BOUNDARY CONTROL OF A SCHROEDINGER EQUATION
WITH NONCONSTANT PRINCIPAL PART

By

Mary Ann Horn
and
Walter Littman

IMA Preprint Series # 1279
December 1994

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
Boundary Control of a Schrödinger Equation with Nonconstant Principal Part

Mary Ann Horn* Walter Littman
School of Mathematics
University of Minnesota
Minneapolis, Minnesota 55455

Abstract
In this paper, we obtain a simple proof of exact boundary controllability for the Schrödinger equation with variable principal part by combining a method of W. Littman and S. Taylor with an estimate of B. Vainberg.

1 Introduction
In the context of boundary controllability for a Schrödinger equation, Littman and Taylor have introduced a general technique, which, basically stated, says that

\[\text{local smoothing } + \text{ reversibility } + \text{ uniqueness } \implies \text{exact controllability}\]

(see [4]). Here “uniqueness” is the uniqueness property implying approximate controllability by duality. If control is to be exercised on the whole lateral boundary of a cylindrical domain, \(\Omega \times (0, T)\), in space-time, it means that every solution (in an appropriate space) of the homogeneous linear evolution equation in this domain having zero Cauchy data on the lateral boundary must vanish identically. “Reversibility” means that the backward problem (in time) is wellposed. For the system we wish to consider, the difficulty of this approach lies in proving the necessary smoothing properties.

Local smoothing properties of evolution equations are not a newly discovered phenomenon. For example, the propagation of singularities for hyperbolic systems is well known. However, in [4], Littman and Taylor established similar properties for very different classes of equations, i.e., the Schrödinger equation with nonsmooth potentials, and that these smoothing properties can be applied in the method just described.

In our problem, equations exhibiting smoothing properties result in solutions belonging to the class Gevrey-\(\delta\), where this Gevrey class is defined with respect to the time variable \(t\). We formulate this more precisely below.

Definition A function \(f(x, t)\) belongs to the class Gevrey-\(\delta\) with respect to \(t\) and uniformly for \((x, t)\) in the compact set \(K\) if for all \((x, t) \in K\) and for all \(\theta > 0\), there exists a constant \(C_{K, \theta} > 0\) such that

\[
|\frac{\partial^n}{\partial t^n} f(x, t)| \leq C_{K, \theta} \theta^n (n!)^\delta.
\]

This material is based upon work partially supported under a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship.
With this definition in mind, we state Littman and Taylor’s result on local smoothing properties for a Schrödinger equation with potential in \mathbb{R}^n.

Theorem 1.1 (See [4].) Consider the initial value problem in \mathbb{R}^n:

$$
\begin{align*}
 i\frac{\partial u}{\partial t} + \Delta u - V(x)u &= 0, & x \in \mathbb{R}^n, & t > 0 \\
 u(x, 0) &= \phi(x)
\end{align*}
$$

Assume that V is bounded, measurable and has compact support and that $\phi(x) \in L^2(\mathbb{R}^n)$ and has compact support. Then the solution $u(x, t)$ is of class Gevrey-2 with respect to t uniformly in compact sets of $\mathbb{R}^n \times \{t > 0\}$.

Extensions of the above result to the case of nonconstant coefficients in the principal part of the operator are of interest both mathematically and physically. On the other hand, techniques used in the proof of Theorem 1.1 take advantage of the structure of the Green’s function associated with the problem, which will no longer be possible in the more general case. We note that the proof in [4] was only given for $n = 3$ and that Taylor has extended the result to general n.

To begin our study of Schrödinger equations with nonconstant coefficients in the principal part of the differential operator, we consider the following system.

$$
\begin{align*}
 i\frac{\partial u}{\partial t} + Au &= 0, & x \in \mathbb{R}^n, & t > 0, \\
 u(x, 0) &= \phi(x),
\end{align*}
$$

(1.1)

where

$$
A \equiv \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} a_{ij}(x) \frac{\partial}{\partial x_j} c(x).
$$

(1.2)

Note that, by definition, any potential is included in the operator A.

The question we wish to address is that of boundary controllability of the associated system,

$$
\begin{align*}
 i\frac{\partial u}{\partial t} + Au &= 0, & x \in \Omega, & t > 0, \\
 u(x, 0) &= g(x) \\
 u &= h(x, t) & x \in \partial\Omega, & t > 0,
\end{align*}
$$

(1.3)

where $\Omega \subset \mathbb{R}^n$ is a bounded domain. Given initial data in some appropriate space (e.g. $L^2(\mathbb{R}^n)$), can we find a function $h(x, t)$ such that for some $T > 0$, $u(x, t) = 0$ for all $t > T$?

Although various systems of equations have been considered and a variety of techniques developed in the context of boundary control, little has been done specifically for the Schrödinger equation. Hence, the following references are of particular interest. In [2], Lasiecka and Triggiani use the method of multipliers to obtain boundary controllability for the Schrödinger equation with constant coefficients. In [3], Lebeau modifies the results of Bardos, Lebeau and Rauch (see [1]) on exact controllability for hyperbolic equations to apply their techniques to Schrödinger type equations. However, in the statement of his results, Lebeau assumes constant coefficients (i.e., A replaced by Δ) and an analytic boundary. Although his work appears to extend to the case of nonconstant coefficients, our goal is to avoid the technical difficulties of applying his techniques to (1.3).

To instead take advantage of Littman and Taylor’s technique, we prove the following regularity result.
Theorem 1.2 Assume the coefficients of \(A \) are real and satisfy the following conditions:

\[
\begin{align*}
&i.) \quad a_{ij}(x) = a_{ji}(x) \quad \text{for all } i, j, \\
&ii.) \quad \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \geq \alpha |\xi|^2 \quad \text{for some } \alpha > 0, \\
&iii.) \quad a_{ij}(x) - \delta_{ij}, c(x) \in C_0^\infty(\mathbb{R}^n),
\end{align*}
\]

(1.4)

where \(\delta_{ij} \) is the Kronecker delta. Without loss of generality, we assume that the support of these functions is contained in the ball \(B_a \equiv \{ x : |x| < a \} \).

Assume \(\phi(x) \in L^2(\mathbb{R}^n) \) and has compact support. Then the solution \(u(x,t) \) to the initial value problem (1.1) is of class Gevrey-2 with respect to \(t \) uniformly in compact sets of \(\mathbb{R}^n \times \{ t > 0 \} \).

For the convenience of the reader, in the proof of this theorem, we reproduce some of the arguments and computations from [4]. Extensions to nonsmooth coefficients will appear elsewhere.

It should be noted that using Littman and Taylor’s technique to prove exact controllability results in the control function belonging to \(C^\infty(\partial \Omega) \) for \(t > 0 \). As far as Sobolev spaces are concerned, the results are the same as in [4], i.e., for initial data in \(L^2(\Omega) \), the Dirichlet controls will also be in \(H^1(\partial \Omega) \), indeed, somewhat better.

2 Gevrey Regularity of the Solution: Proof of Theorem 1.2

Step 1: Laplace Transform. Assuming the coefficients satisfy (1.4), the operator \(A \) is strongly elliptic and self-adjoint. Additionally, we can apply semigroup theory (see [5]) to find that \(iA \) is the infinitesimal generator of a strongly continuous group of unitary operators. Taking the Laplace transform of (1.1) with respect to the time variable, \(t \), we find

\[
i\lambda w + Aw = i\phi
\]

(2.1)

or

\[
k^2 w + Aw = i\phi,
\]

(2.2)

where \(\lambda = -ik^2 \). Thus, the solution operator mapping \(\phi \to w \) is the resolvent operator corresponding to \(iA \), where the resolvent is defined to be

\[
R(\lambda; iA) \equiv (\lambda - iA)^{-1}.
\]

(2.3)

Since \(iA \) generates a group of unitary operators, (2.1) is solvable for any \(\phi \in L^2(\mathbb{R}^n) \) for all \(\lambda \) such that \(\Re \lambda > 0 \) and the resulting solution, \(w \), lies in \(H^2(\mathbb{R}^n) \).

Step 2: Estimates for the Modified Resolvent. To prove the desired estimates for the solution which are needed to show that it is of class Gevrey-2 with respect to time, we must extend the region where (2.1) is solvable, i.e., the region where the resolvent exists and is bounded. However, this cannot be done directly. Instead, we consider a “modified” resolvent operator,

\[
R_x(\lambda; iA) \equiv \chi(x)R(\lambda; iA)\chi(x),
\]

(2.4)

where \(\chi(x) \in C_0^\infty(\mathbb{R}^n) \) and \(\chi(x) \equiv 1 \) on \(\text{supp}\phi \).

Recalling the change of variable, \(\lambda = -ik^2 \),

\[
\begin{align*}
\lambda - iA &= -i(k^2 + A) \\
\Rightarrow R(\lambda; iA) &= i(k^2 + A)^{-1}.
\end{align*}
\]

(2.5)
Hence, we will consider the operator,

$$\tilde{R}(k^2; \mathcal{A}) \equiv \chi(x)(k^2 + \mathcal{A})^{-1}\chi(x). \quad (2.6)$$

Notice that the interior term differs from the standard definition of a resolvent operator by only a change of sign. For this operator, Vainberg has shown ([6], Theorem 3) that if

$$U_{\alpha, \beta} \equiv \{ k : \alpha|k|^{-1}\exp\{\beta|\Im mk|\} \leq \frac{1}{2}\}, \quad (2.7)$$

then $\tilde{R}(k^2; \mathcal{A})$ has no poles in $U_{\alpha, \beta}$ and

$$\|\tilde{R}(k^2; \mathcal{A})\| \leq c_1|k|^{-1}\exp\{c_2|\Im mk|\}, \quad k \in U_{\alpha, \beta}. \quad (2.8)$$

In particular, this implies

$$\|\tilde{R}(k^2; \mathcal{A})\| \leq C, \quad k \in U_{\alpha, \beta}. \quad (2.9)$$

Step 3: Transformation from k to λ. Because the results of Step 2 are in terms of the variable k, we need to convert the information derived from Vainberg’s work into estimates in terms of λ to obtain corresponding results for $R_\chi(\lambda; i\mathcal{A})$. We begin by transforming the region in which estimate (2.9) is valid. Let

$$S_{a, b, R} \equiv \{ k : |k| > R, \Im mk \geq -a \ln |k| + b \}. \quad (2.10)$$

By appropriately choosing a, b, and R, it is a straightforward calculation to show that $S_{a, b, R} \subset U_{\alpha, \beta}$. Restricting the region further, if

$$T_{a', b'} \equiv \{ k : \Im mk \geq -b', |k| \geq a' \}, \quad (2.11)$$

we can choose a' and b' so that $T_{a', b'} \subset S_{a, b, R}$.

Since the transformation $\lambda = -ik^2$ is two to one on parts of the set $T_{a', b'}$, we consider the restriction of this set,

$$\chi_{a, b} \equiv T_{a, b} \cap \{ k : -\frac{\pi}{4} < \arg k < \frac{3\pi}{4} \}. \quad (2.12)$$

We now apply the following lemma.

Lemma 2.1 ([4], Lemma 3) *For each $a > 0$ there exists a constant $\rho > 0$ such that the set

$$\Sigma_{b, \rho} \equiv \{ \lambda : \Re \lambda \geq -b|\Im \lambda|^{1/2} + \rho \}$$

is contained in $\chi_{a, b}$.*

Since the estimate (2.9) is uniform in k, it is also valid for all $\lambda \in \Sigma_{b, \rho}$. Therefore,

$$\|R_\chi(\lambda; i\mathcal{A})\| \leq C \quad \forall \lambda \in \Sigma_{b, \rho}. \quad (2.13)$$

Step 4: Estimates for the Solution. Define

$$J(t) \equiv \frac{1}{2\pi i} \int_{\mu-i\infty}^{\mu+i\infty} \frac{\tilde{R}(\lambda; i\mathcal{A})}{\lambda^2} e^{\lambda t} d\lambda, \quad (2.14)$$

where μ is chosen sufficiently large to guarantee that the half-plane $\Re \lambda \geq \mu$ is contained in the domain of analyticity of J.

Theorem 2.1 Let K be any compact subset of \mathbb{R}^n. Then the mapping $t \to J(t)$ is of class Gevrey-2 with respect to time.

Proof: Step 1: To derive estimates for $J(t)$, we begin by proving that the path of integration can be shifted to the contour Γ, where $\Gamma \equiv \partial \Sigma_{\lambda, \rho}$ with orientation in the direction of increasing $\Im \lambda$.

Consider the contour $\Gamma_R \equiv \{ \lambda = s + iR : a - b|R|^{1/2} \leq s \leq \mu \}$ with orientation in the direction of increasing $\Re \lambda$. Then
\[
| \int_{\Gamma_R} \frac{\hat{R}(\lambda; iA)}{\lambda^2} e^{\lambda t} d\lambda | \leq \frac{1}{|R|^2} \int_{|a-b|R|^{1/2}}^\mu C e^{\xi t} d\xi
\leq \frac{C}{|R|^2} \frac{e^{\xi t}}{\xi} \to 0 \quad \text{as} \quad |R| \to \infty \quad \forall t > 0. \tag{2.15}
\]

Thus, the path of integration can be shifted to the contour Γ.

Step 2: Estimates for Derivatives. As in [4], we parametrize the upper branch of the contour (i.e., $\Im \lambda \geq 0$) in the following way:
\[
\lambda = -\mu + i\left(\frac{\rho + \mu}{b}\right)^2. \tag{2.16}
\]

Then, since the integral is infinitely differentiable, derivatives of $J(t)$ may be bounded in the following way, using (2.9) and the technique of the proof of Theorem 4 in [4]:
\[
| \frac{\partial^n}{\partial t^n} \int_\Gamma \frac{\hat{R}(\lambda; iA)}{\lambda^2} e^{\lambda t} d\lambda | = | \int_\Gamma \lambda^{n-2} \hat{R}(\lambda; iA) e^{\lambda t} d\lambda |
\leq C \int_0^\infty (\mu^2 + (\frac{\rho + \mu}{b})^4)^{(n-2)/2} (1 + 4(\frac{\rho + \mu}{b})^2)^{1/2} e^{-\mu t} d\mu
\leq C 2^{(n+1)/2} \int_0^\infty (\frac{\rho + \mu}{b})^{2n-3} e^{-\mu t} d\mu \quad \text{since} \quad \rho > b^2
\leq C b e^\rho t 2(n+1)/2 \int_0^\infty (\frac{\rho + \mu}{b})^{2n-3} e^{-\mu t} d\mu
= 2C b e^\rho t (2n - 3)! \left(\frac{\rho}{b}\right)^{(n-1)/2}. \tag{2.17}
\]

If t is in any compact subset of \mathbb{R}^+ and $\theta > 0$, we may choose b so that this expression is bounded by $c\theta^n (n!)^2$, where c is constant. \square

Theorem 2.2 Assume the coefficients of A satisfy (1.4). Let K be any compact subset of $\text{supp} \phi$. If $\phi(x) \in L^2(\mathbb{R}^n)$ has compact support, then the mapping $t \to u(\cdot, t)$ is of class Gevrey-2 with respect to time.

Proof: By a standard semigroup result (see [5], Corollary 1.7.6),
\[
\int_0^t (t-s)S(s)\phi ds = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \frac{R(\lambda; iA)}{\lambda^2} \phi e^{\lambda t} d\lambda, \tag{2.18}
\]
where $R(\lambda; iA)$ is the resolvent of the infinitesimal generator of our group $S(t)$, and β is assumed to be sufficiently large. However, since $\chi(x) \equiv 1$ on $\text{supp} \phi$, the above equation implies
\[
\chi \int_0^t (t-s)S(s)\chi \phi ds = J(t)\phi. \tag{2.19}
\]
Differentiating twice with respect to t then gives
\[
\chi(x)u(x, t) = \frac{\partial^2}{\partial t^2} J(t)\phi. \tag{2.20}
\]
Hence, since $J(t)$ is of class Gevrey-2 and differentiation with respect to t does not affect Gevrey regularity, $\chi(x)u(x, t)$ is also of class Gevrey-2 with respect to time. \square
References

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1189</td>
<td>Frank H. Shaw & Charles J. Geyer</td>
<td>Constrained covariance component models</td>
</tr>
<tr>
<td>1190</td>
<td>Tomasz Luczaka</td>
<td>A greedy algorithm estimating the height of random trees</td>
</tr>
<tr>
<td>1191</td>
<td>Timo Seppäläinen</td>
<td>Maximum entropy principles for disordered spins</td>
</tr>
<tr>
<td>1192</td>
<td>Yuandan Lin, Eduardo D. Sontag &</td>
<td>Recent results on Lyapunov-theoretic techniques for nonlinear</td>
</tr>
<tr>
<td></td>
<td>Yuan Wang</td>
<td>stability</td>
</tr>
<tr>
<td>1193</td>
<td>Svante Janson</td>
<td>Random regular graphs: Asymptotic distributions and contiguity</td>
</tr>
<tr>
<td>1194</td>
<td>Rachid Ababou</td>
<td>Random porous media flow on large 3-D grids: Numerics, performance,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& application to homogenization</td>
</tr>
<tr>
<td>1195</td>
<td>Moshe Fridman</td>
<td>Hidden Markov model regression</td>
</tr>
<tr>
<td>1196</td>
<td>Petr Klouček, Bo Li & Mitchell Luskin</td>
<td>Analysis of a class of nonconforming finite elements for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystalline microstructures</td>
</tr>
<tr>
<td>1197</td>
<td>Steven P. Lalley</td>
<td>Random series in inverse Pisot powers</td>
</tr>
<tr>
<td>1198</td>
<td>Rudy Yaksick</td>
<td>Expected optimal exercise time of a perpetual American option: A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>closed-form solution</td>
</tr>
<tr>
<td>1199</td>
<td>Rudy Yaksick</td>
<td>Valuation of an American put catastrophe insurance futures option: A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Martingale approach</td>
</tr>
<tr>
<td>1200</td>
<td>János Pach, Farhad Shahrokhia &</td>
<td>Application of the crossing number</td>
</tr>
<tr>
<td></td>
<td>Mario Szegedy</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>Avner Friedman & Chaocheng Huang</td>
<td>Averaged motion of charged particles under their self-induced electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>field</td>
</tr>
<tr>
<td>1202</td>
<td>Joel Spencer</td>
<td>The Erdős-Hanani conjecture via Talagrand’s inequality</td>
</tr>
<tr>
<td>1203</td>
<td>Zhangxin Chen</td>
<td>Superconvergence results for Galerkin methods for wave propagation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in various porous media</td>
</tr>
<tr>
<td>1204</td>
<td>Russell Lyons, Robin Pemantle &</td>
<td>Yuval Peres. When does a branching process grow like its mean?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conceptual proofs of $L \log L$ criteria</td>
</tr>
<tr>
<td>1205</td>
<td>Robin Pemantle</td>
<td>Maximum variation of total risk</td>
</tr>
<tr>
<td>1206</td>
<td>Robin Pemantle & Yuval Peres</td>
<td>Galton-Watson trees with the same mean have the same polar sets</td>
</tr>
<tr>
<td>1207</td>
<td>Robin Pemantle</td>
<td>A shuffle that mixes sets of any fixed size much faster than it mixes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the whole deck</td>
</tr>
<tr>
<td>1208</td>
<td>Itai Benjamini, Robin Pemantle &</td>
<td>Yuval Peres. Martin capacity for Markov chains and random walks in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>varying dimensions</td>
</tr>
<tr>
<td>1209</td>
<td>Wlodzimierz Bryc & Amir Dembo</td>
<td>On large deviations of empirical measures for stationary Gaussian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processes</td>
</tr>
<tr>
<td>1210</td>
<td>Martin Hildebrand</td>
<td>Some random processes related to affine random walks</td>
</tr>
<tr>
<td>1211</td>
<td>Alexander E. Mazel & Yuri M. Suhov</td>
<td>Ground states of a Boson quantum lattice model</td>
</tr>
<tr>
<td>1212</td>
<td>Roger L. Fosdick & Darren E. Mason</td>
<td>Single phase energy minimizers for materials with nonlocal spatial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dependence</td>
</tr>
<tr>
<td>1213</td>
<td>Bruce Hajek</td>
<td>Load balancing in infinite networks</td>
</tr>
<tr>
<td>1214</td>
<td>Petr Klouček</td>
<td>The transonic flow problems stability analysis and numerical results</td>
</tr>
<tr>
<td>1215</td>
<td>Petr Klouček</td>
<td>On the existence of the entropic solutions for the transonic flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>problem</td>
</tr>
<tr>
<td>1216</td>
<td>David A. Schmidt & Chjan C. Lim</td>
<td>Full sign-invertibility and symplectic matrices</td>
</tr>
<tr>
<td>1217</td>
<td>Piermarco Cannarsa & Maria</td>
<td>Infinite dimensional Hamilton-Jacobi equations and Dirichlet</td>
</tr>
<tr>
<td></td>
<td>Elisabetta Tessitore</td>
<td>boundary control problems of parabolic type</td>
</tr>
<tr>
<td>1218</td>
<td>Zhangxin Chen</td>
<td>Multigrid algorithms for mixed methods for second order elliptic</td>
</tr>
<tr>
<td>1219</td>
<td>Zhangxin Chen</td>
<td>Expanded mixed finite element methods for linear second order elliptic</td>
</tr>
<tr>
<td>1220</td>
<td>Gang Bao</td>
<td>A note on the uniqueness for an inverse diffraction problem</td>
</tr>
<tr>
<td>1221</td>
<td>Moshe Fridman</td>
<td>A two state capital asset pricing model</td>
</tr>
<tr>
<td>1222</td>
<td>Paolo Baldi</td>
<td>Exact asymptotics for the probability of exit from a domain and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>applications to simulation</td>
</tr>
<tr>
<td>1223</td>
<td>Carl Dou & Martin Hildebrand</td>
<td>Enumeration and random random walks on finite groups</td>
</tr>
<tr>
<td>1224</td>
<td>Jaksa Cvitanic & Ioannis</td>
<td>On portfolio optimization under “drawdown” constraints</td>
</tr>
<tr>
<td></td>
<td>Karatzas</td>
<td></td>
</tr>
<tr>
<td>1225</td>
<td>Avner Friedman & Yong Liu</td>
<td>A free boundary problem arising in magnetohydrodynamic system</td>
</tr>
<tr>
<td>1226</td>
<td>Dominick Welsh</td>
<td>Randomised approximation schemes for Tutte-Gröthendieck invariants</td>
</tr>
<tr>
<td>1227</td>
<td>Zhangxin Chen, Bernardo Cockburn,</td>
<td>Quantum hydrodynamic simulation of hysteresis in the resonant</td>
</tr>
<tr>
<td></td>
<td>Carl L. Gardner, & Joseph W. Jerome</td>
<td>Tunneling diode</td>
</tr>
<tr>
<td>1228</td>
<td>E.G. Kalnins, G.C. Williams, &</td>
<td>Intrinsic characterisation of the separation constant for spin</td>
</tr>
<tr>
<td></td>
<td>Willard Miller, Jr.</td>
<td>one and gravitational perturbations in Kerr geometry</td>
</tr>
<tr>
<td>1229</td>
<td>Zhangxin Chen</td>
<td>Large-scale averaging analysis of multiphase flow in fractured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reservoirs</td>
</tr>
<tr>
<td>1230</td>
<td>Bruce Hajek & Babu Narayanan</td>
<td>Multigraphs with the most edge covers</td>
</tr>
<tr>
<td>1231</td>
<td>K.B. Athreya</td>
<td>Entropy maximization</td>
</tr>
<tr>
<td>1232</td>
<td>F.I. Karpelevich & Yu.M. Suhov</td>
<td>Functional equations in the problem of boundedness of stochastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>branching dynamics</td>
</tr>
<tr>
<td>1233</td>
<td>E. Dibenedetto & V. Vespri</td>
<td>On the singular equation $\beta(u)_t = \Delta u$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Kolmogorov-Petrovskii-Piskunov) equations</td>
</tr>
<tr>
<td>1235</td>
<td>M. Hildebrand</td>
<td>Random walks on random regular simple graphs</td>
</tr>
</tbody>
</table>
W.S. Don & A. Solomonoff, Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique
D. Gurarie, Symmetries and conservation laws of two-dimensional hydrodynamics
Z. Chen, Finite element methods for the black oil model in petroleum reservoirs
G. Bao & A. Friedman, Inverse problems for scattering by periodic structure
G. Bao, Some inverse problems in partial differential equations
G. Bao, Diffractive optics in periodic structures: The TM polarization
C.C. Lim & D.A. Schmidt, On nonev digraphs and symplectic pairs
H.M. Soner, S.E. Shreve & J. Cvitanić, There is no nontrivial hedging portfolio for option pricing with transaction costs
D.L. Russell & B-Yu Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation
B. Morton, D. Enns & B-Yu Zhang, Stability of dynamic inversion control laws applied to nonlinear aircraft pitch-axis models
S. Hansen & G. Weiss, New results on the operator Carleson measure criterion
V.A. Malyshev & F.M. Spieksma, Intrinsic convergence rate of countable Markov chains
G. Bao, D.C. Dobson & J.A. Cox, Mathematical studies in rigorous grating theory
G. Bao & W.W. Symes, On the sensitivity of solutions of hyperbolic equations to the coefficients
D.A. Huntley & S.H. Davis, Oscillatory and cellular mode coupling in rapid directional solidification
M.J. Donahue, L. Gurvits, C. Darken & E. Sontag, Rates of convex approximation in non-Hilbert spaces
A. Friedman & B. Hu, A Stefan problem for multi-dimensional reaction diffusion systems
J.L. Bona & B-Yu Zhang, The initial-value problem for the forced Korteweg-de Vries equation
A. Friedman & R. Gulliver, Organizers, Mathematical modeling for instructors
S. Kichenassamy, The prolongation formula for tensor fields
S. Kichenassamy, Fuchsian equations in Sobolev spaces and blow-up
H.S. Dumas, L. Dumas, & F. Golse, On the mean free path for a periodic array of spherical obstacles
C. Liu, Global estimates for solutions of partial differential equations
C. Liu, Exponentially growing solutions for inverse problems in PDE
Mary Ann Horn & I. Lasiecka, Nonlinear boundary stabilization of parallelly connected Kirchhoff plates
B. Cockburn & H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws
B. Cockburn & P-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach
R. Spigler & M. Vianello, Convergence analysis of the semi-implicit euler method for abstract evolution equations
R. Spigler & M. Vianello, WKB-type approximation for second-order differential equations in C*-algebras
M. Menshikov & R.J. Williams, Passage-time moments for continuous non-negative stochastic processes and applications
C. Mazza, On the storage capacity of nonlinear neural networks
Z. Chen, R.E. Ewing & R. Lazarov, Domain decomposition algorithms for mixed methods for second order elliptic problems
Z. Chen, M. Espedal & R.E. Ewing, Finite element analysis of multiphase flow in groundwater hydrology
Z. Chen, R.E. Ewing, Y.A. Kuznetsov, R.D. Lazarov & S. Maliassov, Multilevel preconditioners for mixed methods for second order elliptic problems
S. Kichenassamy & G.K. Srinivasan, The structure of WTC expansions and applications
A. Zinger, Positiveness of Wigner quasi-probability density and characterization of Gaussian distribution
V. Malkin & G. Papanicolaou, On self-focusing of short laser pulses
J.N. Kutz & W.L. Kath, Stability of pulses in nonlinear optical fibers using phase-sensitive amplifiers
S.K. Patch, Recursive recovery of a family of Markov transition probabilities from boundary value data
C. Liu, The completeness of plane waves
Z. Chen & R.E. Ewing, Stability and convergence of a finite element method for reactive transport in ground water
Z. Chen & Do Y. Kwak, The analysis of multigrid algorithms for nonconforming and mixed methods for second order elliptic problems
Z. Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems II
M.A. Horn & W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part
S. Maliassov, Substructuring preconditioning for finite element approximations of second order elliptic problems. II. Mixed method for an elliptic operator with scalar tensor
V. Jakić & C.-A. Pillet, On model for quantum friction II. Fermi’s golden rule and dynamics at positive temperatures
V. M. Malkin, Kolmogorov and nonstationary spectra of optical turbulence