} \cdots r_{ni_n} \neq 0,
\]

where the summation extends over all permutations \((i_1, i_2, \ldots, i_n) \) of \(\{1, 2, \ldots, n\} \) and the choice of + or − depends on whether the permutation is even or odd. Since the determinant of \(S \) is not zero, there is a permutation \((k_1, k_2, \ldots, k_n) \) such that

\[
r_{1k_1} r_{2k_2} \cdots r_{nk_n} \neq 0.
\]

\(^1\)Of course, we can generalize even further: if \(B \) is an \(n \) by \(m \) matrix satisfying \(BB^t = C \) where \(C \) is a nonsingular matrix of order \(n \), then the rank of \(B \) equals \(n \) and hence \(n \leq m \). Thus if the intersection matrix of a family of \(n \) subsets of an \(m \) element set is nonsingular, then the number of sets is at most the number of elements.

\(^2\)That is, they do not satisfy any nonzero polynomial equation with rational coefficients.

\(^3\)This can be achieved by changing the order of the columns of \(R \), that is, by relabeling the elements of \(X \).
Thus

\[r_{1k_1} \neq 0 \implies x_{k_1} \in A_1 \]
\[r_{2k_2} \neq 0 \implies x_{k_2} \in A_2 \]
\[\vdots \]
\[r_{nk_n} \neq 0 \implies x_{k_n} \in A_n \]

Since \((k_1, k_2, \ldots, k_n)\) is a permutation, \(x_{k_1}, x_{k_2}, \ldots, x_{k_n}\) is a family of distinct elements and thus an SDR of \(A_1, A_2, \ldots, A_n\).

Now suppose that the rank of \(R\) is less than \(n\). Thus the rows of \(R\) are linearly dependent. We choose a minimal set of linearly dependent rows of \(R\) and without loss of generality we assume that these are the first \(k\) rows.\(^4\) This means that the \(k\) by \(n\) submatrix \(R'\) determined by the first \(k\) rows of \(R\) has rank equal to \(k - 1\) and every proper subset of the rows of \(R'\) is a linearly independent set. Since the rank of \(R'\) is \(k - 1\), there are \(k - 1\) linearly independent columns of \(R'\) such that every other column of \(R'\) is a linear combination of them. Without loss of generality we assume that the first \(k - 1\) columns of \(R'\) are linearly independent.\(^5\) Thus \(R\) has the form

\[
\begin{bmatrix}
R_1 & R_2 \\
R_3 & R_4
\end{bmatrix}
\]

where \(R_1\) is a \(k\) by \(k - 1\) matrix and each column of \(R_2\) is a linear combination of the columns of \(R_1\). There is a nontrivial linear combination of the rows of \(R_1\) which equals zero, that is, there is a nonzero vector \(u = (u_1, u_2, \ldots, u_k)\) such that

\[uR_1 = 0. \]

The entries \(u_i\) of \(u\) are real numbers which can be expressed as polynomials in the nonzero elements of \(R_1\).\(^6\) Since each column of \(R_2\) is a linear combination of the columns of \(R_1\) we also have \(uR_2 = 0\).\(^7\) Hence

\[u \begin{bmatrix} R_1 & R_2 \end{bmatrix} = 0. \]

Since the first \(k\) rows form a minimal linearly dependent set of rows, no entry \(u_i\) of \(u\) equals zero. Let \((r_{1j}, r_{2j}, \ldots, r_{kj})\) be any column of \(R_2\). Then

\[u_1 r_{1j} + u_2 r_{2j} + \cdots + u_k r_{kj} = 0. \quad (4) \]

\(^4\)This can be achieved by changing the order of the rows of \(R\), that is, by relabeling the sets \(A_1, A_2, \ldots, A_n\). Note that \(k > 1\) since (3) implies that no row of \(A\) contains only 0's.

\(^5\)See footnote 3.

\(^6\)This follows by solving the system \(uR_1 = 0\) of \(k - 1\) equations in the \(k\) unknowns \(u_i\) by Gaussian elimination.

\(^7\)There is a subtle point to be appreciated here. Since the first \(k\) rows of \(R\) are linearly dependent we could have chosen \(u\) so that \(u[R_1\ R_2] = 0\). But then we would have to say that the entries \(u_i\) are polynomials in the nonzero entries of \(R_1\) and \(R_2\). This would have made the rest of the proof invalid.
Since no u_i equals zero, if any of the numbers $r_{ij}, (i = 1, 2, \ldots, k; j = k, k + 1, \ldots, n)$ is different from zero, then (4) is a non-zero polynomial equation with rational coefficients contradicting the algebraic independence of the nonzero elements of R. Therefore $R_2 = O$ implying that the union of the first k sets contains only $k - 1$ elements.\footnote{The fact that it turns out to be the first k sets is a consequence of the relabeling of the sets that was done within the proof.} Thus the supposition that the rank of R is less than n leads to a contradiction of (3). We conclude:

The family of sets A_1, A_2, \ldots, A_n has an SDR if and only if $\left| \bigcup_{i \in J} A_i \right| \geq |J|$ for all $J \subseteq \{1, 2, \ldots, n\}$.

The idea of the above proof is due to Edmonds [3]. Other proofs of the marriage theorem of a combinatorial nature are available (see e.g. [6]). However for the next result every known proof uses some basic notions of linear algebra.

Consider the complete graph K_n of order n. It has n vertices $\{1, 2, \ldots, n\}$ and an edge $\{i,j\}$ joining each pair of distinct vertices i and j. In Figure 1 we have drawn the graph K_4. A biclique (short for complete bipartite subgraph) of K_n is obtained by choosing two disjoint subsets X and Y of the vertices of K_n and all the edges (X,Y) joining them. Since each edge of K_n is a biclique, it is possible to partition the edges of K_n into bicliques. Hence it is natural to ask for the minimum number of bicliques into which the edges of K_n can be partitioned. Figure 2 exhibits three biclique partitions of K_4. The first of these can be generalized to give a biclique partition of K_n into the $n-1$ bicliques

\[
\langle\{1\}, \{2,3,\ldots,n\}\rangle, \langle\{2\}, \{3,4,\ldots,n\}\rangle, \ldots, \langle\{n-1\}, \{n\}\rangle.
\]

It is a surprising result of Graham and Pollak [4],[5] that, trivial as this biclique partition seems, it is impossible to partition the edges of K_n into fewer than $n-1$ bicliques.

de Caen and Hoffman’s proof [2] of the Graham Pollak theorem uses a connection between biclique partitions of K_n and tournaments (or tournament matrices). By orienting each edge of K_n we obtain a tournament of order n. A tournament of order n can be regarded as the result of a round-robin tournament with n teams (the n vertices) in which every team plays every other team exactly once. Assuming there are no ties, if we orient an edge from team i to team j whenever i beats j we obtain a tournament of order n. The tournament matrix associated with a tournament of order n is the matrix $T = [t_{ij}]$ of order n where

\[
t_{ij} = \begin{cases}
1 & \text{if team } i \text{ beats team } j \\
0 & \text{if } i = j \text{ or team } i \text{ loses to team } j.
\end{cases}
\]

Thus for a tournament matrix we have $T + T^t = -I_n + J_n$.

Let

\[
\langle X_1, Y_1\rangle, \ldots, \langle X_k, Y_k\rangle
\]

(5)
Figure 1: K_4 – the complete graph on 4 vertices.

Figure 2: Three biclique partitions of K_4.

Figure 3: Tournaments associated with the biclique partitions of K_4 in Figure 2.
be a partition of K_n into k bicliques. We obtain a tournament by orienting the edges of (X_i, Y_i) from X_i to Y_i for each $i = 1, 2, \ldots, k$. Tournaments corresponding to the biclique partitions of K_4 in Figure 2 are drawn in Figure 3. If Z is a subset of $\{1, 2, \ldots, n\}$, then we let Z^T denote the characteristic vector of Z whose ith coordinate is 1 if i is in Z and is 0 otherwise. Since (5) is a biclique partition of K_n, the corresponding tournament matrix satisfies

$$T = X_1^T Y_1 + X_2^T Y_2 + \cdots + X_k^T Y_k$$

(6)

where each $X_i^T Y_i$ is a matrix of rank 1. For the tournament matrices corresponding to the tournaments in Figure 3 we have, respectively,

$$\begin{align*}
\begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} &= \begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix},
\end{align*}$$

and

$$\begin{align*}
\begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} &= \begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
\end{align*}$$

and

$$\begin{align*}
\begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} &= \begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\end{align*}$$

It follows from (6) that the tournament matrix corresponding to a partition of K_n into k bicliques has rank at most k. We now show that the rank of each tournament matrix of order n is $n - 1$ or n.

Suppose that the rank of a tournament matrix T of order n is strictly less than $n - 1$. Then the $n + 1$ by n matrix obtained from T by appending a row of all 1's has rank at most $n - 1$. Hence there exists a nonzero vector $x = (x_1, x_2, \ldots, x_n)$ such that

$$Tx^t = 0 \text{ and } \sum_{i=1}^{n} x_i = 0.$$

On the one hand we have

$$x(T + T^t)x^t = x(Tx^t) + (xT^t)x^t = 0 + 0 = 0.$$
On the other hand we have

\[x(T + T')x^t = x(-I_n + J_n)x^t = -xx^t + xJ_nx^t = -xx^t. \]

Hence \(xx^t = 0 \) contradicting the fact that \(x \) is a nonzero vector. We conclude that the rank of \(T \) is at least \(n - 1 \) and therefore:

The complete graph \(K_n \) of order \(n \) cannot be partitioned into fewer than \(n - 1 \) bicliques.

Other proofs of the theorem are given in [7] and [9]. The argument above works under more general circumstances: if \(T \) is any real matrix of order \(n \) satisfying the equation \(T + T^t = aI_n + bJ_n \) where \(a \neq 0 \), then the rank of \(T \) is at least \(n - 1 \).

We have illustrated how elementary linear algebra can be a powerful tool for proving combinatorial theorems. Each of the examples given can be appreciated by someone with an understanding of basic ideas of linear algebra. It is also true that combinatorial ideas have been used in the study of linear algebra. The book [1] is devoted to the interplay between linear algebra and combinatorics.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>839</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Numerical solution of diffraction problems: a method of variation of</td>
</tr>
<tr>
<td>840</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>boundaries</td>
</tr>
<tr>
<td>841</td>
<td>Victor A. Galaktionov and Juan L. Vazquez</td>
<td>Asymptotic behaviour for an equation of superslow diffusion.</td>
</tr>
<tr>
<td>842</td>
<td>Josephus Hulshof and Juan Luis Vazquez</td>
<td>The Cauchy problem</td>
</tr>
<tr>
<td>843</td>
<td>Shoshana Kamin and Juan Luis Vazquez</td>
<td>The Dipole solution for the porous medium equation in several</td>
</tr>
<tr>
<td>844</td>
<td>Miguel Escobedo, Juan Luis Vazquez and Eurike</td>
<td>space dimensions</td>
</tr>
<tr>
<td>845</td>
<td>Marco Biroli and Umberto Mosco</td>
<td>Source-type solutions and asymptotic behaviour for a diffusion-</td>
</tr>
<tr>
<td>846</td>
<td>Stathis Filippas and Jong-Shenq Guo</td>
<td>convection equation</td>
</tr>
<tr>
<td>847</td>
<td>H. Scott Dumas</td>
<td>A Nekhoroshev-like theory of classical particle channeling in</td>
</tr>
<tr>
<td>848</td>
<td>R. Natalini and A. Tesei</td>
<td>perfect crystals</td>
</tr>
<tr>
<td>849</td>
<td>Paul K. Newton and Shinya Watanabe</td>
<td>On a class of perturbed conservation laws</td>
</tr>
<tr>
<td>850</td>
<td>S.S. Sritharan</td>
<td>The geometry of nonlinear Schrödinger standing waves</td>
</tr>
<tr>
<td>851</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Global attractor, inertial manifolds and stabilization of nonlinear</td>
</tr>
<tr>
<td>852</td>
<td>Shigeru Sakaguchi</td>
<td>damped beam equations</td>
</tr>
<tr>
<td>853</td>
<td>F. Abergel, D. Hilhorst and F. Issard-Roch</td>
<td>Critical points of solutions to the obstacle problem in the plane</td>
</tr>
<tr>
<td>854</td>
<td>Erasmus Langer</td>
<td>On a dissolution-growth problem with surface tension in the</td>
</tr>
<tr>
<td>855</td>
<td>Haim Brezis and Shoshana Kamin</td>
<td>neighborhood of a stationary solution</td>
</tr>
<tr>
<td>856</td>
<td>Johannes C.C. Nitsche</td>
<td>Sublinear elliptic equations in \mathbb{R}^n</td>
</tr>
<tr>
<td>857</td>
<td>Chao–Nien Chen</td>
<td>Boundary value problems for variational integrals involving surface</td>
</tr>
<tr>
<td>858</td>
<td>D. Brochet, X. Chen and D. Hilhorst</td>
<td>Multiple solutions for a semilinear elliptic equation on \mathbb{R}^n</td>
</tr>
<tr>
<td>859</td>
<td>Joseph D. Fehribach</td>
<td>Finite dimensional exponential attractor for the phase field model</td>
</tr>
<tr>
<td>860</td>
<td>Walter Schenpp</td>
<td>Mullins-Sekerka stability analysis for melting-freezing waves in</td>
</tr>
<tr>
<td>861</td>
<td>D.V. Anosov</td>
<td>Quantum holography and neurocomputer architectures</td>
</tr>
<tr>
<td>862</td>
<td>Herbert E Huppert and M Grae Worster</td>
<td>An introduction to Hilbert's 21st problem</td>
</tr>
<tr>
<td>863</td>
<td>Robert L. Pego and Michael I. Weinstein</td>
<td>Vigorous motions in magma chambers and lava lakes</td>
</tr>
<tr>
<td>864</td>
<td>Mahmoud Affouf</td>
<td>A class of eigenvalue problems, with applications to stability of</td>
</tr>
<tr>
<td>865</td>
<td>Darin Beigie, Anthony Leonard and Stephen Wiggins</td>
<td>Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs</td>
</tr>
<tr>
<td>866</td>
<td>Gui–Qiang Chen and Tai–Ping Liu</td>
<td>The dynamics associated with the chaotic tangles of two dimensional</td>
</tr>
<tr>
<td>867</td>
<td>Gui–Qiang Chen and Jian–Guo Liu</td>
<td>quasi-periodic vector fields: theory and applications</td>
</tr>
<tr>
<td>868</td>
<td>Aleksander M. Simon and Zbigniew J. Grzywna</td>
<td>Zero relaxation and dissipation limits for hyperbolic conservation</td>
</tr>
<tr>
<td>869</td>
<td>Jerzy Łuczka, Adam Gadomski and Zbigniew J. Grzywna</td>
<td>Convergence of second-order schemes for isentropic gas dynamics</td>
</tr>
<tr>
<td>870</td>
<td>Mitchel Luskin and Tsorng-Whay Pan</td>
<td>On the Larché–Cahn theory for stress-induced diffusion</td>
</tr>
<tr>
<td>871</td>
<td>Mahmoud Affouf</td>
<td>Growth driven by diffusion</td>
</tr>
<tr>
<td>872</td>
<td>Richard A. Brualdi and Keith L. Chavez</td>
<td>Nonplanar shear flows for nonaligning nematic liquid crystals</td>
</tr>
<tr>
<td>873</td>
<td>Xinfu Chen, Avner Friedman and Bei Hu</td>
<td>Unique global solutions of initial-boundary value problems for</td>
</tr>
<tr>
<td>874</td>
<td>Raoul LePage</td>
<td>thermodynamic phase transitions</td>
</tr>
<tr>
<td>875</td>
<td>Raoul LePage</td>
<td>Controlling a diffusion toward a large goal and the Kelly principle</td>
</tr>
<tr>
<td>876</td>
<td>Marc Hallin and Madan L. Puri</td>
<td>Controlling for optimum growth with time dependent returns</td>
</tr>
<tr>
<td>877</td>
<td>V.A. Solonnikov</td>
<td>Convergence of an evolution problem of thermocapillary convection in</td>
</tr>
<tr>
<td>878</td>
<td>Horia I. Ene and Bogdan Vernescu</td>
<td>viscosity dependent behaviour of viscoelastic porous media</td>
</tr>
<tr>
<td>879</td>
<td>Kaushik Bhattacharya</td>
<td>Self-accommodation in martensite</td>
</tr>
<tr>
<td>880</td>
<td>D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden</td>
<td>The heavy top: a geometric treatment</td>
</tr>
<tr>
<td>881</td>
<td>Leonid V. Kalachev</td>
<td>Some applications of asymptotic methods in semiconductor device</td>
</tr>
<tr>
<td>882</td>
<td>David C. Dobson</td>
<td>modeling</td>
</tr>
<tr>
<td>883</td>
<td>Patricio Aviles and Yoshikazu Giga</td>
<td>Minimal currents, geodesics and relaxation of variational integrals</td>
</tr>
<tr>
<td>884</td>
<td>Patricio Aviles and Yoshikazu Giga</td>
<td>on mappings of bounded variation</td>
</tr>
</tbody>
</table>
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, ‘A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy’
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smerek and Roger J. Anderson, A method for resolving the laser induced local heating of moving magneto-optical recording media
E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions
T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium
Reinhold von Scherwin, Two metal deposition on a microdisk electrode
Vladimir I. Oliker and Nina N. Ural'tseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows
Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations
Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations
Hong-Ming Yin, Global solutions of Maxwell’s equations in an electromagnetic field with the temperature-dependent electrical conductivity
Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs
Miroslav Fiedler, Structure-ranks of matrices
Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices
Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices
Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions
Pierre-Alain Gremaud, Thermal contraction as a free boundary problem
K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays
Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation
LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality
Richard A. Brualdi and Bryan L. Shader, Strong hall matrices
Håkan Wennnerström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability
Shmul Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multipartite Tournament Matrices with Constant Team Size
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinkuhler and A. Ruehli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration
F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick’s Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O’Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains