DESIGN OF PARTICLE REINFORCED HEAT CONDUCTING
COMPOSITES WITH INTERFACIAL THERMAL BARRIERS

By

Robert Lipton

IMA Preprint Series # 1453
February 1997

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
Design of particle reinforced heat conducting composites with interfacial thermal barriers

Robert Lipton*
Department of Mathematical Sciences, Worcester Polytechnic Institute,
100 Institute Rd., Worcester, MA 01609, U.S.A.

September 17, 1996

Abstract

Two phase particle reinforced heat conducting composites are considered. We treat the case when there is an interfacial thermal barrier between phases. We provide rules of thumb for selecting the particle size distribution and minimum particle size when designing particle reinforced composites for optimal heat dissipation. The rules are based on new energy dissipation inequalities obtained in the work of Lipton (1996, Journal of Applied Physics, 80:5583-5586.)

Key Words. Heat conduction, interfacial thermal barriers, size effects.

1 Introduction

The effect of particle size on the thermal energy dissipated inside a particle reinforced composite conductor is addressed. We consider the technologically important case when there is an interfacial thermal barrier resistance between phases. In the context of electronic packaging, it is necessary for the packaging material to efficiently transport heat away from the device. Packaging made from an electrically insulating matrix material with particles or fibers of high thermal conductivity are attractive for this purpose, [1].

Experiments show that for small particles, the presence of an interfacial barrier can diminish or even negate the effect of a highly conducting reinforcement, see, [2] and [3]. This phenomena is in striking contrast to what occurs for perfectly bonded composites where there is no interfacial thermal barrier. Indeed, for perfectly bonded composites it is known, that the addition of highly conducting particles will always reduce the total heat dissipation independently of particle size. In this note we provide rules of thumb for selecting the particle size distribution and minimum particle size when designing a particle reinforced composite.

The thermal conductivity associated with the reinforcement is denoted by c_r and that of the matrix by c_m. Here both conductors are assumed isotropic, and c_r, c_m are scalar quantities. The reinforcement is assumed to have a better heat conductivity than the matrix, i.e., $c_r > c_m$. The interfacial thermal barrier is characterized by a scalar β with dimensions of conductivity per unit length.

*Present address: Department of Mathematics, Tufts University, Medford, MA, 02155.
The composite domain is denoted by Ω and its volume is given by |Ω|. The resistivity inside the composite is described by, \(c^{-1}(x) \) taking the values \(c_r^{-1} \) in the particles and \(c_m^{-1} \) in the matrix. For any vector \(\vec{j} \) in \(\mathbb{R}^3 \) we prescribe a heat flux \(\vec{j} \cdot n \) on the boundary of Ω and the thermal energy dissipated inside the composite is \(c_e^{-1} \vec{j} \cdot \vec{j} \) where,

\[
\frac{c_e^{-1} \vec{j} \cdot \vec{j}}{c_r^{-1}} = \min_{j \in V} \{ C(j) \}
\]

with

\[
C(j) = |Ω|^{-1} \left\{ \int_Ω c^{-1}(x) |j|^2 dx + \beta^{-1} \int_Γ (j \cdot n)^2 ds \right\},
\]

and

\[
V = \{ j : \int_Ω |j|^2 dx < \infty, \text{div} j = 0, \, j \cdot n = \vec{j} \cdot n \text{ on } \partial Ω \}.
\]

Here \(ds \) is the element of surface area, and the vector \(n \) is the unit normal pointing into the matrix phase. The minimizer \(j_{A_r} \) is precisely the heat flux in the composite and is related to the temperature \(u_{A_r} \) by the constitutive law: \(j_{A_r} = c(x) \nabla u_{A_r} \). The constant tensor \(c_e \) represents the effective conductivity of the composite.

We write down the geometric criterion that determines when the effects of the interfacial thermal barrier over the benefit of a highly conducting reinforcement. This criterion is general and applies to any reinforcement. In order to give the criterion, we introduce the scalar \(R_{cr} \) given by:

\[
R_{cr} = \beta^{-1}(c_m^{-1} - c_r^{-1})^{-1}
\]

Here \(R_{cr} \) has dimensions of length. This quantity provides a measure of the relative magnitude of the interfacial barrier resistance with respect to the mismatch between the resistivity tensors of the matrix and reinforcement. For a given particle or fiber reinforcement denoted by "\(\Sigma \)" the geometric parameter of interest is its second Stekloff eigenvalue \(\rho_2 \).

The second Stekloff eigenvalue has dimensions of conductivity per unit length and is given by:

\[
\rho_2 = \min_{\text{div}(c_r \nabla \varphi) = 0} \frac{\int_{\partial \Sigma} \frac{c_r \nabla \varphi \cdot n}{c_r}^2 ds}{\int_{\Sigma} c_r \nabla \varphi \cdot \nabla \varphi dx},
\]

cf., Kuttler and Sigillito [4]. The Stekloff eigenvalue is a ratio measuring the relative importance between the particle’s ability to dissipate heat and the total heat flux leaving through the particle boundary. For spheres filled with an isotropic conductor this ratio is proportional to the reciprocal of the sphere radius and is given by \(\rho_2 = \frac{c_r}{a} \).

We consider the replacement of matrix material with a particle \(\Sigma \) of conductivity \(c_r \) and denote the associated effective conductivity tensor by \(\hat{c}_e \). The criterion on the particle geometry is given in the following theorem recently established in [5]:

1.1 Energy Dissipation Inequality

Given a reinforcement particle "\(\Sigma \)" if \(\rho_2 \) satisfies,

\[
R_{cr}^{-1} \leq c_r^{-1} \rho_2,
\]

then

\[
c_e \geq \hat{c}_e.
\]
2 Rules of thumb on minimum particle dimensions for suspension design

It follows from the energy dissipation inequality that if both conducting phases are isotropic and if Σ is a sphere of radius a that:

2.1 Size effect for spheres

$$c_e \geq \tilde{c}_e$$

if

$$a \leq R_{cr} = \beta^{-1}(c_m^{-1} - c_r^{-1})^{-1}. \quad (2.2)$$

This inequality motivates the following:

2.1 For polydisperse suspensions of spheres, the best conductivity properties are obtained from suspensions consisting only of spheres with radii greater than or equal to R_{cr}

More generally, we consider starlike inclusions Σ filled with isotropic conductor c_r embedded in an isotropic matrix with conductivity c_m. We suppose Σ is starlike for the point "x" inside Σ and denote the minimum distance from the point "x" to a tangent plane on the particle boundary by $h_m(x)$. The maximum and minimum distance from "x" to the particle boundary are denoted by $r_M(x)$ and $r_m(x)$ respectively. We apply the isoperimetric inequalities of Bramble and Payne [6] to estimate ρ_2 from below:

$$c_r^{-1}\rho_2 \geq \frac{1}{r_M^2} \left[\left(\frac{r_m}{r_M} \right)^2 \frac{h_m}{r_M} \right]$$

2.2 Size effect for ellipsoidal reinforcement

Given an ellipsoidal reinforcement Σ with major and minor axes specified by a and c respectively, then:

$$c_e \geq \tilde{c}_e$$

if

$$a \left(\frac{a}{c} \right)^3 \leq R_{cr} \quad (2.5)$$

This inequality motivates the following:

2.2 When constructing suspensions of particles made from ellipsoids one does best using only those with major and minor axes for which $a \left(\frac{a}{c} \right)^3 \geq R_{cr}$.

Next we consider cylindrical inclusions of length ℓ and radius R. If $\ell/2 \geq R$ then $r_M = ((\ell/2)^2 + R^2)^{1/2}$ and $r_m = h_m = R$. On the other hand if $\ell/2 \leq R$, then: $r_m = h_m = \ell/2$. (For both cases we have chosen the reference point to be the center of mass for the cylinder.) Such inclusions can be used to model chopped fiber suspensions. We have:
2.3 Size effect for cylindrical inclusions with $\ell/2 \geq R$:

$$c_e \geq c_e, \quad (2.6)$$

if

$$\frac{((\ell/2)^2 + R^2)^2}{R^3} \leq R_{cr}. \quad (2.7)$$

2.4 Size effect for cylindrical inclusions with $\ell/2 \leq R$:

$$c_e \geq c_e, \quad (2.8)$$

if

$$\frac{8((\ell/2)^2 + R^2)^2}{\ell^3} \leq R_{cr}, \quad (2.9)$$

Rules of thumb for the design of chopped fiber reinforced composites follow immediately from these inequalities.

We remark that the physical dimensions of the composite domain Ω enter into the design problem. Indeed, it follows from the inequalities (2.6), (2.7) and (2.8), (2.9) that:

2.3 If the dimensions of the domain are such that only fibers with $\ell/2 \geq R$ satisfying (2.7) or fibers with $\ell/2 \leq R$ satisfying (2.9) can be placed inside Ω, then one obtains the best results by not reinforcing at all.

3 Rules of thumb based on the size distribution of particles

We introduce design criteria based upon the size distribution of particles. The region occupied by the reinforcement particles is denoted by A and the union of all particle matrix interfaces is denoted by Γ. We introduce the surface energy tensor M defined by:

$$M_{ij} = |A|^{-1} \int_{\Gamma} n_i n_j ds. \quad (3.1)$$

Here, n_i is the i^{th} component of the outward pointing unit normal on the particle matrix interface. For a heat flux of the form $\vec{j} \cdot n$ prescribed on the boundary of the composite domain we have the following criterion the particle reinforced configuration.

3.1 Reinforcement Criterion

If

$$\frac{(M_j \cdot \vec{j})}{|\vec{j}|^2} \leq R_{cr}^{-1} \quad (3.2)$$

then the energy dissipated inside the reinforced composite is less than the energy dissipated when there is no reinforcement, (ie., $c_e^{-1} \vec{j} \cdot \vec{j} \leq c_m^{-1} \vec{j} \cdot \vec{j}$).

We set λ_M to be the largest eigenvalue of M. Since,

$$\lambda_M = \max_{\vec{j} \in R^3} \frac{(M_j \cdot \vec{j})}{|\vec{j}|^2} \quad (3.3)$$
it follows immediately that if a reinforcement configuration satisfies:

\[\lambda_M \leq R_{cr}^{-1} \] \hspace{1cm} (3.4)

then

\[c_e \geq c_m I, \] \hspace{1cm} (3.5)

where \(I \) is the 3 \times 3 identity matrix. We now apply these observations and consider a suspension made from isotropically conducting spheres of different radii embedded in a matrix of isotropic conductivity. We suppose that we know the volume distribution of sphere radii within the suspension. For a polydisperse suspension of spheres with radii \(a_1, a_2, \ldots, a_N \) we suppose that the volume occupied by spheres of radius \(a_i \) is given by the function \(V(a_i) \) where \(\sum_{i=1}^{N} V(a_i) = |A| \). For a prescribed volume distribution function \(V(a) \) we write the mean of the reciprocal radii as:

\[< a^{-1} > = |A|^{-1} \sum_{i=1}^{N} a_i^{-1} V(a_i), \] \hspace{1cm} (3.6)

For this case calculation gives

\[M_{ij} = < a^{-1} > I_{ij}. \] \hspace{1cm} (3.7)

For polydisperse suspensions of spheres (3.4), (3.5), and (3.7) imply:

if \(< a^{-1} >^{-1} \geq R_{cr} \),

then \(c_e \geq c_m I, \) \hspace{1cm} (3.8)

where \(c_m \) is the matrix conductivity.

This motivates the following:

\textbf{3.1 Reinforced polydisperse suspensions of spheres with size distributions satisfying:}

\[< a^{-1} >^{-1} \geq R_{cr} \] \hspace{1cm} (3.10)

\textit{have better overall conductivity properties than the unreinforced conductor.}

Last we show how to establish the reinforcement criteria. We start by writing the energy dissipation inside the reinforced composite as:

\[c_e^{-1} \tilde{j} \cdot \tilde{j} = \min_{j \in V} \{ C(j) \} \] \hspace{1cm} (3.11)

with

\[C(j) = |\Omega|^{-1} \left\{ \int_{\Omega} c_m^{-1} \tilde{j} \cdot \tilde{j} dx - \int_A (c_m^{-1} - c_r^{-1}) \tilde{j} \cdot \tilde{j} dx + \beta^{-1} \int_{\Gamma} (\tilde{j} \cdot \tilde{n}) ds \right\}. \] \hspace{1cm} (3.12)

Next the energy dissipated inside the unreinforced domain is given by:

\[c_m^{-1} \tilde{j} \cdot \tilde{j} = \min_{j \in V} \tilde{C}(j) \] \hspace{1cm} (3.13)
where
\[
\tilde{\mathcal{C}}(j) = |\Omega|^{-1} \int_\Omega c_m^{-1} j \cdot j dx.
\] (3.14)

It is easily seen that the constant current \(\tilde{j} \) is the minimizer for (3.13). Moreover, it is also an admissible trial field for the variational principle (3.11). Substitution of \(\tilde{j} \) into (3.11) gives the estimate:
\[
c_e^{-1} \tilde{j} \cdot \tilde{j} \leq c_m^{-1} \tilde{j} \cdot \tilde{j} + |\Omega|^{-1} L(\tilde{j})(c_m^{-1} - c_r^{-1}) \int_\Gamma (\tilde{j} \cdot n)^2 ds,
\] (3.15)

where
\[
L(\tilde{j}) = R_{cr} - \frac{\int_A |\tilde{j}|^2 dx}{\int_\Gamma (\tilde{j} \cdot n)^2 ds} = R_{cr} - \frac{||\tilde{j}||^2}{M \tilde{j} \cdot \tilde{j}}.
\] (3.16)

Clearly \(c_e^{-1} \tilde{j} \cdot \tilde{j} \leq c_m^{-1} \tilde{j} \cdot \tilde{j} \) when \(L(\tilde{j}) \leq 0 \) and the reinforcement criteria follows.

4 Acknowledgements

This research effort is sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number F49620-96-1-0055. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied of the Air Force Office of Scientific Research or the US Government. Research also sponsored by the NSF through grant DMS-9205158.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1372</td>
<td>B. Cockburn & P.-A. Gremaud</td>
<td>A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids</td>
</tr>
<tr>
<td>1373</td>
<td>B. Li & M. Luskin</td>
<td>Finite element analysis of microstructure for the cubic to tetragonal transformation</td>
</tr>
<tr>
<td>1374</td>
<td>M. Luskin</td>
<td>On the computation of crystalline microstructure</td>
</tr>
<tr>
<td>1375</td>
<td>J.P. Matos</td>
<td>On gradient young measures supported on a point and a well</td>
</tr>
<tr>
<td>1376</td>
<td>M. Nitsche</td>
<td>Scaling properties of vortex ring formation at a circular tube opening</td>
</tr>
<tr>
<td>1377</td>
<td>J.L. Bona & Y.A. Li</td>
<td>Decay and analyticity of solitary waves</td>
</tr>
<tr>
<td>1378</td>
<td>V. Isakov</td>
<td>On uniqueness in a lateral cauchy problem with multiple characteristics</td>
</tr>
<tr>
<td>1379</td>
<td>M.A. Kouritzin</td>
<td>Averaging for fundamental solutions of parabolic equations</td>
</tr>
<tr>
<td>1380</td>
<td>T. Aktosun, M. Klaus & C. van der Mee</td>
<td>Integral equation methods for the inverse problem with discontinuous wavespeed</td>
</tr>
<tr>
<td>1381</td>
<td>P. Morin & R.D. Spies</td>
<td>Convergent spectral approximations for the thermomechanical processes in shape memory allows</td>
</tr>
<tr>
<td>1382</td>
<td>D.N. Arnold & X. Liu</td>
<td>Interior estimates for a low order finite element method for the Reissner-Mindlin plate model</td>
</tr>
<tr>
<td>1383</td>
<td>D.N. Arnold & R.S. Falk</td>
<td>Analysis of a linear-linear finite element for the Reissner-Mindlin plate model</td>
</tr>
<tr>
<td>1384</td>
<td>D.N. Arnold, R.S. Falk & R. Winther</td>
<td>Preconditioning in $H(div)$ and applications</td>
</tr>
<tr>
<td>1385</td>
<td>M. Lavrentiev</td>
<td>Nonlinear parabolic problems possessing solutions with unbounded gradients</td>
</tr>
<tr>
<td>1386</td>
<td>O.P. Bruno & P. Laurence</td>
<td>Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure</td>
</tr>
<tr>
<td>1387</td>
<td>O.P. Bruno, F. Reitich, & P.H. Leo</td>
<td>The overall elastic energy of polycrystalline martensitic solids</td>
</tr>
<tr>
<td>1388</td>
<td>M. Fila & H.A. Levine</td>
<td>On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition</td>
</tr>
<tr>
<td>1390</td>
<td>J.M. Berg & H.G. Kwatny</td>
<td>Unfolding the zero structure of a linear control system</td>
</tr>
<tr>
<td>1391</td>
<td>A. Sei</td>
<td>High order finite-difference approximations of the wave equation with absorbing boundary conditions: A stability analysis</td>
</tr>
<tr>
<td>1392</td>
<td>A.V. Coward & Y.Y. Renardy</td>
<td>Small amplitude oscillatory forcing on two-layer plane channel flow</td>
</tr>
<tr>
<td>1393</td>
<td>V.A. Pliss & G.R. Sell</td>
<td>Approximation dynamics and the stability of invariant sets</td>
</tr>
<tr>
<td>1394</td>
<td>J.G. Cao & P. Robin</td>
<td>A new computational model for heterojunction resonant tunneling diode</td>
</tr>
<tr>
<td>1395</td>
<td>C. Liu</td>
<td>Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball</td>
</tr>
<tr>
<td>1396</td>
<td>K.A. Pericak-Spector & S.J. Spector</td>
<td>Dynamic cavitation with shocks in nonlinear elasticity</td>
</tr>
<tr>
<td>1397</td>
<td>G. Avalos & I. Lasiecka</td>
<td>Exponential stability of a thermoelastic system without mechanical dissipation II: The case of simply supported boundary conditions</td>
</tr>
<tr>
<td>1398</td>
<td>B. Brighi & M. Chipot</td>
<td>Approximation of inffina in the calculus of variations</td>
</tr>
<tr>
<td>1399</td>
<td>G. Avalos</td>
<td>Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam-like equation</td>
</tr>
<tr>
<td>1400</td>
<td>R. Lipton</td>
<td>Variational methods, bounds and size effects for composites with highly conducting interface</td>
</tr>
<tr>
<td>1401</td>
<td>B.T. Hayes & P.G. LeFloch</td>
<td>Non-classical shock waves in scalar conservation laws</td>
</tr>
<tr>
<td>1402</td>
<td>K.T. Joseph & P.G. LeFloch</td>
<td>Boundary layers in weak solutions to hyperbolic conservation laws</td>
</tr>
<tr>
<td>1403</td>
<td>Y. Diao, C. Ernst, & E.J.J. Van Rensburg</td>
<td>Energies of knots</td>
</tr>
<tr>
<td>1404</td>
<td>Xiaofeng Ren</td>
<td>Multi-layer local minimum solutions of the bistable equation in an infinite tube</td>
</tr>
<tr>
<td>1405</td>
<td>Vlastimil Ptáček</td>
<td>Krylov sequences and orthogonal polynomials</td>
</tr>
<tr>
<td>1406</td>
<td>T. Aktosun, M. Klaus & C. van der Mee</td>
<td>Factorization of scattering matrices due to approximation of potentials in one-dimensional Schrödinger-type equations</td>
</tr>
<tr>
<td>1407</td>
<td>C.-S. Man & R. Paroni</td>
<td>On the separation of stress-induced and texture-induced birefringence in acoustoelasticity</td>
</tr>
<tr>
<td>1408</td>
<td>D.N. Arnold, R.S. Falk, & R. Winther</td>
<td>Preconditioning discrete approximations of the Reissner-Mindlin plate model</td>
</tr>
<tr>
<td>1409</td>
<td>M.A. Kouritzin</td>
<td>On exact filters for continuous signals with discrete observations</td>
</tr>
<tr>
<td>1410</td>
<td>R. Lipton</td>
<td>The second Stekloff eigenvalue and energy dissipation inequalities for functionals with surface energy</td>
</tr>
<tr>
<td>1411</td>
<td>R. Lipton</td>
<td>The second Stekloff eigenvalue of an inclusion and new size effects for composites with imperfect interface</td>
</tr>
<tr>
<td>1412</td>
<td>W. Littman & B. Liu</td>
<td>The regularity and singularity of solutions of certain elliptic problems on polygonal domains</td>
</tr>
<tr>
<td>1413</td>
<td>C.R. Collins</td>
<td>Spurious oscillations are not fatal in computing microstructures</td>
</tr>
<tr>
<td>1414</td>
<td>M.A. Horn</td>
<td>Sharp trace regularity for the solutions of the equations of dynamic elasticity</td>
</tr>
<tr>
<td>1415</td>
<td>A. Friedman, B. Hu & Y. Liu</td>
<td>A boundary value problem for the Poisson equation with multi-scale oscillating boundary</td>
</tr>
<tr>
<td>1416</td>
<td>P. Bauman, D. Phillips & Q. Tang</td>
<td>Stable nucleation for the Ginzburg-Landau system with an applied magnetic field</td>
</tr>
<tr>
<td>1417</td>
<td>J.M. Berg</td>
<td>A strain profile for robust control of microstructure using dynamic recrystallization</td>
</tr>
</tbody>
</table>
1418 P. Klouček, Toward the computational modeling of nonequilibrium thermodynamics of the Martensitic transformations
1419 S. Chawla & S.M. Lenhart, Application of optimal control theory to in situ bioremediation
1420 B. Li & M. Luskin, Nonconforming finite element approximation of crystalline microstructure
1421 H. Kang & J.K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in \mathbb{R}^3
1422 Avner Friedman & Robert Gulliver, Organizers, Mathematical modeling for instructors, July 29 – August 16, 1996
1423 G. Friesecke, Pair correlations and exchange phenomena in the free electron gas
1424 Y.A. Li & P.J. Olver, Convergence of solitary-wave solutions in a perturbed Bi-Hamiltonian dynamical system
1425 C. Huang, On boundary regularity of vortex patches for 3D incompressible euler systems
1426 C. Huang, A free boundary problem with nonlinear jump and kinetics on the free boundaries
1427 X. Chen, C. Huang & J. Zhao, A nonlinear parabolic equation modeling surfactant diffusion
1428 A. Friedman & B. Hu, Optimal control of chemical vapor deposition reactor
1429 A. Friedman & B. Hu, A non-stationary multi-scale oscillating free boundary for the Laplace and heat equations
1430 X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations
1431 J. Yong, Finding adapted solutions of forward-backward stochastic differential equations – Methods of continuation
1432 J. Yong, Linear forward-backward stochastic differential equations
1433 D.A. Dawson & M.A. Kouritzin, Invariance principles for parabolic equations with random coefficients
1434 R. Lipton, Energy minimizing configurations for mixtures of two imperfectly bonded conductors
1435 D.C. Dobson & F. Santosa, Nondestructive evaluation of plates using Eddy current methods
1436 W. Littman & B. Liu, On the spectral properties and stabilization of acoustic flow
1437 S. Sarkar & S. Sundar Sarkar, Normal distribution as a method for data replication in a parallel data server
1438 S. Sarkar & S. Sundar Sarkar, Parallel view materialization with dynamic load balancing: A graph theoretic approach
1439 S. Sarkar & S. Sundar Sarkar, Internet and relational databases in a multi-tier client/server model
1440 J. Liang & S. Subramaniam, Numerical computing of molecular electrostatics through boundary integral equations
1441 J. Wu, Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic equations
1442 P. Constantin & J. Wu, Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits
1443 M.A. Kouritzin, Stochastic processes and perturbation problems defined by parabolic equations with a small parameter
1444 M.A. Kouritzin, Approximations for singularly perturbed parabolic equations of arbitrary order
1445 A. Novick-Cohen, Triple junction motion for Allen-Cahn/Cahn-Hilliard systems
1446 P. Klouček, Approximations of the laminated microstructures
1447 S. Sarkar & S.S. Sarkar, A graph theoretic approach for parallel view materialization with dynamic load balancing
1448 S. Chawla, A minmax problem for parabolic systems with competitive interactions
1449 B. Luong & F. Santosa, Quantitative imaging of corrosion in plates by Eddy current methods
1450 R. Jordan & B. Turkington, Ideal magnetofluid turbulence in two dimensions
1451 M. Fels & P.J. Olver, Moving coframes. I. A practical algorithm
1452 S.Y. Maliassov, On the Schwarz alternating method for eigenvalue problems
1453 R. Lipton, Design of particle reinforced heat conducting composites with interfacial thermal barriers
1454 J. Berg, A. Yezzi, & A. Tannenbaum, Phase transitions, curve evolution, and the control of semiconductor manufacturing processes
1455 G. Avalos & I. Lasiecka, Uniform decay rates of solutions to a structural acoustics model with nonlinear dissipation
1456 M. Nitsche, Siemens/IMA technical report
1457 L. Wang, J.A. Cox, & A. Friedman, Model analysis of homogeneous optical waveguides by boundary integral method
1458 C.P. Fung & S. Lototsky, Nonlinear filtering: Separation of parameters and observations using Galerkin approximation and Wiener chaos decomposition
1459 S. Northshield, Several proofs of Ihara’s theorem
1460 T. Aktosun, M. Klaus & C. van der Mee, Wave scattering in one dimension with absorption
1461 F. Santosa, M. Vogelius, & J.-M. Xu, An effective nonlinear boundary condition for a corroding surface. Identification of the damage based on electrostatic data
1462 J. Wu, Well-posedness of a semilinear heat equation with weak initial data
1463 J. Wu, Quasi-geostrophic type equations with weak initial data
1464 J. Ma & J. Yong, Approximate solvability of forward-backward stochastic differential equations
1465 T.-P. Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates
1466 M.K. Gobbert, T.P. Merchant, L.J. Borucki, & T.S. Cale, A multiscale simulator for low pressure chemical vapor deposition
1467 M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini, & S.G. Whittington, Torsion of polygons in \mathbb{R}^3
1468 M. Grinfeld & A. Novick-Cohen, The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor