A NEW SPLITTING METHOD FOR SCALER
CONSERVATION LAWS WITH STIFF SOURCE TERMS

By

Emad A. Fatemi

IMA Preprint Series # 755
December 1990
A New Splitting Method for Scalar Conservation Laws with Stiff Source Terms

Emad A. Fatemi *

December 6, 1990

Abstract

In this paper we present a new splitting method for numerical integration of conservation laws with stiff source terms. We show that splitting could be interpreted as integrating the source terms along characteristic. We present a splitting scheme with arbitrary high order of accuracy based on piecewise linear approximation of the characteristic lines.

1 Wrong Wave Speed

In this paper we study the problems associated with numerical schemes for scalar conservation laws with source terms:

\[u_t + f(u)_x = u_t + a(u)u_x = g(u) \] \hspace{1cm} (1)

In particular we are interested in problems in which the forcing function \(g(u) \) has a faster scale than the convection. For example consider

\[u_t + u_x = cu \] \hspace{1cm} (2)

Where the \(c \) is much larger than one.

*Institute for Mathematics and its Applications, Minneapolis, Minnesota 55455
To illustrate a point let us discretize this equation in the following manner:

\[u_j^{n+1} = u_j^n - \frac{\Delta t}{\Delta x} (u_j^n - u_{j-1}^n) + c\Delta tu_j^n \]

Where \(u_j^n = u(x_j, t_n) = u(\Delta x j, \Delta tn) \).

The scheme for the convection is the standard first order upwind and the source term is represented in a natural way. But we wish to emphasize that for large values of \(c \) this is the wrong scheme. Since this is a linear equation we need to consider only the the initial condition, \(u_0^0 = 1 \) and \(u_j^0 = 0 \) for \(j \) different from zero. If we denote the operator \(Eu_j = u_{j-1} \), then we have an explicit formula for \(u_j^n \).

\[u_j^n = (1 - \frac{\Delta t}{\Delta x} + c\Delta t + \frac{\Delta t}{\Delta x} E)^n u_j^0 \]

Now if we have \(\frac{\Delta t}{\Delta x} = 1 \) then we have

\[u_j^n = (c\Delta t + E)^n u_j^0 \]

It is enough to consider one iteration,

\[u_j^1 = (c\Delta t + E)u_j^0 = c\Delta tu_j^0 + u_{j-1}^0 \]

\[u_0^1 = c\Delta t \quad u_1^1 = 1 \]

which is the wrong solution. The problem comes from the fact that we are not integrating the source along the characteristics. Figure 1 shows the calculation done for \(c = 10 \) and periodic boundary conditions. The solid line is the initial condition and the broken line is the calculated solution at \(t = 1 \) multiplied by \(e^{-10} \). Note how the solution lags behind.

One can remedy the above scheme by using

\[u_j^{n+1} = (u_j^n - \frac{\Delta t}{\Delta x} (u_j^n - u_{j-1}^n))(1 + c\Delta t) \]

Then we get the following formula for \(u_j^n \),

\[u_j^n = (1 + c\Delta t)^n (1 - \frac{\Delta t}{\Delta x} + \frac{\Delta t}{\Delta x} E)^n u_j^0 \]
For $\frac{\Delta t}{\Delta x} = 1$ we get,

$$u^n_j = (c\Delta t + 1)^n u^0_{j-n}$$

which is the right solution.

We wish to extend this trick to general cases. Let us observe that we can view the above scheme as equivalent to solving,

$$u_t + u_x = 0 \quad 0 \leq t \leq \Delta t$$

and then solving

$$u_t = cu \quad 0 \leq t \leq \Delta t$$

This is also equivalent to tracking the characteristics back and using the value of u at time $t = 0$ as the initial value for the equation $u_t = cu$.

First let us review the solution of the equation

$$u_t + a(u)u_x = u_t + f(u)_x = g(u) \quad u(0, x) = q(x) \quad (3)$$

The above is equivalent to solving [1]

$$\frac{d}{dt} x = a(u) \quad x(0) = x_0 \quad \frac{d}{dt} u = g(u) \quad u(0) = q(x_0) \quad (4)$$

Let the solution of the second equation be given as the evolution operator, $S(t)$, then

$$u(t) = S(t)q(x_0)$$

Then define

$$F(x, x_0, t) = x - x_0 - \int_0^t a(S(\tau)q(x_0))d\tau$$

Then we have

$$\frac{\partial F}{\partial x_0} = -1 - \int_0^t a'(S(\tau)q(x_0))\frac{d}{dx_0}S(\tau)q(x_0)d\tau$$

Now if the $\frac{d}{dx_0}(S(\tau)q(x_0))$ is bounded and t is small, then by implicit function theorem we can solve for x_0 in terms of x, t. If we let $x_0 = H(x, t)$, then we have $u(x, t) = S(t)q(x_0) = S(t)q(H(x, t))$.

3
2 Splitting Sources

In this section we present the general splitting scheme for equations of type,

\[u_t + a(u)u_x = u_t + f(u)_x = g(u) \quad u(0, x) = q(x), \quad 0 \leq t \leq \Delta t \]

(5)

In the last section we reviewed how the above equation is equivalent to the following system and showed existence of solution for small time.

\[\frac{d}{dt}x = a(u) \quad x(0) = x_0, \quad \frac{d}{dt}u = g(u) \quad u(0) = q(x_0), \quad 0 \leq t \leq \Delta t \]

(6)

Now let us approximate this system of ODE and then use the results for the original equation.

\[x = x_0 + \int_0^{\Delta t} a(u(t))dt \quad u(t) = S(\Delta t)h(x_0) \]

(7)

We solve it via

\[x = x_0 + \Delta t \sum_{n=1}^{N} \beta_n a(S(\gamma_n \Delta t)q(x_0)) \]

when

\[\sum \beta_n = 1, \gamma_n = \sum_{j=1}^{n} \alpha_j \]

Now we take \(\beta_n \) and \(\alpha_j \) such that the first formula is an approximation of the integral to any order. For example one can use Gaussian formulae. [2]

Then this is equivalent to solving these equations in this order,

\[u_t = g(u) \quad 0 \leq t \leq \alpha_1 \Delta t \]

\[u_t + a(u)u_x = 0 \quad 0 \leq t \leq \beta_1 \Delta t \]

\[u_t = g(u) \quad 0 \leq t \leq \alpha_2 \Delta t \]

\[u_t + a(u)u_x = 0 \quad 0 \leq t \leq \beta_2 \Delta t \]

\[u_t = g(u) \quad 0 \leq t \leq \alpha_j \Delta t \]

\[u_t + a(u)u_x = 0 \quad 0 \leq t \leq \beta_n \Delta t \]

Using the solution of each stage as the initial data for the next stage. Next we prove that in this case the error is of order \(\Delta t^{2N} \).
Theorem 1 Let $u(x,t)$ be the exact solution and $\bar{u}(x,t)$ the approximate solution obtained by splitting, then we have,

$$|u(x,t) - \bar{u}(x,t)| \leq Ct^{2N}$$

Let us define,

$$x = H(x_0,t) = x_0 + \int_0^t a(u(\tau))d\tau$$

$$\bar{x} = h(x_0,t) = x_0 + t \sum_{n=1}^N \beta_n a(S(\gamma_n t)q(x_0))$$

Then we have

$$x_0 = H^{-1}(x,t), \bar{x}_0 = h^{-1}(x,t)$$

By using a quadrature rule we can have,

$$|H(x_0,t) - h(x_0,t)| \leq C_a t^{2N}$$

Where C_a is a constant depending on $a(S(t)h(x_0))$, then we have

$$u(x,t) = S(t)q(x_0) = S(t)q(H^{-1}(x,t))$$

$$\bar{u}(x,t) = S(t)q(\bar{x}_0) = S(t)q(h^{-1}(x,t))$$

Assume that we have constants, $|S|$ and $|q|$, such that

$$|S(t)x - S(t)y| \leq |S||x - y|$$

$$|q(x) - q(y)| \leq |q||x - y|$$

Then we have,

$$|u(x,t) - \bar{u}(x,t)| = |S(t)q(x_0) - S(t)q(\bar{x}_0)| \leq |S||q||x_0 - \bar{x}_0|$$

Now we have,

$$|x_0 - \bar{x}_0| = |h^{-1}(x) - H^{-1}(x)| = |h^{-1}(x) - h(h^{-1}(x))| \leq C_{h^{-1}}|H(H^{-1}(x)) - h(H^{-1}(x))| \leq C_{h^{-1}}C_a t^{2N}$$

$$|u(x,t) - \bar{u}(x,t)| \leq |S||q||C_{h^{-1}}C_a t^{2N}$$

which proves the theorem. We wish to emphasize that this proof is true in the region that the solution is smooth. When shocks develop everything breaks down. In particular H^{-1} fails to be defined. Also if we have constant coefficient linear equation, then $a(u)$ is a constant and C_a is zero which proves the following corollary.
Corollary 1 For linear equations with constant coefficient, splitting is exact.

Let us look at two examples, first consider one point Gaussian. We have $\beta_1 = 1$ and $\gamma_1 = .5$. Then the scheme is,

$$u_t = g(u) \quad 0 \leq t \leq .5\Delta t$$

$$u_t + a(u)u_x = 0 \quad 0 \leq t \leq \Delta t$$

$$u_t = g(u) \quad 0 \leq t \leq .5\Delta t$$

For two point Gaussian we have, $\beta_1 = .5$ and $\beta_2 = .5$ and $\gamma_1 = .21132487$ and $\gamma_2 = .78867513$ Which translates into the following scheme:

$$u_t = g(u) \quad 0 \leq t \leq \gamma_1\Delta t$$

$$u_t + a(u)u_x = 0 \quad 0 \leq t \leq .5\Delta t$$

$$u_t = g(u) \quad \gamma_1\Delta t \leq t \leq \gamma_2\Delta t$$

$$u_t + a(u)u_x = 0 \quad .5\Delta t \leq t \leq \Delta t$$

$$u_t = g(u) \quad \gamma_2\Delta t \leq t \leq \Delta t$$

References

Figure 1: Stiff Source
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>663</td>
<td>Emanuel Parzen</td>
<td>Time series, statistics, and information</td>
</tr>
<tr>
<td>664</td>
<td>Andrew Majda and Kevin Lamb</td>
<td>Simplified equations for low Mach number combustion with strong heat release</td>
</tr>
<tr>
<td>665</td>
<td>Ju. S. Il'yashenko</td>
<td>Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation</td>
</tr>
<tr>
<td>666</td>
<td>James F. Reineck</td>
<td>Continuation to gradient flows</td>
</tr>
<tr>
<td>667</td>
<td>Mohamed Sami Elbialy</td>
<td>Simultaneous binary collisions in the collinear N-body problem</td>
</tr>
<tr>
<td>668</td>
<td>John A. Jacquez and Carl P. Simon</td>
<td>Aids: The epidemiological significance of two different mean rates of partner-change</td>
</tr>
<tr>
<td>669</td>
<td>Carl P. Simon and John A. Jacquez</td>
<td>Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations</td>
</tr>
<tr>
<td>670</td>
<td>Matthew Stafford</td>
<td>Markov partitions for expanding maps of the circle</td>
</tr>
<tr>
<td>671</td>
<td>Ciprian Foias and Edriss S. Titi</td>
<td>Determining nodes, finite difference schemes and inertial manifolds</td>
</tr>
<tr>
<td>672</td>
<td>M.W. Smiley</td>
<td>Global attractors and approximate inertial manifolds for abstract dissipative equations</td>
</tr>
<tr>
<td>673</td>
<td>M.W. Smiley</td>
<td>On the existence of smooth breathers for nonlinear wave equations</td>
</tr>
<tr>
<td>674</td>
<td>Hitay Özbay and Janos Turi</td>
<td>Robust stabilization of systems governed by singular integro-differential equations</td>
</tr>
<tr>
<td>675</td>
<td>Mary Silber and Edgar Knobloch</td>
<td>Hopf bifurcation on a square lattice</td>
</tr>
<tr>
<td>676</td>
<td>Christophe Golé</td>
<td>Ghost circles for twist maps</td>
</tr>
<tr>
<td>677</td>
<td>Christophe Golé</td>
<td>Ghost tori for monotone maps</td>
</tr>
<tr>
<td>678</td>
<td>Christophe Golé</td>
<td>Monotone maps of $T^n \times R^n$ and their periodic orbits</td>
</tr>
<tr>
<td>679</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>Hypergeometric expansions of Heun polynomials</td>
</tr>
<tr>
<td>680</td>
<td>Victor A. Pliss and George R. Sell</td>
<td>Perturbations of attractors of differential equations</td>
</tr>
<tr>
<td>681</td>
<td>Avner Friedman and Peter Knabner</td>
<td>A transport model with micro- and macro-structure</td>
</tr>
<tr>
<td>682</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>A note on group contractions and radar ambiguity functions</td>
</tr>
<tr>
<td>683</td>
<td>George R. Sell</td>
<td>References on dynamical systems</td>
</tr>
<tr>
<td>684</td>
<td>Shui-Nee Chow, Kening Lu and George R. Sell</td>
<td>Smoothness of inertial manifolds</td>
</tr>
<tr>
<td>685</td>
<td>Shui-Nee Chow, Xiao-Biao Lin and Kening Lu</td>
<td>Smooth invariant foliations in infinite dimensional spaces</td>
</tr>
<tr>
<td>686</td>
<td>Kening Lu</td>
<td>A Hartman–Groban theorem for scalar reaction-diffusion equations</td>
</tr>
<tr>
<td>687</td>
<td>Christophe Golé and Glen R. Hall</td>
<td>Poincaré’s proof of Poincaré’s last geometric theorem</td>
</tr>
<tr>
<td>688</td>
<td>Mario Taboada</td>
<td>Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations</td>
</tr>
<tr>
<td>689</td>
<td>Peter Rejto and Mario Taboada</td>
<td>Weighted resolvent estimates for Volterra operators on unbounded intervals</td>
</tr>
<tr>
<td>690</td>
<td>Joel D. Avrin</td>
<td>Some examples of temperature bounds and concentration decay for a model of solid fuel combustion</td>
</tr>
<tr>
<td>691</td>
<td>Susan Friedlander and Misha M. Vishik</td>
<td>Lax pair formulation for the Euler equation</td>
</tr>
<tr>
<td>692</td>
<td>H. Scott Dumas</td>
<td>Ergodization rates for linear flow on the torus</td>
</tr>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko</td>
<td>Finite dimensional exponential attractors for semilinear wave equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Hölder continuity for the inverse of Mañé's projection</td>
</tr>
<tr>
<td>696</td>
<td>Michel Chipot and Charles Collins</td>
<td>Numerical approximations in variational problems with potential wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang</td>
<td>Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencsér and Zsuzsanna Vágó</td>
<td>A strong approximation theorem for estimator processes in continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencsér</td>
<td>Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
<tr>
<td>706</td>
<td>H.S. Dumas, J.A. Ellison and A.W. Sáenz</td>
<td>Axial channeling in perfect crystals, the continuum model and the method of averaging</td>
</tr>
</tbody>
</table>
M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

KangPing Chen and Daniel D. Joseph, Lubrication theory and long waves

J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices

Mario Taboada and Yuncheng You, Some stability results for perturbed semilinear parabolic equations

A.J. Lawrence, Local and deletion influence

Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media

Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers

Yongzhi Xu, Scattering of acoustic wave by obstacle in stratified medium

Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type

Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun’ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations

Emad A. Fatemi, A new splitting method for scalar conservation laws with stiff source terms