LOCAL DISSIPATIVITY AND ATTRACTORS
FOR THE KURAMOTO–SIVASHINSKY EQUATION
IN THIN 2D DOMAINS

By

George R. Sell
and
Mario Taboada

IMA Preprint Series # 781
February 1991
LOCAL DISSIPATIVITY AND ATTRACTORS FOR THE
KURAMOTO-SIVASHINSKY EQUATION IN THIN 2D DOMAINS

GEORGE R. SELL¹ and MARIO TABOADA²,³

¹ School of Mathematics, University of Minnesota, Minneapolis, MN 55455
² Department of Mathematics, University of Southern California, Los Angeles, CA 90089
³ Mathematical Sciences Institute, Cornell University, Ithaca NY 14853

This work was partly supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University, and by a grant from the Applied and Computational Mathematics Program/DARPA.
Local Dissipativity and Attractors for the Kuramoto-Sivashinsky equation in thin 2D domains
George R. Sell\textsuperscript{1} and Mario Taboada\textsuperscript{2,3}

\textsuperscript{1} School of Mathematics, University of Minnesota, Minneapolis, MN 55455
\textsuperscript{2} Department of Mathematics, University of Southern California, Los Angeles, CA 90089
\textsuperscript{3} Mathematical Sciences Institute, Cornell University, Ithaca NY 14850

Abstract

We study the global existence, regularity and boundedness of solutions of the two-dimensional periodic Kuramoto-Sivashinsky equation with a thin periodicity rectangle $\Omega_\varepsilon = [0,2\pi] \times [0,2\varepsilon]$. The main result is that for a large set of initial conditions, the solution exists and is uniformly bounded. This implies the existence of a local compact attractor with a basin of attraction which expands to the whole space as $\varepsilon \to 0$.

Key Words and Phrases: Nonlinear parabolic equations, global existence, Kuramoto-Sivashinsky equation, compact attractors.

1. Introduction

Our goal in this paper is to obtain results on the global asymptotic behavior of the Kuramoto-Sivashinsky (K-S) equation

\[(1.1) \quad u_t + v \Delta^2 u + \Delta u + \frac{1}{2} |\nabla u|^2 = 0,\]

in spatial dimension two, where $u = u(y,t) = u(y_1,y_2,t)$ satisfies the periodic boundary condition

\[(1.2) \quad u(y_1 + 2\pi, y_2, t) = u(y_1, y_2 + 2\varepsilon, t) = u(y_1, y_2, t) \quad \text{for all } y \in \mathbb{R}^2 \text{ and } t \geq 0 \]

and the periodic initial condition

\[(1.3) \quad u(y,0) = u_0(y).\]

Here $0 < \varepsilon \leq 1$ is assumed to be sufficiently small, so that the basic periodicity cell $\Omega_\varepsilon = [0,2\pi] \times [0,2\varepsilon]$ is a thin domain. We shall also mention other types of boundary conditions for which the same methods are applicable. The dissipativity of the general two (and higher) dimensional problem has been open for some time, the essential difficulty being the lack of a proof of the existence of an absorbing set. In fact, if such a set exists, then there exists a global attractor, and one can prove very precise regularity
results, (excellent references for these, as well as many refined results on the geometry of the attractor, are the paper by Nicolaenko, Scheurer and Téamam [NST2], Ilyashenko [1], and the books by Téamam [Te] and Constantin, Foias, Nicolaenko and Téamam [CFNT]).

The approach we shall adopt is based on the intuitive idea that (1.1)-(1.3) should be close to one-dimensional, and is close to the methods introduced by Hale and Raugel [HR1,2] and Raugel and Sell [RS]. There are many nontrivial results available for the periodic one-dimensional problem. The odd-periodic case was studied by [NST1,2]. The same authors treat [NST1] a Neumann type of problem without symmetry, and the rigid Dirichlet problem is studied by [Ta], again without any symmetry assumptions. The general periodic one-dimensional problem has only recently been proved to be dissipative [1]. Our main result is the following:

**Theorem 1.1**

Consider the Kuramoto-Sivashinsky equation with periodic boundary conditions given by the thin periodicity cell $[0,2\pi] \times [0,2\pi\varepsilon]$ and a periodic initial condition. Then there exists $\varepsilon_0$, $0 < \varepsilon_0 < 1$ and a constant $B_0$, and on this range there are real-valued functions $R(\varepsilon)$ and $K(\varepsilon)$ such that $R(\varepsilon) > 0$, $K(\varepsilon) \geq 1$ and $R(\varepsilon) \to \infty$ as $\varepsilon \to 0^+$ and such that for all $U_0 \in D(A^{1/4})$ such that $|U_0|_{A^{1/4}} \leq R(\varepsilon)$ one has $U(t) \in D(A^{1/4})$ for all $t \geq 0$ and

$$|A^{1/4}U(t)|_{L^2(\Omega\varepsilon)} \leq K(\varepsilon)R(\varepsilon)$$

for all $t \geq 0$, and

$$\lim \sup_{t \to \infty} |A^{1/4}U(t)|_{L^2(\Omega\varepsilon)} \leq B_0.$$

We start by changing (1.1) into a system by means of the hodograph transformation

$$D_y u = U_i, \quad i = 1,2 \quad \text{and } U = (U_1, U_2).$$

Equality of the mixed partials requires the condition curl $U = 0$. Notice also that the average of $U$ over the periodicity cell $\Omega$ is zero. After this transformation we obtain (1.4)

$$U_t + v \Delta^2 U + \Delta U + (U \nabla U) = 0.$$
This is the form that seems most appropriate for our purpose. Note that the nonlinearity is now formally the same as that in the Navier-Stokes equations, but is subject to the condition \( \text{curl } U = 0 \).

### 1.1 Functional Setting

Let \( Q = [0, 2\pi] \) and \( \Omega_\varepsilon = Q \times [0, 2\pi\varepsilon] \). A point in \( \Omega_\varepsilon \) will be denoted by \( y = (y_1, y_2) \). For an \( \mathbb{R}^2 \)-valued function \( U \in L^p(\Omega_\varepsilon) \) we shall introduce the *renormalized norm*

\[
|U|_{L^p(\Omega_\varepsilon)} = \frac{1}{\varepsilon^p} \| U \|_{L^p(\Omega_\varepsilon)},
\]

where \( \| . \| \) is the standard \( L^p \) norm. This norm is well-suited to the study of problems on thin rectangles, since for small \( \varepsilon \) it is close to \( |U(\cdot,0)|_{L^p([0,2\pi])} \) and, for functions of \( y_1 \) alone, it coincides with the \( L^p \) norm in \([0,2\pi]\).

For \( p = 2 \), \( \| . \| \) has a corresponding renormalized inner product given by

\[
\langle U, V \rangle_{L^2(\Omega_\varepsilon)} = \varepsilon^{-1} \langle U, V \rangle_{L^2(\Omega_\varepsilon)},
\]

where \( \langle ., . \rangle_{L^2(\Omega)} \) denotes the standard inner product in \( L^2(\Omega) \).

Given \( U \in L^2(\Omega_\varepsilon) \) we define the *projection operator* \( M \) as follows

\[
V = MU, \text{ where } V = V(y_1) = \frac{1}{2\pi\varepsilon} \int_0^{2\pi\varepsilon} Ud\gamma_1.
\]

This averaging operation maps \( L^2(\Omega_\varepsilon) \) onto the closed subspace formed by functions of \( y_1 \) alone and it is an orthogonal projection. The complementary projection \( I - M \) defines \( W = (I - M)U \). Notice that \( MW = 0 \), so that \( W \) has zero average with respect to \( y_2 \). Also, \( M \) and \( I - M \) commute with the Laplacian on its domain, and they preserve periodicity.

As a consequence of this orthogonal decomposition one has

\[
|U|_{L^2(\Omega_\varepsilon)}^2 = |V|_{L^2(\Omega_\varepsilon)}^2 + |W|_{L^2(\Omega_\varepsilon)}^2.
\]

### 1.2 The Rescaled Equation

Let us define \( x = (x_1, x_2) \) by the linear mapping \( x_1 = y_1 \) and \( x_2 = \varepsilon^{-1} y_2 \) which transforms \( \Omega_\varepsilon \) into the square \( Q_2 = [0,2\pi]^2 \). Let us also define the rescaled operators

\[
\nabla_\varepsilon = (D_{x_1}, \varepsilon^{-1} D_{x_2}), \quad \Delta_\varepsilon = D^2_{x_1} + \varepsilon^{-2} D^2_{x_2}.
\]

Note that these differential operators become singular when \( \varepsilon \) is small. Finally, let us define a new function \( u = u(x) \) by \( u(x) = U(y) \), where \( x \) and \( y \) are linearly related as
above. In the sequel, we write \((..,..)\) for the standard inner product in \(L^2(Q_2)\). One checks that, for any \(p > 1\), the following equality holds
\[
\|U\|_{L^p(\Omega_\varepsilon)} = \|u\|_{L^p(Q_2)},
\]
and also that the Sobolev norms satisfy the inequalities
\[
\|u\|_{H^1(Q_2)} \leq \|U\|_{H^1(\Omega_\varepsilon)} \leq \varepsilon^{-1} \|u\|_{H^1(Q_2)},
\]
\[
\|u\|_{H^2(Q_2)} \leq \|U\|_{H^2(\Omega_\varepsilon)} \leq \varepsilon^{-2} \|u\|_{H^2(Q_2)}.
\]
and similar bounds hold for the higher order Sobolev norms.

Just as before one can define a projection operator \(M\) for functions defined on \(Q_2\) by
\[
v = Mu, \text{ where } v = v(x_1) = \frac{1}{2\pi} \int_0^{2\pi} u(x) \, dx_2 \text{ and } w = (I - M)u.
\]

After rescaling, Eq. (1.4) becomes

\[
(1.5)
\]
\[
\frac{\partial u}{\partial t} + v \nabla_\varepsilon^2 u + \Delta_\varepsilon\, u + (u \cdot \nabla_\varepsilon) u = 0,
\]
\[
u = u(x, t) \text{ is } 2\pi \text{ periodic in } x_1, x_2,
\]
\[
u(x, 0) = u_0(x), \text{ also } 2\pi \text{ periodic.}
\]

Without loss of generality, we shall set \(v = 1\) (as we shall see, none of our estimates depends crucially on the size of \(v\).) This is essential since, as is well-known, the turbulent behavior of the solutions occurs precisely when \(v\) becomes small.

Let us now apply the projections \(M\) and \(I - M\) to (1.5). This gives

\[
(1.6)
\]
\[
\frac{\partial v}{\partial t} + \nabla_\varepsilon^2 v + \Delta_\varepsilon\, v + M \left[ (u \cdot \nabla_\varepsilon) u \right] = 0
\]
\[
w_t + \nabla_\varepsilon^2 w + \Delta_\varepsilon\, w + (I - M) \left[ (u \cdot \nabla_\varepsilon) u \right] = 0.
\]

We wish to associate with (1.6) a simpler problem which, for small \(\varepsilon\), will turn out to govern to a large extent the dynamics of the system. We thus define the reduced problem
to be the one obtained from (1.6) by setting \((v,w) = (\bar{v},0)\) in (1.6) and taking as initial condition the projection of \(u_0\) onto the \(v\)-space. This gives

(1.7)

\[ \bar{v}_t + \Delta^2 \bar{v} + \Delta \bar{v} + (\bar{v} \cdot \nabla) \bar{v} = 0 \]

\[ \bar{v}(x,0) = v_0 = M u_0. \]

Let us write \(v_i, i = 1,2\) for the components of \(v\). Then these satisfy

\[ \bar{v}_{1,t} + \Delta^2 \bar{v}_1 + \Delta \bar{v}_1 + \bar{v}_1 D_{x_1} \bar{v}_1 = 0 \]

\[ \bar{v}_{2,t} + \Delta^2 \bar{v}_2 + \Delta \bar{v}_2 + \bar{v}_2 D_{x_1} \bar{v}_2 = 0. \]

Notice that the first component satisfies the one-dimensional K-S equation (the dependence of the equations on \(\epsilon\) is illusory), while the second one satisfies a linear equation.

We now recall some results from Ilyashenko [I], and Nicolaenko, Scheurer and Téman [NST2] concerning the asymptotic behavior of the one-dimensional K-S equation. According to these results, if the initial condition \(u_0 \in H^k(\Omega)\), and \(0 \leq s \leq k\), there exists an absorbing set in \(H^s\). Moreover, these same properties of regularity and boundedness of the higher Sobolev norms hold, even for dimensions 2 and 3, as soon as a solution is uniformly bounded in time in \(L^2(\Omega)\).

The above dissipativity results for the 1D problem, together with general theorems on attractors of asymptotically smooth nonlinear semigroups (see Hale [H]) imply the existence of a global attractor. This attractor lies in \(L^2(\Omega)\) and for smooth initial conditions, it will lie in the corresponding Sobolev space. It has also been proved that this attractor has finite Hausdorff and fractal dimensions, which have been estimated in terms of the period [I], [NST2].

1.3 The evolutionary equation

In what follows, we will always assume that the initial condition has zero average over the periodicity cell; it is then easy to prove that the solutions have the same property for all times for which they exist. Let us define the unbounded linear operator \(A_\epsilon\) by \(A_\epsilon u = \Delta^2 u\) on the closed subspace \(X\) of \(L^2(\Omega_\epsilon)\) consisting of functions with zero average and whose (\(\epsilon\)-rescaled) curl is zero. Then \(D(A)\) will be a subspace of \(X\) determined by the boundary conditions plus some other assumptions such as symmetry. In particular, we will concentrate on the periodic case, since the technicalities become
more tractable. The operator defined above is self-adjoint, has a dense domain and, when restricted to the subspace of periodic functions with zero average, is positive definite. It is also well-known that its resolvent is compact. These properties imply that the fractional powers of $A_{\varepsilon}$ are well-defined. In particular, one has

$$A_{\varepsilon}^{\frac{1}{2}} = -\Delta_{\varepsilon}, \quad \text{and} \quad \| A_{\varepsilon}^{4} u \|^{2} = \| \nabla_{\varepsilon} u \|^{2}.$$

We will also introduce rescaled versions of the classical bilinear and trilinear forms associated with the nonlinear term in our equation (see [Te], or [L]). We thus consider

$$B_{\varepsilon}(u,v) = (u, \nabla_{\varepsilon} v), \quad \text{and} \quad b_{\varepsilon}(u,v,w) = (B_{\varepsilon}(u,v), w).$$

Explicitly, we have

$$b_{\varepsilon}(u,v,w) = \sum_{i,k \leq 2} \int_{Q_{\varepsilon}} e^{-\{k\} u_{k} D_{k} v_{i} w_{i} dx}, \quad \text{where} \quad \{1\} = 0 \quad \text{and} \quad \{2\} = 1.$$

If we define

$$b_{\varepsilon}(U,V,W) = \sum_{i,k \leq 2} \int_{Q_{\varepsilon}} e^{-\{k\}} u_{k} D_{k} v_{i} w_{i} dy,$$

then one checks that $b_{\varepsilon}(u,v,w) = b_{\varepsilon}(U,V,W)$.

It is easy to see that the subspace $H^{1}_{\text{per}}(\Omega_{\varepsilon})$ of $H^{1}(\Omega_{\varepsilon})$ formed by periodic functions of zero average is continuously embedded in $L^{4}(\Omega_{\varepsilon})$ and (see Agmon [A]) the following estimate holds

$$(1.8) \quad \frac{1}{2} \| U \|_{L^{2}(\Omega_{\varepsilon})} \leq C \| U \|_{H^{1}_{\text{per}}(\Omega_{\varepsilon})} \| Du \|_{L^{1}(\Omega_{\varepsilon})} \| W \|_{L^{1}(\Omega_{\varepsilon})},$$

for $U \in H^{1}_{\text{per}}(\Omega_{\varepsilon})$, where $C$ is independent of $\varepsilon$.

We now establish a bound for the trilinear forms $b_{\varepsilon}$ introduced above. We recall the inequality

$$(1.9) \quad \int_{\Omega} \left| (D_{k} u_{i} v_{j} w_{l}) \right| dx \leq \| D_{k} u_{i} \|_{L^{1}(\Omega_{\varepsilon})} \| D_{k} v_{j} \|_{L^{1}(\Omega_{\varepsilon})} \| W \|_{L^{1}(\Omega_{\varepsilon})},$$

valid for periodic functions, $u_{i}, v_{j}, w_{l} \in L^{1}(\Omega_{\varepsilon})$.

where $\Omega$ is the periodicity rectangle in $\mathbb{R}^{2}$.

By combining this with (1.8) one obtains the following ($\| \cdot \|_{L^{2}(\Omega_{\varepsilon})}$ norm in $L^{2}(\Omega_{\varepsilon})$.)
(1.10) \[
\frac{1}{\varepsilon} \left| b (U, V, W) \right| \leq C \left| U \right|^2 \left| A \right|^4 \left| U \right|^2 \left| A \right|^4 \left| V \right| \left| W \right|^2 \left| A \right|^4 \left| W \right|^2
\]
where \( C \) is a constant independent of \( \varepsilon \). By our previous discussion on norms, the same inequality is true if we replace \( \Omega \) by \( Q_2 \) and \((U, V, W)\) by \((u, v, w)\). This gives the inequality

(1.11) \[
\frac{1}{\varepsilon} \left| b (u, v, w) \right| \leq C \left| u \right|^2 \left| A \right|^4 \left| u \right|^2 \left| A \right|^4 \left| v \right| \left| w \right|^2 \left| A \right|^4 \left| w \right|^2
\]
(from now on, we will work in \( L^2(Q_2) \) and the norm will be denoted simply by \( | \cdot | \).)

In particular, when \( u = v \) this gives

(1.12) \[
\frac{1}{\varepsilon} \left| b (u, u, w) \right| \leq C \left| u \right|^2 \left| A \right|^4 \left| u \right|^2 \left| w \right|^2 \left| A \right|^4 \left| w \right|^2.
\]

With the above definitions, equation (1.5) can be written in evolutionary form as follows

\[
u' + A \frac{1}{\varepsilon} u - A^2 \frac{1}{\varepsilon} u + B (u, u) = 0
\]
and the projections \( v \) and \( w \) satisfy the system

(1.13) \[
v' + A \frac{1}{\varepsilon} v - A^2 \frac{1}{\varepsilon} v + M B (u, u) = 0.
\]
\[
w' + A \frac{1}{\varepsilon} w - A^2 \frac{1}{\varepsilon} w + (I - M) B (u, u) = 0.
\]

Here we have used the fact that \( M \) commutes with \( A \) on its domain. Notice also that since \( v \) is independent of \( x_2 \), the linear part of the \( v \)-equation is independent of \( \varepsilon \).

2. Regularity results for a thin domain

We now turn to the problem of global existence and regularity of solutions of the K-S equation on a thin domain (local existence and uniqueness are a consequence of classical theorems for sectorial evolutionary equations [P]). Our strategy is to prove existence and regularity for solutions with initial conditions in a large set, over intervals
whose length is independent of the initial condition chosen in this set. This enables us to patch up local solutions and thus construct a global solution. In order to do this we shall need some results on the 1D equation, as well as on the reduced 2D equations.

2.1 The dynamics of the reduced 2D problem

We recall the reduced 2D Kuramoto-Sivashinsky equations

\[
\ddot{\nu}_{1,t} + \Delta^2 \nu_1 + \Delta \nu_1 + \nu_1 \frac{\partial \nu_1}{\partial x} = 0
\]

\[
\ddot{\nu}_{2,t} + \Delta^2 \nu_2 + \Delta \nu_2 + \nu_1 \frac{\partial \nu_2}{\partial x} = 0
\]

We observe that (2.1) is independent of \( \varepsilon \) and \( \nu_1 \), \( \nu_2 \) are independent of \( x_2 \). Notice that \( \nu_1 \) satisfies the 1D K-S equation. In order to study the dynamics of the system, we first solve the equation for \( \nu_1 \). We first note that the absorbing property holds for \( \nu_1 \) in \( L^2([0,2\pi]) \). We also see that, since the \( \varepsilon \)-curl of \( \nu \) is zero, \( \nu_2 \) is also independent of \( x_1 \), hence this function depends only on time. It then follows from the equation satisfied by \( \nu_2 \) that it must be constant. However, its average is zero, hence \( \nu_2 \) is identically zero. Therefore, the reduced 2D K-S equation has a global attractor, namely \( A \times \{0\} \).

2.2 Growth Estimates for the reduced equation

In order to proceed with the theory, we need some results regarding the solutions of the reduced 2D equations (or, equivalently, the 1D problem). Let us thus consider the one-dimensional equation

\[
u_t + \Delta^2 u + \Delta u + uu_x = 0.
\]

We know ([I], [NST1,2]) that (2.2) has a global attractor \( A \) in \( X \), and that there exist constants \( \rho_0 \) and \( \rho_1 \) such that

\[
\limsup_{t \to \infty} |S(t)u_0|^2 \leq \rho_0^2
\]

\[
\frac{1}{4} \limsup_{t \to \infty} |A^4 S(t)u_0|^2 \leq \rho_1^2,
\]

where \( S(t) \) is the solution semigroup of (2.2). Moreover, there exist absorbing balls of radii \( 2\rho_0 \) and \( 2\rho_1 \) in \( X \) and \( X^{1/4} = D(A^{1/4}) \). The next results are of a technical nature, and make more precise the above absorbing properties.
Lemma 2.1

Consider Eq. (2.2) in 1D with a periodic boundary condition and initial condition. Then there exist absolute positive constants \( \gamma \) and \( L \), and a function \( D \), real analytic in \( |u_0| \), such that the solution semigroup satisfies the estimate

\[
|A^{1/4}S(t)u_0|^2 \leq e^{-2\gamma t} D + L \text{ for } t \geq 0.
\]

This result is an easy consequence of the dissipativity estimates for (2.2) [NST1,2].

Lemma 2.2

Given \( k \) such that \( 0 < k < 1 \), there exist absolute positive constants \( b_i \), \( i = 1,2 \), such that for all \( u_0 \in X^{1/4} \) one has

\[
|A^{1/4}S(t)u_0|^2 \leq L + k |A^{1/4}u_0|^2 \text{ for } t \geq T_0,
\]

where \( L \) is a constant and

\[
T_0 = b_1 \exp(b_2 |A^{1/4}u_0|^4).
\]

Lemma 2.3

Assume that \( B_1 > L \), with \( L \) as above. Then there exists a \( K_0 \geq 1 \) such that for all \( \eta \) such that \( 0 \leq \eta \leq 1 \) and for all \( u_0 \in D(A^{1/4}) \) satisfying \( L < |A^{1/4}u_0|^2 \leq B_1^2 \) the following holds for \( t \geq 0 \):

\[
|A^{1/4}S(t)u_0|^2 \leq K_0 |A^{1/4}u_0|^2 \eta^{*-2} \text{ where } \eta^{*-2} = \exp(a_1 \exp(a_2 B_1^4 \eta^{-4})
\]

and \( a_1, a_2 \) are constants.

The proofs of these results are omitted, since they are very similar to those in [RS].

2.3 The growth condition "G"

We will often consider functions \( \eta = \eta(\varepsilon) \) for which \( \eta^{-1} \) blows up at a certain "sufficiently slow" rate as \( \varepsilon \to 0^+ \). This motivates the following definition:

Let the \( a_i, i = 1 \), given by Lemma (2.3) and let \( \eta = \eta(\varepsilon) \) be a monotone increasing function on the interval \( 0 \leq \varepsilon < \). Define also \( \eta^* = \eta(\varepsilon) \) as above, \( B_1 \) being a constant to be introduced later. We shall impose the following conditions:
\[(G_1) \quad \eta \to 0 \text{ as } \varepsilon \to 0^+ , \]
\[(G_2) \quad \eta \leq 1 \text{ for } 0 < \varepsilon \leq 1 . \]
\[(G_3) \quad \varepsilon \eta^{-2} \leq 1, \quad \varepsilon \eta^{*-2} \leq 1 \text{ for } 0 \leq \varepsilon \leq 1 . \]

Finally, the following hold for \( \varepsilon \to 0^+ : \)
\[(G_4) \quad \varepsilon \eta^{-4} \to 0 , \]
\[(G_5) \quad \varepsilon^3 \log (\varepsilon \eta^{-4}) \to 0 , \]
\[(G_6) \quad \varepsilon^{-2} \log (\varepsilon^3 \eta^{-1}) \to 0 , \]
\[(G_7) \quad \varepsilon \exp (A \eta^{*-2} \eta^{-2} \varepsilon B \eta^{-4}) \to 0 \]

for any positive constants A and B. A function that satisfies these growth conditions is, for example,

\[ \eta(\varepsilon) = \left\{ A + B \log \log \log \log (C \varepsilon^{-1}) \right\}^{-\frac{1}{4}} \]

We are now ready to state our first result.

2.4 Estimates for the blow-up time
Let us define, for a given initial condition \( u_0, \) the "blow-up" time in \( D(A \varepsilon^{1/4}) \)

\[ T^* = T^*(u_0) = \sup \left\{ t : \sup_{0 \leq s \leq t} \left| \frac{1}{A \varepsilon} u(s) \right| < \infty \right\}. \]

We wish to obtain an estimate for \( T^* \) in terms of \( u_0. \) In order to do this, let us start with

\[ u' + A \varepsilon u - A^2 \varepsilon u + B(u,u) = 0 \]

By taking the inner product with \( A \varepsilon^{1/2} u, \) and using the self-adjointness of \( A \varepsilon, \) we arrive at

\[ \frac{1}{2} \frac{d}{dt} \left| \frac{1}{A \varepsilon} u \right|^2 + \frac{3}{4} \frac{1}{A \varepsilon} u \left| A \varepsilon u \right|^2 - \frac{1}{2} \frac{1}{A \varepsilon} u \left| A \varepsilon u \right|^2 \leq b(u,u, A \varepsilon u). \]

By (1.12) this implies
\[ \frac{1}{2} \frac{d}{dt} \left( \frac{1}{\varepsilon} A_\varepsilon^4 u \right)^2 + \frac{3}{\varepsilon} A_\varepsilon^4 u^2 - \frac{1}{\varepsilon} A_\varepsilon^2 u^2 \leq \frac{1}{2} \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2 \frac{3}{\varepsilon^2} A_\varepsilon^2 u^2 \frac{3}{\varepsilon^2} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^4 u^2. \]

From now on, we shall encounter various constants, which are independent of \( \varepsilon \), and which will generically be denoted by \( C \) (with an occasional added index to avoid confusion.) By Poincaré's inequality, we see that the right-hand side of this inequality is bounded by

\[ C \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \frac{3}{\varepsilon^2} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^4 u^2. \]

By the weighted Young inequality with exponents \( 4/3 \) and \( 4 \) this is

\[ \leq \frac{1}{2} \frac{3}{\varepsilon^4} A_\varepsilon^4 u^2 + C \frac{1}{\varepsilon^4} A_\varepsilon^2 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \frac{2}{\varepsilon^4} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2. \]

By using Young once again, this time with exponents \( 3/2 \) and \( 3 \), we can break up the second summand to obtain

\[ \leq \frac{1}{2} \frac{3}{\varepsilon^4} A_\varepsilon^4 u^2 + C \frac{1}{\varepsilon^4} A_\varepsilon^2 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 + \frac{1}{2} \frac{1}{\varepsilon^4} A_\varepsilon^4 u^4. \]

If we insert this estimate into the previous differential inequality, we arrive at

\[ \frac{d}{dt} \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2 + \frac{3}{\varepsilon^2} A_\varepsilon^4 u^2 - 2(1 + C) \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \leq \frac{1}{\varepsilon^4} A_\varepsilon^4 u^4. \]

We now recall [P] the interpolation inequality for fractional powers of an operator, which implies

\[ \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \leq \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \frac{3}{\varepsilon^2} A_\varepsilon^4 u^2 \frac{1}{\varepsilon^2} A_\varepsilon^4 u^2. \]

This gives, via the weighted Young inequality

\[ \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \leq \left[ 2(1 + C) \right]^{-1} \frac{3}{\varepsilon^2} A_\varepsilon^4 u^2 + C_1 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2. \]

The combination of this with (1.14) gives

\[ \frac{d}{dt} \frac{1}{\varepsilon^4} A_\varepsilon^4 u^2 - C_2 \frac{1}{\varepsilon^2} A_\varepsilon^2 u^2 \leq \frac{1}{\varepsilon^4} A_\varepsilon^4 u^4. \]

By considering the differential inequality \( \phi' \leq \phi^2 + C_2 \phi \) it is immediately seen that
\[ T^* \geq \frac{K}{\frac{1}{|A_0^4 u_0|^2}} \]

where \( K \) is a constant, independent of the initial conditions. As an easy consequence of the differential inequality we have:

**Lemma 2.4**

Let \( R_0 \) and \( N > 1 \) be given. Then, for any \( u_0 \in D(A^{1/4}) \) such that \( |A_0^{1/4} u_0|^2 \leq R_0 \) the following holds:

\[ \frac{1}{|A_0^4 S(t) u_0|^2} \leq NR_0 \quad \text{for} \quad 0 \leq t \leq \frac{N-1}{N} \frac{K}{R_0} \]

where \( K \) is a constant, independent of \( u_0 \).

For simplicity, we shall henceforth assume that \( K = 1 \).

**Lemma 2.5**

Let \( B_0 > 0, \ C_0 > 0 \) be given, and consider a function \( \eta \) satisfying the growth hypothesis \((\mathcal{G})\) indicated above. Then there exist \( \epsilon_0, \ 0 < \epsilon_0 \leq 1, \ B_1 \geq B_0, \ C_1 > C_0 \) and \( T_1 = T_1(\epsilon) > 0 \) such that the following hold for all \( \epsilon \) such that \( 0 < \epsilon < \epsilon_0 \):

\[ \frac{1}{|A_0^4 v_0|} \leq B_0^2 \eta^{-2} \quad \text{and} \quad \frac{1}{|A_0^4 w_0|} \leq C_0^2 \epsilon^{-1} \eta^{-1} \]

\[ \frac{1}{|A_0^4 v(T_1)|} \leq B_1^2 \eta^{-2} \quad \text{and} \quad \frac{1}{|A_0^4 w(T_1)|} \leq C_1^2 \epsilon^2 \eta^{-2} \]

The quantities \( \epsilon_0, \ B_1, \ C_1 \), depend on \( B_0, \ C_0 \), but not on \( \epsilon \), and \( T_1(\epsilon) \to 0 \) as \( \epsilon \to 0^+ \).

**Proof**

We shall let \( D_i, \ i = 0,1, \ldots \), denote quantities which depend on the parameters of the problem but are uniformly bounded for \( \epsilon \) in \((0,1]\). Let us define \( T^N \) by

\[ T^N = \frac{N-1}{N} \cdot \frac{1}{R_0} \]

and notice that \( T^N < T^* (u_0) \), where

\[ R_0 = B_0^2 \eta^{-2} + C_0^2 \epsilon^{-1} \eta^{-1} \] and also that \( R_0^2 \leq 2B_0^4 \eta^{-4} + 2C_0^4 \epsilon^{-2} \eta^{-2} \). We also have

\[ R_0 \leq \epsilon^{-1} \eta^{-2} D_0^2 \]

where \( D_0^2 = B_0^2 + C_0^2 \).

Notice also that if \( T^* < \infty \), then \( T^N \to T^* \) as \( N \to \infty \).
We now turn our attention to the equation satisfied by \( w \) on the interval \([0, T^N]\), where \( N \geq 2 \) will be fixed. On this interval we have the inequality

\[
\frac{1}{2} \frac{d}{dt} \left| \frac{1}{\varepsilon} A_{1/\varepsilon} w \right|^2 + 1 = \frac{3}{\varepsilon} A_{1/\varepsilon} w^2 - 1 = \frac{1}{\varepsilon} A_{1/\varepsilon} w^2 \leq |b(u, u, A_{1/\varepsilon} w)|.
\]

By taking the inner product with \( A_{1/\varepsilon} w \) and proceeding as above, we arrive at

\[
\frac{1}{2} \frac{d}{dt} \left| A_{1/\varepsilon} w \right|^2 + 1 = \frac{3}{\varepsilon} A_{1/\varepsilon} w^2 - 1 = \frac{1}{\varepsilon} A_{1/\varepsilon} w^2 \leq |u| |A_{1/\varepsilon} u| \left| A_{1/\varepsilon} w \right|^2.
\]

By using (1.12) this implies

\[
\frac{1}{2} \frac{d}{dt} \left| A_{1/\varepsilon} w \right|^2 + 1 = \frac{3}{\varepsilon} A_{1/\varepsilon} w^2 - 1 = \frac{1}{\varepsilon} A_{1/\varepsilon} w^2 \leq \frac{1}{2} |A_{1/\varepsilon} w|^2 + \frac{1}{2} |A_{1/\varepsilon} A_{1/\varepsilon} w|^2.
\]

and by Poincaré's inequality this is

\[
\leq C |A_{1/\varepsilon} w|^2 |A_{1/\varepsilon} w|^2.
\]

By using \( 2ab \leq a^2 + b^2 \) and the bound (2.3) on \( |A_{1/\varepsilon} u|^2 \) we obtain

\[
\leq \frac{1}{4} C^2 N^2 R_0^2 + \frac{1}{2} |A_{1/\varepsilon} w|^2 |A_{1/\varepsilon} w|^2.
\]

\[
\leq \frac{1}{4} C^2 N^2 R_0^2 + \frac{1}{2} \left( |A_{1/\varepsilon} w|^2 + |A_{1/\varepsilon} A_{1/\varepsilon} w|^2 \right).
\]

Hence we arrive at the inequality

\[
\frac{d}{dt} \left| A_{1/\varepsilon} w \right|^2 + \frac{3}{\varepsilon} A_{1/\varepsilon} w^2 - 3 = \frac{1}{\varepsilon} A_{1/\varepsilon} w^2 \leq \frac{1}{2} C^2 N^2 R_0^2.
\]

We now notice that, since the average of \( w \) with respect to \( x_2 \) is zero, we have

\[
\varepsilon^{-2} |A_{1/\varepsilon} w|^2 \leq |A_{1/\varepsilon} w|^2 \quad \text{and} \quad \varepsilon^{-2} |A_{1/\varepsilon} w|^2 \leq |A_{1/\varepsilon} w|^2.
\]

By taking \( \varepsilon \) sufficiently small, we can ensure that

\[
\frac{3}{\varepsilon} |A_{1/\varepsilon} w|^2 - 3 = \frac{3}{\varepsilon} A_{1/\varepsilon} w^2 \geq \varepsilon^{-2} |A_{1/\varepsilon} w|^2 \geq \varepsilon^{-4} |A_{1/\varepsilon} w|^2.
\]

We thus have the inequality
\[ \frac{d}{dt} \left| A_\varepsilon^4 w^2 \right| + \varepsilon^{-4} |A_\varepsilon^4 w|^2 \leq \frac{1}{2} C^2 \eta^2 R_0^2. \]

By integration, this yields
\[ \left| A_\varepsilon^4 w(t) \right|^2 \leq e^{-\varepsilon^4} \left| A_\varepsilon^4 w_0 \right|^2 + \frac{\varepsilon^4}{2} C^2 \eta^2 R_0^2. \]

By using the previous bound on \( R_0 \) and our assumption on \( |A_\varepsilon^1 w_0| \) we see that
\[ \left| A_\varepsilon^4 w(t) \right|^2 \leq e^{-\varepsilon^4 C_0^2 \varepsilon^{-1} \eta^{-1}} + e^{4 C^2 \eta^{-2}} (B_0^4 \eta^{-2} + \varepsilon^{4} C_0^{-2} \eta^{-2}) = e^{-\varepsilon^4 C_0^2 \varepsilon^{-1} \eta^{-1}} + C^2 \eta^{-2} (B_0^4 \varepsilon^2 \eta^{-2} + C_0^4) \]

By Hypothesis (G), we see that
\[ D_1 = C^2 \eta^{-2} (B_0^4 \varepsilon^2 \eta^{-2} + C_0^4) \]

is uniformly bounded for \( 0 < \varepsilon \leq 1 \).

We thus have
\[ \left| A_\varepsilon^4 w(t) \right|^2 \leq e^{-\varepsilon^4 C_0^2 \varepsilon^{-1} \eta^{-1}} + e^{2 \eta^{-2} D_1}. \]

Now solve for \( t = T_1 \) by setting
\[ e^{-\varepsilon^4 C_0^2 \varepsilon^{-1} \eta^{-1}} = e^{2 \eta^{-2} D_1} \]

to obtain \( T_1 = -\varepsilon^4 \log \left( \frac{\varepsilon^3 \eta^{-1} D_1}{C_0^2} \right) \).

We want this \( T_1 \) to be \( \leq T^N \), and this will motivate our choice of \( \varepsilon_0 \). Since we have
\[ R_0 \leq \varepsilon^{-1} \eta^{-2} D_0^2, \]

it follows that \( R_0 T_1 \leq -D_0^2 e^{3 \eta^{-2}} \log \left( \frac{\varepsilon^3 \eta^{-1} D_1}{C_0^2} \right) \).

By our choice of \( \eta \), we see that the right-hand side tends to zero as \( \varepsilon \to 0^+ \) so \( R_0 T_1 \to 0 \) and also \( T_1 \to 0 \) as \( \varepsilon \to 0^+ \). Hence \( T_1(\varepsilon_0) \leq (N - 1)/NR_0 \) is true for some \( \varepsilon_0 > 0 \) and so \( T_1 \leq T^N \). It then follows that
\[ \frac{1}{\varepsilon^2} \left| A_\varepsilon^4 w(T_1) \right|^2 \leq C_1 \eta^{-2}, \]

where \( C_1^2 = 2 D_1 \).

We now look at the \( v \)-equation. By taking the inner product of this equation with \( A_\varepsilon^{1/2} v \) and proceeding as before, we obtain
\[
\frac{1}{2} \frac{d}{dt} \left( \frac{1}{\varepsilon} |A^4\varepsilon| + \frac{1}{\varepsilon} |A^4\varepsilon| - \frac{3}{\varepsilon} |A^2\varepsilon|^2 \leq |b(u,u,A^2\varepsilon)| \right) \leq \\
\frac{1}{\varepsilon} |u| \frac{3}{\varepsilon} |A^2\varepsilon|^2 \frac{1}{\varepsilon} \frac{1}{\varepsilon} \frac{3}{\varepsilon} \frac{1}{\varepsilon} \frac{3}{\varepsilon} \frac{1}{\varepsilon} \frac{1}{\varepsilon} \frac{1}{\varepsilon} \frac{3}{\varepsilon} \frac{1}{\varepsilon} \leq C |A^4\varepsilon| + |A^2\varepsilon|^2 |A^4\varepsilon|^2 . 
\]
(The last step is a consequence of Poincaré's inequality).

By using the weighted Young inequality with exponents 4 and \(4/3\) we obtain the bound

\[
\frac{1}{2} \frac{3}{\varepsilon} |A^4\varepsilon|^2 + C |A^4\varepsilon| + \frac{1}{\varepsilon} |A^2\varepsilon|^3 .
\]

By using Young's inequality again with exponents \(3/2\) and 3, this is bounded by

\[
\frac{1}{2} \frac{3}{\varepsilon} |A^4\varepsilon|^2 + C |A^2\varepsilon|^2 + \frac{1}{\varepsilon} |A^2\varepsilon|^4.
\]

By putting all these estimates together, we arrive at

\[
\frac{d}{dt} \left( \frac{1}{\varepsilon} |A^4\varepsilon|^2 + \frac{3}{\varepsilon} |A^2\varepsilon|^2 - (2 + C)|A^2\varepsilon|^2 \right) \leq \frac{1}{\varepsilon} |A^4\varepsilon|^4 .
\]

The interpolation inequality (applied in the same manner as before) gives

\[
\frac{d}{dt} \left( \frac{1}{\varepsilon} |A^4\varepsilon|^2 - \alpha |A^4\varepsilon|^2 \right) \leq \frac{1}{\varepsilon} |A^4\varepsilon|^4 , \text{ where } \alpha \text{ is a constant independent of } \varepsilon.
\]

Now notice that

\[
|A^4\varepsilon|^4 = |A^4\varepsilon|^4 |v + w|^4 \leq \left( |A^4\varepsilon|^2 + |A^4\varepsilon|^2 \right)^2 \leq 2 \left( |A^4\varepsilon|^4 + |A^4\varepsilon|^4 \right) .
\]

Since \(A^4_{\varepsilon}\) commutes with \(M\), so do its fractional powers, therefore

\[
\frac{1}{\varepsilon} \frac{1}{\varepsilon} |A^4\varepsilon|^2 \leq \frac{1}{\varepsilon} |A^4\varepsilon|^2 , \text{ so that the inequality becomes}
\]

\[
\frac{d}{dt} \left( \frac{1}{\varepsilon} |A^4\varepsilon|^2 - \alpha |A^4\varepsilon|^2 \right) \leq 2 \frac{1}{\varepsilon} |A^4\varepsilon|^2 |A^4\varepsilon|^2 + 2 \frac{1}{\varepsilon} |A^4\varepsilon|^4 .
\]

Since \(|A^4_{\varepsilon}|^4 \leq N\tau_0^4\) on the interval of \(t\) under consideration, we have
\[ \frac{d}{dt} \left( \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 - \alpha |A_{\epsilon}^4 v|^2 \right) \leq 2NR_0 \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 + 2 |A_{\epsilon}^4 w|^4. \]

By defining \( \beta = \alpha + 2NR_0 \), this becomes
\[ \frac{d}{dt} \left( \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 - \beta |A_{\epsilon}^4 v|^2 \right) \leq 2 \frac{1}{\epsilon} |A_{\epsilon}^4 w|^4. \]

Recall now that
\[ \frac{1}{\epsilon} |A_{\epsilon}^4 w(t)|^2 \leq e^{-\epsilon^4 C_0^2} \epsilon^{-1} \eta^{-1} + \epsilon^2 \eta^{-2} D_1, \] which implies
\[ \frac{1}{\epsilon} |A_{\epsilon}^4 w(t)|^4 \leq 2C_0^4 e^{-2 \epsilon^4} \epsilon^{-2} \eta^{-2} + 2\epsilon^4 \eta^{-4} D_1^2. \]

We can write
\[ \beta = \alpha + 2N R_0 = \alpha + 2N \epsilon^{-1} \eta^{-2} D_0^2 = \epsilon^{-1} \eta^{-2} (\alpha \epsilon \eta^2 + 2N D_0^2) = \epsilon^{-1} \eta^{-2} D_2, \] where \( D_2 \) is uniformly bounded for \( 0 < \epsilon \leq 1 \). Thus we arrive at
\[ \frac{d}{dt} \left( \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 - \epsilon^{-1} \eta^{-2} D_2, |A_{\epsilon}^4 v|^2 \right) \leq 2 \frac{1}{\epsilon} C_0^4 \epsilon^{-2} \epsilon^{-4} \epsilon^{-2} \eta^{-2} + 2\epsilon^4 \eta^{-4} D_1^2. \]

We can rewrite this as
\[ \frac{d}{dt} \left( \epsilon^{-1} \eta^{-2} D_2, \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 \right) \leq \epsilon^{-1} \eta^{-2} D_2 \left( 2C_0^4 \epsilon^{-2} \epsilon^{-4} \epsilon^{-2} \eta^{-2} + 2\epsilon^4 \eta^{-4} D_1^2 \right). \]

By integrating between 0 and \( T_1 \) and using the definition of \( R_0 \), we obtain
\[ e^{-\epsilon^{-1} \eta^{-2} D_2 T_1} \frac{1}{\epsilon} |A_{\epsilon}^4 v|^2 - \frac{1}{\epsilon} |A_{\epsilon}^4 v_0|^2 \leq \epsilon^5 \eta^{-2} D_1^2 D_2^{-1} + C_0^4 \epsilon^2 \eta^{-2} \leq D_3 \eta^{-2}, \] where \( D_3 = \epsilon^5 D_1^2 D_2^{-1} + C_0^4 \epsilon^2 \).

Hence
\[ \frac{1}{\epsilon} |A_{\epsilon}^4 v(T_1)|^2 \leq \exp (\epsilon^{-1} \eta^{-2} D_2 T_1) \left( \frac{1}{\epsilon} |A_{\epsilon}^4 v_0|^2 + D_3 \eta^{-2} \right). \]

By our choice of \( T_1 \), we see that
\[ \varepsilon^{-1} \eta^{-2} D_2 T_1 \to 0 \text{ as } \varepsilon \to 0, \text{ hence there exists } \varepsilon_0 \text{ such that} \]
\[ \exp(\varepsilon^{-1} \eta^{-2} D_2 T_1) \leq 2 \text{ for } 0 < \varepsilon < \varepsilon_0. \]

Hence for \( 0 < \varepsilon < \varepsilon_0 \) we have
\[ \frac{1}{|A_\varepsilon^4 v(T_1)|^2} \leq 2 \frac{1}{|A_\varepsilon^4 v_0|^2} + 2 D_3 \eta^{-2} \leq B_1^2 \eta^{-2}, \text{ where } B_1^2 = \sup_{0 < \varepsilon < \varepsilon_0} (2B_0^2 + 2D_3). \]

This concludes the proof.

As a direct consequence of Lemma 2.5 we have the following result:

**Lemma 2.6**

Let \( B_0 > 0 \) and \( C_0 > 0 \) be given, and let \( \eta \) satisfy hypothesis (G). Then there exist \( \varepsilon_0, 0 < \varepsilon_0 < 1, B_1 > B_0, C_1 > C_0 \) and \( T_1 > 0 \) such that the following holds for all \( \varepsilon \) satisfying \( 0 < \varepsilon < \varepsilon_0 \):

If \( \frac{1}{|A_\varepsilon^4 v_0|^2} \leq B_0^2 \eta^{-2} \) and \( \frac{1}{|A_\varepsilon^4 w_0|^2} \leq C_0^2 \varepsilon^{-1} \eta^{-1} \) then

\[ \frac{1}{|A_\varepsilon^4 v(T_1)|^2} \leq B_1^2 \eta^{-2} \text{ and } \frac{1}{|A_\varepsilon^4 w(T_1)|^2} \leq C_1^2 \varepsilon. \]

**Proof.**

By an application of Lemma 2.5 we obtain
\[ \frac{1}{|A_\varepsilon^4 v(T_1)|^2} \leq B_1^2 \eta^{-2} \text{ and } \frac{1}{|A_\varepsilon^4 w(T_1)|^2} \leq C_1^2 \varepsilon^2 \eta^{-2}. \]

By condition (G), we know that \( \varepsilon \eta^{-2} \leq 1 \), so we have
\[ \frac{1}{|A_\varepsilon^4 w(T_1)|^2} \leq C_1^2 \varepsilon, \text{ which proves the assertion.} \]

We are now ready to state a lemma which plays a key role in the proof of our main result.

**Lemma 2.8**

Fix \( B_1 \) and \( C_1 \) and let \( u_0 = (v_0, w_0) \) be chosen such that
\[ \frac{1}{|A_\varepsilon^4 v_0|^2} \leq B_1^2 \eta^{-2} \quad \text{and} \quad \frac{1}{|A_\varepsilon^4 w_0|^2} \leq C_1^2 \varepsilon. \]

Let \( K_0 \geq 1 \) be given by Lemma 2.2 with, say, \( k = 1/8 \) and set \( N = 4K_0 \), and

let us define \( T_0 = T_0(\varepsilon) = b_1 \exp(b_2 B_1^4 \eta^{-4}) \) so that one has
\[ \frac{1}{\epsilon} A_4^T v(t)^2 \leq L + \frac{1}{8} A_4^T v_0^2, \quad t \geq T_0. \]

Next, define \( \tau_N \) by

\[ \tau_N = \sup \{ \tau > 0 : \frac{1}{\epsilon} A_4^T u(t)^2 \leq N D_4^2 \eta^{-2} \eta^{-2} \text{ for } 0 \leq t \leq \tau \} \]

where \( D_4^2 = B_1^2 + C_1^2 \).

Then there exists \( \epsilon_0, 0 < \epsilon_0 < 1 \), such that for all \( \epsilon \) satisfying \( 0 < \epsilon < \epsilon_0 \) the following hold

\[ T_0 \leq \tau_N \]

\[ \frac{1}{\epsilon} A_4^T v(T_0) \leq \frac{3}{4} B_1^2 \eta^{-2} \]

\[ \frac{1}{\epsilon} A_4^T w(T_0) \leq C_1^2 \epsilon. \]

Proof.

From our previous estimates we have

\[ \frac{d}{dt} \frac{1}{\epsilon} A_4^T w(t)^2 + \epsilon^{-4} \frac{1}{\epsilon} A_4^T w(t)^2 \leq \frac{1}{2} C^2 N^2 D_4^2 \eta^{-4} \eta^{-4} \text{ on } 0 < t < \tau_N. \]

By Gronwall's inequality, we obtain

\[ \frac{1}{\epsilon} A_4^T w(t)^2 \leq \epsilon^{-4} \frac{1}{\epsilon} A_4^T w_0^2 + \epsilon^4 \left[ \frac{1}{2} C^2 N^2 D_4^2 \eta^{-4} \eta^{-4} \right] \]

\[ \leq \epsilon C_1^2 \epsilon^{-4} + \epsilon^4 \eta^{-4} \eta^{-4} \left( \frac{1}{2} C^2 N^2 D_4^2 \right). \]

By using condition (G) one has

\[ \frac{1}{\epsilon} A_4^T w(t)^2 \leq \epsilon C_1^2 e^{-4} + \epsilon D_5^2 \text{ where } D_5^2 = \epsilon^3 \eta^{-4} \eta^{-4} C^2 N^2 D_4^2. \]

(Notice that \( D_5 \) is uniformly bounded.) It follows that

\[ \frac{1}{\epsilon} A_4^T w(t)^2 \leq D_6^2 \epsilon \text{ for } 0 \leq t \leq \tau_N, \text{ where } D_6^2 = C_1^2 + D_5^2. \]

Now solve the equation
\[ C_1^2 e^{-\varepsilon^{-4}} = D_3^2 \text{ for } t = T_2 \text{ to obtain} \]

\[ T_2 = -\varepsilon^4 \log \frac{D_3^2}{C_1^2} . \]

It follows that

\[ R_0 T_2 \leq -D_4^2 \eta^{-2} \varepsilon^4 \log \frac{D_3^2}{C_1^2} \to 0 \text{ and } T_2 \to 0 \text{ as } \varepsilon \to 0^+. \]

Notice that then \( T_2(\varepsilon_0) \leq \min \left( T_0, \tau_N \right) \) for some \( \varepsilon_0 > 0 \).

Therefore we get

\[ \frac{1}{\varepsilon} |A_{\varepsilon}^4 w(t)|^2 \leq 2D_3^2 \varepsilon \text{, for } T_2 \leq t \leq \tau_N. \] This implies that

\[ \frac{1}{\varepsilon} |A_{\varepsilon}^4 w(t)|^2 \leq C_1^2 \varepsilon \text{ provided } \varepsilon_0 \text{ is chosen so that } \sup_{0 < \varepsilon \leq \varepsilon_0} 2D_3^2 \leq C_1^2. \]

We now turn to the estimates for \( v \). As pointed out above, we wish to compare \( v \) with the solution \( \overline{v} \) of the reduced 2D equations satisfying the same initial condition, that is \( \overline{v}(0) = v(0) \).

By subtraction, we obtain

\[ (v - \overline{v})' + A_{\varepsilon} (v - \overline{v}) - \frac{1}{\varepsilon} (v - \overline{v}) + B_{\varepsilon} (v,v) - B_{\varepsilon} (\overline{v}, \overline{v}) = \]

\[ = -M [B_{\varepsilon} (w,v) + B_{\varepsilon} (v,w) + B_{\varepsilon} (w,w)] \]

Let

\[ \left| b_{\varepsilon} (v,v, A_{\varepsilon}^2 (v - \overline{v})) - b_{\varepsilon} (v, \overline{v}, A_{\varepsilon}^2 (v - \overline{v})) \right| = \text{(def) } R . \]

We will need the following estimate for \( R \):
\[
\frac{1}{\varepsilon} \|b (v, v, A^2_\varepsilon (v - w)) - b (v, v, A^2_\varepsilon (v - w))\| = \\
= \frac{1}{\varepsilon} \|b (v - w, v, A^2_\varepsilon (v - w)) + b (v, v, A^2_\varepsilon (v - w))\| \quad \text{and, by inequality (1.11), this is}
\]
\[
\leq C \|v - w\| A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 .
\]

By using the Poincaré inequality, we see that \( R \) is bounded by
\[
\frac{1}{\varepsilon} \|A^2_\varepsilon (v) + A^2_\varepsilon (v - w)\| A^2_\varepsilon (v - w) \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\| .
\]

Before taking the inner product of (2.4) with \( A^{1/2}_\varepsilon (v - w) \), let us note that inequality (1.11) provides the following bounds for the trilinear terms that involve \( w \):
\[
S_1 = \|b (w, w, A^2_\varepsilon (v - w))\| \leq C \|w\| A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) .
\]

By Poincaré's inequality, we have
\[
\|w\| \leq \varepsilon |A^4_\varepsilon w| \leq |A^4_\varepsilon w| \quad \text{and} \quad |A^2_\varepsilon (v - w)| \leq |A^4_\varepsilon (v - w)| , \text{hence}
\]
\[
S_1 \leq C |A^4_\varepsilon w| |A^4_\varepsilon w| |A^4_\varepsilon (v - w)| .
\]

Similarly,
\[
S_2 = \|b (v, w, A^2_\varepsilon (v - w))\| \leq C \|v\| A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) + \frac{1}{\varepsilon} \|A^2_\varepsilon (v - w)\|^2 A^2_\varepsilon (v - w) .
\]
\[
\leq C |A^4_\varepsilon w| |A^4_\varepsilon w| |A^4_\varepsilon (v - w)| .
\]

By taking the inner product of (2.4) with \( A^{1/2}_\varepsilon (v - w) \) we obtain
\[
\frac{1}{2} \frac{d}{dt} \left( \frac{1}{\epsilon} |A^4_\epsilon (v - \bar{v})|^2 + \frac{3}{\epsilon} |A^4_\epsilon (v - \bar{v})|^2 - \frac{1}{\epsilon} |A^2_\epsilon (v - \bar{v})|^2 \right) \leq R + S_1 + S_2.
\]

We now recall that, by Lemma 2.3, we have

\[(2.5) \quad |A_\epsilon^{1/4} v(t)|^2 \leq K_0 |A_\epsilon^{1/4} v_0|^2 \eta^* - 2 \leq K_0 B_1^2 \eta^* - 2 \eta^* - 2 \quad \text{for} \ t \geq 0.
\]

(Here we have used the fact that \( \bar{v}_0 = v_0 \).)

We also have

\[(2.6) \quad \frac{1}{\epsilon} |A^4 v(t)|^2 \leq \frac{1}{\epsilon} |A^4 u(t)|^2 \leq N \eta^* - 2 R_0 = N D_4^2 \eta^* - 2 \eta^* - 2 \quad \text{for} \ 0 \leq t \leq \tau_N.
\]

We shall use these to obtain more precise bounds on \( R, S_1, S_2 \). First, we have

\[
R \leq C (K_0^2 B_1 + N^2 D_4^4) \eta^* \eta^* - 1 \left( |A^4_\epsilon (v - \bar{v})| + \frac{1}{\epsilon} |A^4_\epsilon (v - \bar{v})| \right) \quad \text{which, by Young's inequality, is}
\]

\[
\leq \frac{1}{6} |A^4_\epsilon (v - \bar{v})|^2 + C_1 \left( K_0 B_1^2 + N D_4^2 \right) \eta^* - 2 |A^4_\epsilon (v - \bar{v})|^2.
\]

where \( C_1 \) is an absolute constant. In a similar fashion, we obtain

\[
S_1 \leq C N^2 D_4^4 \eta^* - 1 \left( |A^4_\epsilon w|^2 + \frac{1}{\epsilon} |A^4_\epsilon (v - \bar{v})| \right) \leq
\]

\[
\leq \frac{1}{6} |A^4_\epsilon w|^2 + C_2 N D_4^2 \eta^* - 2 |A^4_\epsilon|^2.
\]

and the same bound holds for \( S_2 \).

By putting all these estimates together, we arrive at

\[
\frac{d}{dt} \left( \frac{1}{\epsilon} |A^4_\epsilon (v - \bar{v})|^2 + \frac{3}{\epsilon} |A^4_\epsilon (v - \bar{v})|^2 - 2 \frac{1}{\epsilon} |A^2_\epsilon (v - \bar{v})|^2 - D_7 \eta^* - 2 \right) \leq
\]

\[
\leq 4C_2 N D_4^2 \eta^* - 2 |A^4_\epsilon w|^2, \quad \text{where} \ D_7 = 2C_1 (K_0 B_1^2 + N D_4^2).
\]

Let us now recall the previous estimate

\[
\frac{1}{\epsilon} |A^4_\epsilon w(t)|^2 \leq D_6^2 \epsilon \quad \text{for} \ 0 \leq t \leq \tau_N.
\]

By the interpolation inequality, one has

\[
\frac{1}{\epsilon} |A^4_\epsilon w(t)|^2 \leq D_6^2 \epsilon.
\]

\[
\text{for} \ 0 \leq t \leq \tau_N.
\]
\[
2 |A_\varepsilon^4 (v - \bar{v})|^2 \leq 2 |A_\varepsilon^4 (v - \bar{v})| |A_\varepsilon^4 (v - \bar{v})| \leq |A_\varepsilon^4 (v - \bar{v})|^2 + |A_\varepsilon^4 (v - \bar{v})|^2,
\]

hence
\[
|A_\varepsilon^4 (v - \bar{v})|^2 - 2 |A_\varepsilon^2 (v - \bar{v})|^2 \geq - |A_\varepsilon^4 (v - \bar{v})|^2.
\]

Hence we have the inequality
\[
\frac{d}{dt} |A_\varepsilon^4 (v - \bar{v})|^2 - D_8 \eta^* \eta^{-2} |A_\varepsilon^4 (v - \bar{v})|^2 \leq D_9 \varepsilon \eta \eta^* \eta^{-2}, \text{ where}
\]

\[
D_8 = \eta^* \eta^{-2} + D_7 \quad \text{and} \quad D_9 = 4 C_2 N D_4^2 D_6^2.
\]

By integration of this differential inequality we obtain
\[
\frac{1}{D_8^2 D_9} |A_\varepsilon^4 (v(t) - \bar{v}(t))|^2 \leq \varepsilon D_8^2 D_9 e^{D_8 \eta^* \eta^{-2} t} \text{ for } 0 \leq t < \tau_N.
\]

We now claim that \( T_0 \leq \tau_N \), with \( T_0 \) defined as in the statement of the Lemma. Let us assume that this is false, and define
\[
\Delta(t) = \varepsilon D_8^2 D_9 e^{D_8 \eta^* \eta^{-2} t}.
\]

Then, by the inequalities just proved, one has
\[
|A_\varepsilon^4 (v - \bar{v})|^2 \leq \Delta (T_0) = \varepsilon D_8^2 D_9 \exp (D_8 \eta^* \eta^{-2} T_0)
\]

\[
= \varepsilon D_8^2 D_9 \exp (D_8 \eta^* \eta^{-2} b_4 e^{b_5 B_1 \eta^{-4}}).
\]

By condition \((G_\gamma)\), this tends to 0 as \( \varepsilon \to 0^+ \). Hence there exists an \( \varepsilon_0 > 0 \) such that for \( 0 < \varepsilon < \varepsilon_0 \) one has:
\[
\Delta \leq \min \left( \frac{1}{6} D_4^2, \frac{1}{4} (B_1^2 \eta^{-2} - 4L) \right) \text{ for } 0 < \varepsilon < \varepsilon_0.
\]

Next, notice that
\[
A_\varepsilon^4 u = A_\varepsilon^4 v + A_\varepsilon^4 w = A_\varepsilon^4 (v - \bar{v}) + A_\varepsilon^4 w + A_\varepsilon^4 \bar{v}.
\]

Therefore, Young’s inequality implies
\[
\frac{1}{\epsilon^2} u^2 \leq 3 \left( \frac{1}{\epsilon^2} (v - \bar{v})^2 + |A_\epsilon^4 w|^2 + |A_\epsilon^4 v|^2 \right).
\]

Let us evaluate this at \( t = \tau_N \) to obtain

\[
4K_0 \eta^{-2} \eta^{-2} (B_1^2 + C_1^2) = N D_4^2 \eta^{-2} \eta^{-2} = |A_\epsilon^4 u|^2 \leq \frac{1}{4} \eta^{-2} \eta^{-2} \leq 3 \left( |A_\epsilon^4 (v - \bar{v})|^2 + |A_\epsilon^4 w|^2 + |A_\epsilon^4 v|^2 \right) \leq
\]

\[
\leq 3\Delta + 3C_1^2 \eta^{-2} + 3K_0 B_1^2 \eta^{-2} \eta^{-2}.
\]

By our estimate on \( \Delta \) this is

\[
\leq \frac{1}{2} D_4^2 + 3C_1^2 + 3K_0 B_1^2 \eta^{-2} \eta^{-2} \leq \left( (3K_0 + \frac{1}{2}) B_1^2 + \frac{7}{2} C_1^2 \right) \eta^{-2} \eta^{-2}
\]

which contradicts the fact that \( K_0 \geq 1 \). It follows that \( T_0 \leq \tau_N \).

Since \( T_2 \leq T_0 \leq \tau_N \) it follows that

\[
\frac{1}{\epsilon^2} |A_\epsilon^4 w(T_0)|^2 \leq C_1^2 \epsilon.
\]

Finally, the above estimates imply

\[
\frac{1}{\epsilon^2} |A_\epsilon^4 v(T_0)|^2 \leq 2 |A_\epsilon^4 (v - \bar{v})|^2_{t = T_0} + 2 |A_\epsilon^4 v(T_0)|^2 \leq 2\Delta + 2(L + \frac{1}{8} |A_\epsilon^4 v|^2)
\]

\[
\leq \left( \frac{1}{2} (B_1^2 \eta^{-2} - 4L) + 2L + \frac{1}{4} B_1^2 \eta^{-2} \right) = \frac{3}{4} B_1^2 \eta^{-2}.
\]

This ends the proof of the lemma.

It is now an easy matter to prove the Main Theorem 1.1, which follows by repeatedly applying Lemma 2.8. Notice that we are stating the result in terms of the original function \( U \) and the original gradient \((H^1)\) norm in \( L^2(\Omega_\epsilon) \). This is done by using the definition of the renormalized norm and the inequality

\[
|U|_{H^1(\Omega_\epsilon)} \leq \epsilon^{-1} \| u \|_{H^1(\Omega_\epsilon)}.
\]
Existence of a local attractor

We recall that a set $A$ is a local attractor for a nonlinear semigroup $\{S(t)\}$ if it is compact, invariant, and there exists a bounded neighborhood $B$ of $A$ such that $A$ attracts $B$. Let us also recall the following result:

**Lemma 2.10 ([H], Lemma 3.2.1)**

Let $\{S(t), t \geq 0\}$ be an asymptotically smooth semigroup in a Banach space $X$ and let $B$ be a nonempty set in $X$ such that the semiorbit $\gamma^+(B)$ is bounded. Then $\omega(B)$ is nonempty, compact, invariant, and it attracts $B$. If $B$ is connected, so is $\omega(B)$.

By using this result for $B = B_\varepsilon = \{U : |U|_{1/4} \leq R(\varepsilon)\}$ we see that $A_\varepsilon = \omega(B_\varepsilon)$ is a local attractor whose basin of attraction contains at least the set $B_\varepsilon$.

References


[I] Ju. Il'yashenko (1990), *Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation*, IMA Preprints Series, # 665, University of Minnesota.


<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko</td>
<td>Finite dimensional exponential attractors for semilinear wave</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko &amp; R. Temam</td>
<td>Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko &amp; R. Temam</td>
<td>Hölder continuity for the inverse of Mañé's projection</td>
</tr>
<tr>
<td></td>
<td>Michel Chipot and Charles Collins</td>
<td>Numerical approximations in variational problems with potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang</td>
<td>Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencsér and Zsuzsanna Vágó</td>
<td>A strong approximation theorem for estimator processes in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencsér</td>
<td>Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with Korteweg stresses</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal order error estimates for the finite element approximation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>estimation and simulation</td>
</tr>
<tr>
<td>706</td>
<td>H.S. Dumas, J.A. Ellison and A.W. Sáenz</td>
<td>Axial channeling in perfect crystals, the continuum model and the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>method of averaging</td>
</tr>
<tr>
<td>707</td>
<td>M.A. Kaashoek and S.M. Verduyn Lunel</td>
<td>Characteristic matrices and spectral properties of evolutionary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems</td>
</tr>
<tr>
<td>708</td>
<td>Xinfu Chen</td>
<td>Generation and Propagation of interfaces in reaction diffusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems</td>
</tr>
<tr>
<td>709</td>
<td>Avner Friedman and Bei Hu</td>
<td>Homogenization approach to light scattering from polymer-dispersed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>liquid crystal films</td>
</tr>
<tr>
<td>710</td>
<td>Yoshihisa Morita and Shuichi Jimbo</td>
<td>ODEs on inertial manifolds for reaction-diffusion systems in a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>singularly perturbed domain with several thin channels</td>
</tr>
<tr>
<td>711</td>
<td>Wenxiong Liu</td>
<td>Blow-up behavior for semilinear heat equations:multi-dimensional case</td>
</tr>
<tr>
<td>712</td>
<td>Hi Jun Choe</td>
<td>Hölder continuity for solutions of certain degenerate parabolic</td>
</tr>
<tr>
<td>713</td>
<td>Hi Jun Choe</td>
<td>Regularity for certain degenerate elliptic double obstacle problems</td>
</tr>
<tr>
<td>714</td>
<td>Fernando Reitich</td>
<td>On the slow motion of the interface of layered solutions to the scalar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ginzburg–Landau equation</td>
</tr>
<tr>
<td>715</td>
<td>Xinfu Chen and Fernando Reitich</td>
<td>Local existence and uniqueness of solutions of the Stefan problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with surface tension and kinetic undercooling</td>
</tr>
<tr>
<td>716</td>
<td>C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman</td>
<td>Rotating waves for semiconductor inverter rings</td>
</tr>
<tr>
<td>717</td>
<td>W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya</td>
<td>Multisummability of formal power series solutions of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>linear ordinary differential equations</td>
</tr>
<tr>
<td>718</td>
<td>Peter J. Olver and Chehrzad Shakiban</td>
<td>Dissipative decomposition of partial differential equations</td>
</tr>
<tr>
<td>719</td>
<td>Clark Robinson</td>
<td>Homoclinic bifurcation to a transitive attractor of Lorenz type, II</td>
</tr>
<tr>
<td>720</td>
<td>Michelle Schatzman</td>
<td>A simple proof of convergence of the QR algorithm for normal matrices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without shifts</td>
</tr>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>forces. I</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semidiscrete methods for a system of reaction-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma systems</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego &amp; P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Ericksen</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flow in fractured porous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>media</td>
</tr>
<tr>
<td>733</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzhi Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic</td>
</tr>
</tbody>
</table>
system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun'ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations

Emad A. Fatemi, A new splitting method for scaler conservation laws with stiff source terms

Hi Jun Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities

Haitao Fan, A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids


Avner Friedman and Wei-Hsu, A free boundary problem arising in semiconductor modeling

Avner Friedman and Wenxiong Liu, An augmented drift-diffusion model in semiconductor device

Avner Friedman and Miguel A. Herrero, Extinction and positivity for a system of semilinear parabolic variational inequalities

David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure

Hi Jun Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth

Vincenzo M. Tortorelli and Epifanio G. Virga, Axis-symmetric boundary-value problems for nematic liquid crystals with variable degree of orientation

Nikan B. Firoozye and Robert V. Kohn, Geometric parameters and the relaxation of multiwell energies


Joseph D. Fehribach, Analysis and application of a continuation method for a self-similar coupled Stefan system

C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi, Dissipativity of numerical schemes

D.D. Joseph, T.Y.J. Liao and J.-C. Saut, Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods

N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems

João Palhoto Matos, Young measures and the absence of fine microstructures in the α–β quartz phase transition

L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors

H. Scott Dumas and James A. Ellison, Nekhoroshev's theorem, ergodicity, and the motion of energetic charged particles in crystals

Stathis Filipas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$.

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity

Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension

J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces

George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains

T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods