NUMERICAL SCHEMES FOR CONSTRAINED MINIMIZATION PROBLEMS

By

Emad A. Fatemi

IMA Preprint Series # 753

December 1990
Numerical Schemes for Constrained Minimization Problems

Emad A. Fatemi *

November 15, 1990

Abstract

In this paper we study steepest descent algorithms for solving constrained minimization problems. We solve the resulting Euler-Lagrange equations via introduction of time as an auxiliary variable. We define the notion of weak solutions of the evolution equation and identify the proper numerical schemes. We introduce a new filtering algorithm based on this approach.

1 Necessary Conditions

The problem of constrained optimization is a classical problem that has been studied for a long time. One can easily derive the necessary conditions of Euler and Lagrange by using the first variation.

We quote the following theorem that gives the necessary conditions for general set of constraints. The classical problem of Bolza with inequality constraints is that of finding in the class of arcs \((x, u(x)) = (x, u^1, u^2, \ldots, u^d)\), satisfying the conditions of the form

\[\phi_\alpha(x, u, u_x) \leq 0 \quad (1 \leq \alpha \leq m'), \quad \phi_\alpha(x, u, u_x) = 0 \quad (m' < \alpha \leq m) \]

\[x^0 = T^0(b), \quad x^1 = T^1(b), \quad u(x^0) = X^0(b), \quad u(x^1) = X^1(b) \]

*Institute for Mathematics and its Applications, Minneapolis, Minnesota 55455
\[I_\gamma(u) \leq 0 \quad (1 \leq \gamma \leq p'), I_\gamma(u) = 0 \quad (p' < \gamma \leq p) \]

one which minimizes \(I_0(u) \), where

\[I_\gamma = g(b) + \int_{x_0}^{x_1} L_\gamma(x, u, u_x)dx \quad (\gamma = 0, 1, \ldots, p). \]

Assume that \(L_\gamma \) and \(\phi_\alpha \) are \(C^1 \) in a region \(R \) in \((x, u, u_x) \) space, and \((\frac{\partial\phi_\alpha}{\partial u_x}, \delta_{\alpha\beta}\phi_\beta) \) has rank \(m \). Then we have the following result.

Theorem 1 \([1]\) Suppose that \(u \) is a solution of the classical problem of Bolza described above. Then there exist multipliers

\[\lambda_0 \geq 0, \quad \lambda_\gamma, \quad \mu_\alpha(x) \quad (\gamma = 1, \ldots, p; \alpha = 1, \ldots, m), \]

not vanishing simultaneously, and functions

\[F(x, u, u_x, \mu) = \lambda_\gamma L_\gamma + \mu_\gamma \phi_\gamma, \quad G(b) = \lambda_\gamma g_\gamma(\gamma = 0, 1, \ldots, p) \]

such that

- The inequality \(\lambda_\gamma \geq 0 \) \((1 \leq \gamma \leq p') \) holds with \(\lambda_\gamma = 0 \) if \(I_\gamma(u) < 0 \).
- The multipliers \(\mu_\alpha(x) \) are piecewise continuous and are continuous on every interval of continuity of \(u_x \). Moreover, \(\mu_\alpha(x) \geq 0 \) \((1 \leq \alpha \leq m') \) with \(\mu_\alpha(x) = 0 \) for each value of \(x \) at which \(\phi_\alpha(x, u, u_x) < 0 \).
- The integral form of the Euler-Lagrange equations

\[F - u_x F_{u_x} = \int_{x_0}^{x_1} F_x dx + c_1, \quad F_{u_x} = \int_{x_0}^{x_1} F_u dx + c_2 \quad (1) \]

hold along \(u \).
- The transversality condition

\[dG + [(F - u_x F_{u_x})dT^x + F_{u_x}dX^x]_{t=0}^{t=1} = 0 \quad (2) \]

- At each element \((x, u, u_x)\) on \(u \) the inequality

\[E(x, u, u_x, v, \mu(x)) \geq \mu_\alpha(x) \phi_\gamma(x, u, u_x) \quad (3) \]

hold whenever \((x, u, u_x)\) is in \(R \), where \(E \) is the Weierstrass \(E \)-function.

\[E(x, u, u_x, v, \mu) = F(x, u, v, \mu) - F(x, u, u_x, \mu) - (v - u_x) F_{u_x}(x, u, u_x, \mu) \]
2 Introduction of Time

A natural and most common computational procedure for constrained optimization is the gradient projection method, see [3] [4]. Let us consider a simple problem of the form:

$$\text{minimize } f(x) \text{ subject to } Ax = 0.$$

The procedure starts by finding a point, x_1, that satisfies the constraint. An ideal direction is found by taking the variation of the functional and then projecting it onto the manifold of the constraint. Then the next point is:

$$x_2 = x_1 + \alpha_1 g(x_1)$$

where α_1 is chosen to minimize $f(x_2)$, and $g(x_1)$ is:

$$g(x_1) = -\delta f(x_1) + A^*(AA^*)^{-1}A\delta f(x_1)$$

Based on this natural idea we propose the following scheme. Let us consider the following problem.

$$\text{minimize } \int_0^1 L(u, u_x)dx$$

Where x is a real variable between 0 and 1, and L is a differentiable function of u and u_x. Then we introduce artificial time variable t, and assuming that we have an original guess, we wish to approach the solution as time progresses. Then we need to have:

$$\frac{d}{dt} \int L \leq 0$$

$$\frac{d}{dt} \int L(u, u_x) = \int L_u u_t + L_{ux} u_{xt} =$$

by integration by parts we get:

$$\int L_u u_t - \frac{d}{dx} L_{ux} u_t + L_{ux} u_t \bigg|_0^1$$

At this point we can assume either one of the following boundary conditions:
1. Fixed end points:

\[u_t = 0 \text{ at } x = 0 \text{ and } x = 1 \]

2. Natural boundary conditions (Transversality condition):

\[L_{u_x} = 0 \text{ at } x = 0 \text{ and } x = 1 \]

3. Periodic conditions:

\[L_{u_x} u_t|_0^1 = 0 \]

We choose natural boundary conditions and we get:

\[\frac{d}{dt} \int L = \int \delta F u_t \]

Where \(\delta L \) is the first variation of the functional \(L \) and is:

\[\delta L = -\frac{d}{dx} L_{u_x} + L_u \]

In order to decrease the functional we define the following evolution equation:

\[u_t = -\delta L \quad L_{u_x}|_0^1 = 0 \quad (4) \]

This defines a nonlinear partial differential equation for evolution of \(u \). At this point we make the very crucial assumption that this partial differential equation has a solution and its solution is as smooth as we need. In one sense we are transferring the difficulty of proving the existence of the extremum function into the difficult problem of solving the evolution equation. Also our procedure does not guarantee convergence to the absolute minimum, rather it converges to the nearest local minimum. In some sense this is an advantage. In some applications one wishes to stay close to the original guess. In signal processing this is often the case. The processing has to be invariant under translation and rotation. This implies non-uniqueness of the solution. Thus in the class of all possible solutions we wish to find the closest to the original.

Theorem 2 The functional \(\int L(u, u_x) \) is decreasing as a function of time. If the second variation of \(L \) is positive definite, \(u \) converges to a solution of the equation \(\delta L = 0 \).
Let us define \(g(t) = \int L(u, u_x) \, dx \), then

\[
\frac{d}{dt} g(t) = \frac{d}{dt} \int L = \int \delta Lu_t = -\int (u_t)^2 \leq 0.
\]

Thus as time progresses, the functional decreases till we hit an extremum of the problem.

\[
\frac{d^2}{dt^2} g(t) = \frac{d}{dt} \int L = \int \delta L u_{tt} = \int L_{uu}(u_t)^2 + L_{uu_x} u_t u_{xt} + L_{u_x u_x} (u_t)^2 = \\
\int (L - \frac{d}{dx} L_{u_x}) u_{tt} + L_{u_x} u_{tt} |_{tt} + \int L_{uu}(u_t)^2 + 2 L_{uu_x} u_t u_{xt} + L_{u_x u_x} (u_t)^2 = \\
\int \delta L u_{tt} + \int L_{u_x x}(u_t)^2 + 2 L_{uu_x} u_t u_{xt} + L_{u_x u_x} (u_x)^2
\]

Now note that:

\[
\int \delta L u_{tt} = -\int u_t u_{tt} = \frac{1}{2} \frac{d^2}{dt^2} g(t)
\]

Thus we get:

\[
\frac{1}{2} \frac{d^2}{dt^2} g(t) = \int L_{uu}(u_t)^2 + 2 L_{uu_x} u_t u_{xt} + L_{u_x u_x} (u_x)^2
\]

If the second variation of the functional is positive definite then \(\int (u_t)^2 \) is decreasing in time and \(u \) evolves to an extremal of the functional.

Now we consider the problem of constrained minimization. We consider the following problem:

\[
\text{minimize } \int F(u, u_x)
\]

subject to \(\int G_i(u, u_x) = 0 \) \(1 \leq i \leq N \)

The solution must satisfy the following necessary Euler-Lagrange equations with \(\lambda_i \) as Lagrange multipliers.

\[
\delta F + \sum_i \lambda_i \delta G_i = 0 \quad F_{u_x} + \sum_i \lambda_i G_{i u_x} |_{x=0} = 0
\]

(5)
Now using the same procedure as above we let:

$$L = F + \sum_{i} \lambda_i G_i$$

Where λ_i are Lagrange multipliers to be determined. Also note that:

$$\int L = \int F$$

Assuming that we start with a function that satisfies the constraints, we write the following evolution equations for u.

$$u_t = -\delta L = -\delta F - \sum_i \lambda_i \delta G_i F_{u_x} + \sum_i \lambda_i G_{iu_x}^1|_0 = 0 \quad \frac{d}{dt} \int G_i = 0 \quad (6)$$

Using theorem 3, we have

$$\frac{d}{dt} g(t) = \frac{d}{dt} \int L = \frac{d}{dt} \int F = -\int (u_t)^2$$

$$\frac{d^2}{dt^2} \int F = \frac{d^2}{dt^2} g(t) = \frac{d^2}{dt^2} \int L = \int L_{uu}(u_t)^2 + 2L_{u_x u_x} u_t u_{x_t} + L_{uu u_x} (u_{x_t})^2$$

Note that $\int F$ is decreasing in time for all values of λ_i, but the second derivative of $g(t)$ depends on the value of the Lagrange multipliers. Also note that although λ_i are functions of time, their derivatives do not appear in the rate of change of the functional. That is because time derivatives of λ_i are always multiplied by 0.

$$\frac{d}{dt} (\lambda_i \int G_i) = \lambda_i \int G_i + \lambda_i \frac{d}{dt} \int G_i = \lambda_i \frac{d}{dt} \int G_i$$

In order to find the Lagrange multipliers we use the second equation as:

$$0 = \frac{d}{dt} \int G_i = \int G_{iu_x} + G_{iu_x} u_{x_t} = \int \delta G_i u_t + G_{iu_x} u_{x_t}^1 = 0$$

We substitute for u_t and get:

$$\int \delta G_i (\delta F + \sum_j \lambda_j \delta G_j) + G_{iu_x} (\delta F + \sum_j \lambda_j \delta G_j)^1|_0 = 0$$
\[\int \delta G_i \delta F + \sum_j \lambda_j \int \delta G_i \delta G_j + G_{\text{int}} \delta F \|_0^1 + \sum_j \lambda_j G_{\text{int}} \delta G_j \|_0^1 = 0 \]

\[\sum_j (\int \delta G_i \delta G_j) \lambda_j + \sum_j G_{\text{int}} \delta G_j \|_0^1 \lambda_j = -\int \delta G_i \delta F - G_{\text{int}} \delta F \|_0^1 \]

Thus we get a \(N \times N \) linear system of equations for \(\lambda \). Let us define matrices \(A, B, \) and \(C \) as:

\[A_{ij} = \int \delta G_i \delta G_j \]

\[B_{ij} = G_{\text{int}} \delta G_j \|_0^1 \]

\[C_i = -\int \delta G_i \delta F - G_{\text{int}} \delta F \|_0^1 \]

Then we have the following system for \(\lambda \):

\[(A + B)\lambda = C \]

The matrix \(B \) is zero in the case of fixed end points and periodic boundary conditions, in the other case we assume that \(B \) is small compared to \(A \). This procedure is dependent on the fact that we can solve the system for values of \(\lambda \). This can be done if the matrix \(A \) is invertible. The matrix \(A \) is called Gram matrix and we repeat the following well known result.

Theorem 3 [3] The matrix \(A \) is invertible if and only if the first variations of the constraints are linearly independent.

If the first variations are linearly dependent then it is easy to see that \(A \) is not invertible. Now assume that \(A \) is not invertible, then there is a linear relation between the rows. Thus assume that there are coefficients \(a_i \) such that:

\[\sum_i a_i \int \delta G_i \delta G_j = 0 \Rightarrow \sum_j a_j \sum_i a_i \int \delta G_i \delta G_j = 0 \]

\[\int \sum_j \sum_i a_i \delta G_i a_j \delta G_j = 0 \Rightarrow \int (\sum_i a_i \delta G_i)^2 = 0 \]

Thus the first variations are linearly dependent.

\[\sum_i a_i \delta G_i = 0 \]
Definition 1 A set of conditions are said to be linearly independent if the matrix A, as defined above, is invertible at all points satisfying the constraints.

Actually this condition is too restrictive, one only needs A to be invertible around the extremum point that one wants to calculate. Also if A is not invertible, one still can solve for λ, but the solution is not unique. As an example let us consider case of one constraint with fixed end points boundary:

$$u_t = -\delta F - \lambda \delta G$$

$$0 = \int \delta G \delta F + \lambda \int \delta G \delta G$$

We can solve for λ and get the following Integro-Differential equation for evolution of u:

$$u_t = -\delta F + \frac{\int \delta F \delta G}{\int (\delta G)^2} \delta G$$

Note that in this case the first variation of the constraint should not vanish on the manifold.

3 Weak Solutions

In this section we present formulation of the evolution problem as a weak solution. In the formulation of the minimization problem we wish to minimize $\int L(u, u_x)$. In this formulation one needs to specify the class of the functions to be considered. The integral implicitly assumes existence of the first derivative but the first derivative does not have to be continuous. In classical formulation as was considered in the last section one has the necessary Euler equations for the function with the accessory Weierstrass-Erdeman corner conditions. The two can be combined in the integral form of the Euler equation.

$$L_{ux} = \int L_u dx + c$$

This implies continuity of L_{ux} but not u_x. Therefore one has to allow for corners in the solution. In this respect one can formulate the wake solution as the following.
Definition 2 Let \(L(u, u_{ux}) \) be continuously differentiable then we define a weak solution of \(L_u - \frac{d}{dx} L_{ux} = 0 \) as the function \(u \) such that

\[
\int L_u \phi + L_{ux} \phi_x = 0
\]

for all smooth \(\phi \) with compact support.

Note that one can derive the corner conditions by integration by parts.

\[
L^+_{ux} = L^-_{ux}
\]

In this relation we can formulate the evolution equation, \(u_t = \frac{d}{dx} L_{ux} - L_u \), as a weak solution.

Definition 3 Let \(L(u, u_{ux}) \) be continuously twice differentiable then we define a weak solution of \(u_t = \frac{d}{dx} L_{ux} - L_u \ u(x, 0) = u_0(x) \) as the function \(u \) such that

\[
\int_{\Omega} u \phi_t - L_{ux} \phi_x - L_u \phi + \int_0^1 u_0(x) \phi dx = 0
\]

for all smooth \(\phi \) with compact support in the \(t - x \) plane.

In this relation one can recover the corner conditions for the evolution equation in the following fashion. Let the curve \(\Gamma = (\alpha(t), t) \) be the path of a moving corner with \(u^I \) and \(u^II \) being two classical solutions separated by the graph of the curve \(\Gamma \). Then let \(\phi \) be a test function with compact support. Using the integration by parts formula we get:

\[
\int_{\Omega} (u \phi_t - L_{ux} \phi_x) = \int_{\partial \Omega} (u \zeta_t - L_{ux} \zeta_x) d\Gamma - \int_{\Omega} \phi (u_t + \frac{d}{dx} L_{ux})
\]

Where \((\zeta_t, \zeta_x)\) is the normal to the boundary and we have,

\[
\int_{\Omega_1 + \Omega_2} u \phi_t - L_{ux} \phi_x - L_u \phi =
\]

\[
\int_{\Omega_1} u \phi_t - L_{ux} \phi_x - L_u \phi + \int_{\Omega_2} u \phi_t - L_{ux} \phi_x - L_u \phi =
\]

\[
\int_{\partial \Omega_1} \phi (u \zeta_t - L_{ux} \zeta_x) dt + \int_{\partial \Omega_2} \phi (u \zeta_t - L_{ux} \zeta_x) dt =
\]
Since we have \((\zeta_t, \zeta_x) = (1, -\alpha'(t))\) in \(\Omega_1\) and \((\zeta_t, \zeta_x) = (-1, \alpha'(t))\) in \(\Omega_2\), we get
\[
\int_\Gamma \phi(\alpha'(t)(u^I - u^I)) + (L_{u^I} - L_{u^I})dt = 0
\]
Let \([u] = u^I - u^I\) then we have,
\[
\alpha'(t)[u] + [L_{u^I}] = 0
\]
since we have \([u] = 0\), we get \([L_{u^I}] = 0\). This calculation does not give us the speed of propagation of the discontinuity, but we can find it in this fashion; let
\[
[u] = u^I - u^I = u^I(\alpha(t), t) - u^I(\alpha(t), t)
\]
Since \(u\) is continuous, then we have: \(0 = \frac{d}{dt}[u] = [u_x]\alpha'(t) + [u_t]\) or equivalently, \([u_x]\alpha'(t) + [\frac{d}{dx} L_{u^I} - L_{u^I}] = 0\).

We conclude this section with an analog of a theorem of Lax and Wendroff about conservation laws [2]. Let us define
\[
v(x, t + \Delta t) = v(x, t) + \frac{\Delta t}{\Delta x}(g_1(x + \frac{\Delta x}{2}) - g_1(x - \frac{\Delta x}{2})) - \Delta t g_2(v, D^+v)
\]
where \(g_1\) is a consistent approximation to \(L_{u^I}\), and \(g_2\) is a consistent approximation to \(L_u\) in the sense that if \(v \rightarrow u\) and \(v' \rightarrow u'\) then \(g_1 \rightarrow L_{u^I}\), and \(g_2 \rightarrow L_u\) when \(\Delta x \rightarrow 0\).

Theorem 4 Assume that as \(\Delta t\) and \(\Delta x\) converge to zero, \(v(x, t)\) converges boundedly almost everywhere to \(u(x, t)\) and \(D^+v(x, t)\) converges boundedly almost everywhere to \(u'(x, t)\) then \(u\) is a weak solution of \(u_t = \frac{d}{dx} L_{u^I} - L_u\).

\[
\frac{v(x, t + \Delta t) - v(x, t)}{\Delta t} = \frac{g_1(x + \frac{\Delta x}{2}, t) - g_1(x - \frac{\Delta x}{2}, t)}{\Delta x} - g_2(x, t)
\]
multiply the above equation by \(\phi(x, t)\) and integrate over time and space to get
\[
\int_0^1 \int_0^\infty \frac{v(x, t + \Delta t) - v(x, t)}{\Delta t} \phi(x, t) dx dt = \int_0^1 \int_0^\infty \frac{g_1(x + \frac{\Delta x}{2}, t) - g_1(x - \frac{\Delta x}{2}, t)}{\Delta x} \phi(x, t) dx dt - \int_0^1 \int_0^\infty g_2(x, t) \phi(x, t) dx dt
\]
This is equivalent to:

\[
\int_0^1 \int_0^\infty \phi(x, t - \Delta t) - \phi(x, t) \frac{v(x, t)}{\Delta t} dx dt - \int_0^1 \int_0^{\Delta t} \frac{v(x, t)}{\Delta t} \phi(x, t) dx dt
\]

\[
= \int_0^{1-\Delta x} \int_0^\infty \phi(x, t) - \phi(x + \Delta x, t) \frac{g_1(x + \frac{\Delta x}{2}, t)}{\Delta x} dx dt -
\]

\[
\int_0^\infty \int_{-\Delta x}^0 g_1(x + \frac{\Delta x}{2}, t) \phi(x + \Delta x, t) \frac{1}{\Delta x} dx dt +
\]

\[
\int_0^\infty \int_{1-\Delta x}^1 g_1(x + \frac{\Delta x}{2}, t) \phi(x, t) \frac{1}{\Delta x} dx dt
\]

\[
- \int_0^1 \int_0^\infty g_2(x, t) \phi(x, t) dx dt
\]

The boundary integrals drop out by applying the natural boundary conditions and if we pass to the limit we get

\[
\int \int - \phi_t u - \int u \phi = - \int \int \phi_x L_{ux} - \int \int L_u
\]

As an example we consider the functional,

\[
F(u_x) = \frac{1}{4} (u_x - 1)^2 (u_x + 1)^2
\]

Then we have the evolution equation,

\[
u_t = \frac{d}{dx} (u_x^3 - u_x)
\]

With the initial data

\[
u(x, 0) = \sin(2\pi x)
\]

First we use the boundary condition \(u(0, t) = 0\) and \(u(1, t) = 0\). We show the creation of the corner and its evolution in Figure 7.1. If we change to natural boundary conditions we observe that the corners move toward the boundary. In Figure 7.2 we show this situation.
4 Projection on Manifold

In applications one does not have a function that satisfies the constraints. As the first step of the solution one has to find a function that satisfies the constraints. We used the following procedure in our calculations. Let us assume we have \(\int G(u, u_x) = \sigma \) instead of \(\int G(u, u_x) = 0 \). We again introduce time variable \(t \) and let:

\[
\int G = \sigma e^{-t}
\]

then we have:

\[
\int \delta G u_t = -\sigma e^{-t} = -\int G
\]

Now we move in direction of the first variation according to

\[
u_t = \beta \delta G \quad G_{u_t} 1_0^1 = 0
\]

where \(\beta \) is to be found, but

\[
\int \delta G u_t = \beta \int (\delta G)^2 = -\int G
\]

Therefore we find the value of \(\beta \) as

\[
\beta = -\frac{\int G}{\int (\delta G)^2}
\]

\[
u_t = \frac{-\int G}{\int (\delta G)^2} \delta G \quad G_{u_t} 1_0^1 = 0
\]

In order to satisfy more than one constraint, one can march towards one at a time and keep the other ones constant, or try to satisfy all of them at the same time. The appropriate solution depends on the constraints and the desired accuracy and is highly problem dependent.

5 Constrained Heat Operator

In this part let us study the equations in detail for one simple case. Let us consider the following problem:

\[
\text{minimize} \quad \frac{1}{2} \int_0^1 (u_x)^2 dx
\]
subject to \(\int_0^1 (u - u_0) dx = 0 \) \(\int_0^1 \frac{1}{2} (u - u_0)^2 dx - \sigma = 0 \)

This problem can be motivated in this fashion. Let us consider a signal corrupted by additive random noise. Let the true signal be \(u_i \) and the observed signal be \(u_{oi} \), then we have,

\[u_{oi} = u_i + X_i \]

Assuming \(X_i \) is a random variable with known p.d.f. then we have,

\[\int (u - u_0) \approx \sum_i (u_i - u_{oi}) \Delta x = - \sum_i X_i \Delta x = - \frac{1}{N} \sum_i X_i. \]

For large values of \(N \) we have

\[S_N = - \frac{1}{N} \sum_i X_i \rightarrow -E(X) \text{ in pr.} \]

Using the same argument we have,

\[\int (u - u_0)^n \approx \sum_i (u_i - u_{oi})^n \Delta x = - \sum_i X_i^n \Delta x = - \frac{\sum_i X_i^n}{N}. \]

In light of the above argument we can impose the following constrains on the signal,

\[\int (u - u_0)^n = (-1)^n E(X^n) \]

we wish to emphasize that these equations are valid in the limit of large number of signal values and also in a probability sense.

One can look at this procedure as an approximation problem. Let us elaborate on that. In calculating the Fourier coefficients of a function we consider the space:

\[M = \{ u | u(x) = \sum_n a_n e^{2\pi i n x} \} \]

then we minimize the following norm;

\[\int (\sum_n a_n e^{2\pi i n x} - u_0(x))^2 \]
In our approach we have the function space:

\[M = \{ u | \int (u - u_0) = 0, \frac{1}{2} \int (u - u_0)^2 = \sigma \} \]

and we minimize the following norm:

\[\int F(u_x) = \int u_x^2 \]

We have \(F(u, u_x) = (u_x)^2, \ G_1(u) = u - u_0, \) and \(G_2(u) = \frac{1}{2}(u - u_0)^2 - \sigma. \)

The first variations of the constraints are \(\delta G_1 = 1 \) and \(\delta G_2 = u - u_0. \) They are linearly independent because if we have

\[\alpha + \beta(u - u_0) = 0, \]

then we take the integral over the unit interval and

\[\alpha + \beta \int (u - u_0) = 0 \rightarrow \alpha = 0 \]

\(\beta \) must be zero otherwise, \(u - u_0 = 0 \) which contradicts \(\int (u - u_0)^2 = 2\sigma. \) One can see that the points where the first variations of the constraints vanish are potential pitfalls in calculations and they should be avoided.

As the first step of the calculations we need to find a point on the constraints. The first constraint is easy to satisfy, but the second one needs some work. We use the following equation:

\[u_t = \beta(u - u_0) \quad \beta = -\frac{1}{2} \frac{\int (u - u_0)^2 + \sigma}{\int (u - u_0)^2} \]

One can see that if \(g(t) = \frac{1}{2} \int (u - u_0)^2 - \sigma, \) then it satisfies the following differential equation:

\[\frac{d}{dt} g(t) = -g(t) \]

and its solution is:

\[g(t) = g(0)e^{-t} \]

After calculating a guess function that satisfies the constraints, we solve the following equations:

\[u_t = u_{xx} - \lambda_1 - \lambda_2(u - u_0) \]
\[u_x(0) = 0 \quad u_x(1) = 0 \]

\[
\begin{pmatrix}
1 & \int(u - u_0) \\
\int(u - u_0) & \int(u - u_0)^2
\end{pmatrix}
\begin{pmatrix}
\lambda_1 \\
\lambda_2
\end{pmatrix} =
\begin{pmatrix}
\int u_{xx} \\
\int u_{xx}(u - u_0)
\end{pmatrix}
\]

Note that the linear system is solvable as long as we avoid \(u - u_0 \). The second variation of the system is

\[
\begin{pmatrix}
\lambda_2 & 0 \\
0 & 1
\end{pmatrix}
\]

and as long as \(\lambda_2 \) is positive we approach a solution of the variational problem.

Let us verify the relations for the rate of change of the functional and its second derivative directly. First note that \(\lambda_1 = 0 \) and also note that we have:

\[
\int(u - u_0)u_t = 0
\]

\[
\int(u_t)^2 + \int(u - u_0)u_{tt} = 0
\]

\[u_{xx} = u_t + \lambda_2(u - u_0) \]

Now let us define \(g(t) = \frac{1}{2} \int(u_x)^2 \), then

\[
g'(t) = \int u_x u_{xt} = -\int u_{xx} u_t = -\int(u_t + \lambda_2(u - u_0)u_t =
\]

\[
-\int(u_t)^2 - \lambda_2 \int(u - u_0)u_t = -\int(u_t)^2
\]

\[
g''(t) = -2\int u_t u_{tt} = \int(u_{xt})^2 + \int u_x u_{xtt} =
\]

\[
\int(u_{xt})^2 - \int u_{xx} u_{tt} =
\]

\[
\int(u_{xt})^2 - \int u_{tt} + \lambda_2(u - u_0))u_{tt} =
\]

\[
\int(u_{xt})^2 - \int u_t u_{tt} - \lambda_2 \int(u - u_0))u_{tt} =
\]

\[
\int(u_{xt})^2 + \frac{1}{2}g''(t) + \lambda_2 \int(u_t)^2 =
\]
Therefore we have:

\[
\frac{1}{2}g''(t) = \int (u_{xt})^2 + \lambda_2 \int (u_t)^2
\]

This agrees with the general formula.

Now let us look at the solution of the evolution equation. Let \(u(t, x) \) and \(u_0(x) \) be represented by:

\[
u(t, x) = \sum_{n=1}^{\infty} a_n(t) \cos(n \pi x) \quad u_0(x) = \sum_{n=1}^{\infty} b_n \cos(n \pi x)
\]

then we have the following system of equations for \(a_n(t) \)

\[
a_n'(t) = -(n^2 \pi^2 + \lambda_2) a_n(t) + \lambda_2 b_n.
\]

Note that \(\lambda_2 \) is not constant and is a function of \(a_n(t) \) and is:

\[
\lambda_2 = \frac{1}{\sigma} \sum_{k=1}^{\infty} -\frac{n^2 \pi^2}{2} a_k(t)(a_k(t) - b_k)
\]

We observe that \(\lambda_2 \) is not constant but is varying slowly with respect to other variables. Let us assume it is constant and positive, then we have:

\[
a_n(t) = \frac{\lambda_2}{\lambda_2 + n^2 \pi^2} b_n + \left(a_n(0) - \frac{\lambda_2}{\lambda_2 + n^2 \pi^2} \right) e^{-t(n^2 \pi^2 + \lambda_2)}
\]

Now let us look at the steady state solutions of this equation. We have

\[
a_n = \frac{\lambda_2}{\lambda_2 + n^2 \pi^2} b_n
\]

\[
\sigma = \sum_{n=1}^{\infty} \frac{1}{2} \left(1 - \frac{\lambda_2}{n^2 \pi^2} \right)^2 b_n^2
\]

\[
\frac{d\sigma}{d\lambda_2} = -\sum_{n=1}^{\infty} \frac{1}{n^2 \pi^2(1 + \frac{\lambda_2}{n^2 \pi^2})^3} b_n^2 < 0
\]

If \(\lambda_2 > -\pi^2 \), then \(\sigma \) is a monotone decreasing function of \(\lambda_2 \) and for each value of \(\sigma \) there is a unique Lagrange multiplier. If we are only interested in positive values of \(\lambda \), then this requires \(2\sigma \leq \int u_0^2 \) which is reasonable since it
means that the L_2 norm of the noise be less than the norm of the corrupted signal.

Let us discuss one specific problem. Let

$$u_{xx} - \lambda(u - u_0) = 0$$

$$u_0(x) = sgn(x) = \frac{x}{|x|} \quad -1 \leq x \leq 1$$

with $u_x(-1) = 0$ $u_x(1) = 0$ We can save some computations if we solve half of the above problem, which is:

$$u_{xx} - \lambda(u - u_0) = 0$$

$$u_0(x) = 1 \quad 0 \leq x \leq 1$$

with $u(0) = 0$ $u_x(1) = 0$ If λ is positive, then let $\lambda = k^2$, then the solution is

$$u(x) = 1 - \frac{\cosh k(x - 1)}{\cosh k}$$

$$\sigma(k) = \frac{1}{\cosh^2 k} \left(\frac{1}{2} + \frac{\sinh 2k}{4k} \right)$$

One can see that $\sigma(0) = 1$ and that it is monotone decreasing function of k. If λ is negative, then let $\lambda = -k^2$. The solution is

$$u(x) = 1 - \frac{\cos k(x - 1)}{\cos k}$$

$$\sigma(k) = \frac{1}{\cos^2 k} \left(\frac{1}{2} + \frac{\sin 2k}{4k} \right)$$

One can see that σ becomes infinite at the eigenvalues of the boundary value problem which are $k = (n + \frac{1}{2})\pi$. If σ is less than one then we have a smoothed out version of the $sgn(x)$ function. If we choose σ too large then we start to deviate from the function by adding oscillation to the solution.
6 Numerical Schemes

In this section we describe some of the numerical techniques that were used. All the numerical techniques in this section are standard. We use the standard notation.

\[u_{i,j}^n = u(t_n, x_i, y_j) \]

\[\Delta_x^+ u_{i,j} = u_{i+1,j} - u_{i,j} \quad \Delta_x^- u_{i,j} = u_{i,j} - u_{i-1,j} \]

\[D_x^+ u_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x} \quad D_x^- u_{i,j} = \frac{u_{i,j} - u_{i-1,j}}{\Delta x} \]

\[D_x^0 u_{i,j} = \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} \]

Now using forward Euler and central differencing of the heat operator we have:

\[u_{j}^{n+1} = u_{j}^{n} + \Delta t D^+ D^- u_{j}^{n} - \Delta t \lambda^n (u_{j}^{n} - u_{0j}) \]

For \(\lambda^n \) we have the equation:

\[\sum D^+ D^- u_{j}^{n} (u_{j}^{n} - u_{0j}) - \lambda^n \sum (u_{j}^{n} - u_{0j})^2 = 0 \]

Note that this is equivalent to:

\[\sum (u_{j}^{n+1} - u_{j}^{n}) (u_{j}^{n} - u_{0j}) = 0 \]

The equations satisfy the first constraint since,

\[\sum u_{j}^{n+1} - u_{0j} = \sum \Delta t D^+ D^- u_{j}^{n} + (1 - \Delta t \lambda^n) \sum (u_{j}^{n} - u_{0j}) \]

The first sum on the right is a telescopic sum and is zero and the second one is zero in the first step, thus it stays zero for all steps.

Let us check the second constraint:

\[\sum (u_{j}^{n+1} - u_{0j})^2 \Delta x - \sum (u_{j}^{n} - u_{0j})^2 \Delta x = \sum (u_{j}^{n+1} - u_{j}^{n})^2 \Delta x \approx \Delta t^2 \int u_i^2 \]

Which implies that the second constraint is not satisfied exactly but the error is first order in \(\Delta t \).
Let us try to modify λ such that the second constraint is satisfied exactly. First drop the subscript j from the equations and we get

$$\sum (u^{n+1} - u_0)^2 \Delta x - \sum (u^n - u_0)^2 \Delta x = \sum (u^{n+1} - u^n)(u^{n+1} + u^n - 2u_0) \Delta x =$$

$$\sum (\Delta t D Du^n - \Delta t \lambda^n(u^n - u_0))(2(u^n - u_0) + \Delta t D Du - \lambda^n \Delta t (u^n - u_0)) \Delta x =$$

Let $\beta = \Delta t \lambda^n$ then we have

$$\beta^2 \sum (u^n - u_0)^2 \Delta x - 2\beta(\sum (u^n - u_0)^2 \Delta x + \sum \Delta t D Du^n(u^n - u_0) \Delta x)$$

$$+ 2\sum \Delta t D Du(u^n - u_0) \Delta x + \Delta t^2 \sum (D Du^n)^2 \Delta x$$

Then let $\alpha = \Delta t \sum D Du^n(u^n - u_0) \Delta x$ and $\gamma = \sum (D Du)^2 \Delta x$ then

$$\sigma \beta^2 - 2(\sigma + \alpha) \beta + 2\alpha + \Delta t^2 \gamma = 0$$

We can solve for β

$$\beta = 1 + \frac{\alpha}{\sigma} - \sqrt{1 + \frac{\alpha^2}{\sigma^2} - \Delta t^2 \frac{\gamma}{\sigma}}$$

Note that in the previous approximation we had $\beta = \frac{a}{\sigma}$.

For our calculation we used a second order scheme to gain accuracy in time. The discretization in time was based on second order Runge-Kutta which improved accuracy so we could use larger time steps.

The results of the numerical results from the heat operator are shown in 7.3 and 7.4.

7 Acknowledgement

I wish to thank Stanley Osher for his guidance and supervision which was essential in conception of the above ideas.
References

[3] Leuenberger, *Vector Space Methods in Optimization*

Figure 2: Moving Corner
Figure 3: Heat Operator 1
Figure 4: Heat Operator 2
Recent IMA Preprints

Title

Author/s
662 Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I
663 Emanuel Parzen, Time series, statistics, and information
664 Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
665 Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation
666 James F. Reineck, Continuation to gradient flows
667 Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N–body problem
668 John A. Jacquez and Carl P. Simon, AIDS: The epidemiological significance of two different mean rates of partner-change
669 Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations
670 Matthew Stafford, Markov partitions for expanding maps of the circle
671 Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
672 M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
673 M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
674 Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
675 Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
676 Christophe Golé, Ghost circles for twist maps
677 Christophe Golé, Ghost tori for monotone maps
678 Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits
679 E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
680 Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
681 Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
682 E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
683 George R. Sell, References on dynamical systems
684 Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
685 Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
686 Kening Lu, A Hartman–Grobman theorem for scalar reaction-diffusion equations
687 Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem
688 Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations
689 Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
690 Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
691 Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
692 H. Scott Dumas, Ergodization rates for linear flow on the torus
693 A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
694 A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
695 A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mané’s projection
696 Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
697 Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
698 László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time
699 László Gerencsér, Multiple integrals with respect to L-mixing processes
700 David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
701 Bo Dong, Symbolic dynamics for chaotic systems
703 Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
704 Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces
705 A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation
H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging

M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transcritical attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

KangPing Chen and Daniel D. Joseph, Lubrication theory and long waves

J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices

Mario Taboada and Yuncheng You, Some stability results for perturbed semilinear parabolic equations

A.J. Lawrence, Local and deletion influence

Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media

Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers

Yongzhi Xu, Scattering of acoustic wave by obstacle in stratified medium

Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type

Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun’ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations