UNIQUE SOLVABILITY OF NONLINEAR
VOLterra EQUATIONS IN WEIGHTED SPACES

By

Peter Rejto
and
Mario Taboada

IMA Preprint Series # 748
December 1990
Unique Solvability of Nonlinear Volterra Equations in Weighted Spaces

Peter Rejto
School of Mathematics, University of Minnesota, Minneapolis, MN 55455
and

Mario Taboada
Mathematical Sciences Institute, Cornell University, Ithaca, NY 14850
and
Department of Mathematics, University of Southern California, Los Angeles, CA 90089
Running Head:

Volterra equations in weighted spaces

Send Proofs to:

Peter Rejto
School of Mathematics, University of Minnesota, Minneapolis, MN, 55455
Unique solvability of nonlinear Volterra equations in weighted spaces

Peter Rejto1 and Mario Taboada2,3

\begin{itemize}
\item 1 School of Mathematics, University of Minnesota
\item 2 Mathematical Sciences Institute, Cornell University
\item 3 Department of Mathematics, University of Southern California
\end{itemize}

Abstract: We investigate integral equations of the form
\begin{equation}
(*) \quad x(t) = g(t) + \int_{-\infty}^{t} F(t,s,x(s))\,ds .
\end{equation}
In general, this equation is history-dependent, so one needs to give an initial condition on
\((-\infty,0] \) in order to obtain a unique solution. By introducing a weight function on \(R \), we can
single out a class of admissible solutions, and give conditions for the unique solvability of
\((*) \) in this restricted class. We also study some Fredholm equations on these weighted
spaces. In addition, we also treat a class of equations of the first kind for which similar
conclusions can be drawn. The results of this paper continue the investigation carried out in

1. Introduction. In this paper we consider a Volterra integral equation of the form
\begin{equation}
(1.1) \quad x(t) = g(t) + \int_{-\infty}^{t} F(t,s,x(s))\,ds ,
\end{equation}
which can be regarded as a retarded equation whose delay is infinite. In general this
problem requires that one give an "initial function" on \((-\infty,0] \), after which the equation can
be treated with the techniques of standard Volterra equations. Thus the nonuniqueness of
solutions of \((1.1) \) is an intrinsic feature, which occurs even in the linear case (this seems to
have first been noticed by Love [7]). For example, the equation
\begin{equation}
(1.2) \quad x(t) = e^{-t} + \frac{1}{2} \int_{-\infty}^{t} e^{-2(t-s)} x(s) ds
\end{equation}
has the family of solutions \(x(t) = 2e^{-t} + ce^{-3t/2} \), where \(c \) is an arbitrary constant. In this
example, we observe that if we require that \(x(t)/e^{-t} \) be bounded on \(R \), then there exists
only one solution, namely \(x(t) = 2e^{-t} \). Thus we obtain uniqueness in the class of functions satisfying this exponential bound. The same phenomenon has been noticed with regard to the solutions of Abel’s equation (see Linz [6]); in fact, (1.1) can be considered as a type of singular integral equation. The selection mechanism in these examples can be formalized as follows: consider a weight function \(w(t) \), continuous and positive on a subinterval \(I \) of \(\mathbb{R} \) (our main interest is in an unbounded \(I \)) and define the space \(C(I,w) \) consisting of all continuous functions \(x: I \to \mathbb{R} \) such that \(\| x(.) \|_w = \sup_{t \in I} \left[w(t)^{-1} |x(t)| \right] < \infty \). Then \(C(I,w) \) is a Banach space with the norm \(\| . \|_w \), and one can ask whether the given equation has a unique solution in \(C(I,w) \). In some cases, the appropriate phase space is \(L^p(I,w) \), where \(w \) is a measurable function. This space is defined as the set of all measurable functions on \(I \) such that the weighted norm

\[
\| x(.) \|_{p,w} = \int_I w(t)^{-1} |x(t)|^p \, dt < \infty
\]

It is easy to check that \(L^p(I,w) \) is a Banach space. Problems in weighted spaces arise in the study of spectral properties of Schrödinger operators (cf. Devinatz, Moeckel and Rejto [2]). A similar theory can be constructed for the case of a singular integral equation on a bounded interval (in this case, the "singularity" of the equation comes not from the unboundedness of the domain but from the kernel). The study of this topic in connection with the theory of asymptotic solutions to ODEs seems to have been started by Horn [5], and Love [7], and continued by Erdelyi [3], [4], Willett [11], as well as Olver [8].

The linear case was investigated in Rejto and Taboada [9], where conditions were given for the existence of a unique solution of a linear Volterra equation of the second kind in a weighted space and sharp resolvent estimates were obtained (we refer to this paper for earlier references on the subject). The goal of the present paper is to generalize these results to the nonlinear equation (1.1); these results can also be applied to integro-differential equations with the same type of unbounded delay.

The paper is organized as follows: in Section 2 we prove a general existence and uniqueness result in the space \(C(I,w) \) for a nonlinear Fredholm equation. If the equation is of Volterra type, we show that a much weaker condition guarantees existence and uniqueness. In Section 3 we extend these results to weighted \(L^p \) spaces. In Section 4 we study a class of integral equations of the first kind. Finally, in Section 5, we apply these results to a convolution-type Volterra equation.
2. Existence and uniqueness results in $C(I,w)$

Let I be a (bounded or unbounded) closed subinterval of \mathbb{R} and define $C(I,w)$ as in Section 1. Our first result is the following:

Theorem 2.1 (Existence) Consider the equation

(2.1) \[x(t) = g(t) + \int_I F(t,s,x(s)) \, ds, \quad t \in I, \] where F is continuous and satisfies the Lipschitz condition

(2.2) \[|F(t,s,x) - F(t,s,y)| \leq L(t,s) |x - y|, \] where $L(t,s)$ is integrable on I.

Assume also, for convenience, that $F(t,s,0) = 0$.

Regarding g, suppose that

(2.3) \[g \in C(I,w). \]

Finally, assume that the following inequality holds:

(2.4) \[B = B(w,F) = \sup_{t \in I} \left| \int_I w(t)^{-1} w(s) \, L(t,s) \, ds \right| \leq \frac{1}{2}. \]

Then (2.1) has at least one solution in $C(I,w)$.

Proof. Consider the closed subset of $C(I,w)$ defined by $U = \{ x \in C(I,w) : \| x - g \| \leq b \}$ where b is a number such that $\| g \|_w \leq b$. Define a mapping T on U by

\[(Tx)(t) = g(t) + \int_I F(t,s,x(s)) \, ds. \]

We will show that (a) T maps U into itself; (b) T is a contraction on U.

To prove (a), notice that

\[\| Tx - g \|_w \leq \left\| \int_I F(t,s,x(s)) \, ds \right\|_w + \left\| \int_I [F(t,s,x(s)) - F(t,s,g(s))] \, ds \right\|_w \]

By using (2.2) and the fact that $F(t,s,0) = 0$, we have
\[\| \int \left[F(t, s, g(s)) \right] ds \| \leq \sup_{t \in I} \int w(t)^{-1}w(s) L(t, s) w^{-1}(s)g(s) ds \]
\[\leq \left\{ \sup_{t \in I} \int w^{-1}(t)w(s) L(t, s) ds \right\} \| g \|_W \leq \frac{1}{2} \| g \|_W \leq \frac{b}{2}. \]

(Here we have used the fact that \(b \geq \| g \|_W \) and assumption (2.4).)

Similarly, we have
\[\| \int [F(t, s, x(s)) - F(t, s, g(s))] ds \| \leq \| \int \left[L(t, s) |x(s) - g(s)| \right] ds \| \leq \sup_{t \in I} \int w^{-1}(t)w(s) L(t, s) ds \leq \frac{1}{2} \| x - g \|_W \leq \frac{b}{2}. \]

It follows that \(\| Tx - g \| \leq b \), and \(T \) maps \(U \) into itself.

To prove (b), notice that
\[\| Tx - Ty \|_W \leq \sup_{t \in I} \int w(t)^{-1}L(t, s) |x(s) - y(s)| ds \leq B \| x - y \|_W \leq \frac{1}{2} \| x - y \|_W. \]

Hence \(T \) is a contraction on \(U \), so there exists a solution, which is unique in \(U \). However, this does not prove uniqueness in \(C(I, W) \). The uniqueness issue is dealt with in the next result, which complements Thm. 2.1.

Theorem 2.2 (Uniqueness) Assume (2.2) and (2.3) hold as before, and instead of (2.4), assume that there exists a number \(\theta, 0 \leq \theta < 1 \), such that

\[(2.5) \quad \sup_{t \in I} \left\{ w(t)^{-1}w(s) L(t, s) \right\} ds \leq \theta < 1.\]

Then Eq. (2.1) has at most one solution in \(C(W, R) \).

Proof. Let \(x(t) \) and \(y(t) \) be two solutions of (2.1) in \(C(W, R) \). Then by subtraction we obtain

\[(2.6) \quad x(t) - y(t) = \int \left[F(t, s, x(s)) - F(t, s, y(s)) \right] ds \]

and assumption (2.2) implies

\[(2.7) \quad |x(t) - y(t)| \leq \int L(t, s) |x(s) - y(s)| ds. \]
Let us defined the auxiliary functions \(q(s) = \sup_{t \in I} \{ w(t)^{-1}w(s) | L(t,s) | \} , s \in I \), and \(\phi(t) = w(t)^{-1} | x(t) - y(t) | \). Notice that by assumption (2.5) \(q(.) \) is integrable on \(I \), hence it is finite almost everywhere; notice also that \(\phi(.) \) is a uniformly bounded function. Then, as an immediate consequence of (2.7), we have

\[
(2.8) \quad \phi(t) \leq \int_I q(s)\phi(s) \, ds .
\]

By iteration of (2.8), one easily obtains, for any positive integer \(n \),

\[
(2.9) \quad \phi(t) \leq (\int_I q(\tau) \, d\tau)^n \int_I q(s)\phi(s) \, ds
\]

and assumption (2.5) implies that

\[
(2.10) \quad \phi(t) \leq \theta^n \int_I q(s)\phi(s) \, ds , \text{ therefore }
(2.11) \quad \phi(t) \leq \theta^{n+1} \sup_I \phi.
\]

From (2.11) we conclude, by letting \(n \to \infty \), that \(\phi(t) = 0 \) for all \(t \) in \(I \), which proves the uniqueness of the solution of (2.1).

By putting together the results of Thms. 2.1 and 2.2, and observing that \(B \leq B^* \), we obtain a sufficient condition for existence and uniqueness.

Theorem 2.3 (Existence and Uniqueness) Assume that (2.2) and (2.3) hold, and in addition \(B^* \leq \frac{1}{2} \). Then Eq. (2.1) has a unique solution in \(C(I,w) \).

Let us now restrict ourselves to the Volterra equation

\[
(2.12) \quad x(t) = g(t) + \int_a^t F(t,s,x(s)) \, ds
\]

where \(a \) can be finite or \(-\infty\); let \(I = [a,\infty) \) or \(\mathbb{R} \). In this situation, the result of Thm. 2.1 can be considerably strengthened as follows:

Theorem 2.4 Assume that \(F \) satisfies the same conditions as in Theorem 2.1 on the triangular region \(a \leq s \leq t, t \in I, g \in C(I,w) \), and instead of (2.4) let us assume that the following inequality holds
(2.13) \[0 < B^* = \int \sup_{t>s} w(t)^{-1}w(s) L(t,s) \, ds < \infty. \]

Then Eq. (2.5) has a unique solution in \(C(I,w) \).

Proof. Let us define a sequence \(\{x_n(t)\} \) of successive approximations by

(2.14) \[x_0(t) = g(t), \quad x_{n+1}(t) = g(t) + \int_a^t F(t,s,x_n(s)) \, ds. \]

Let us also define the function

(2.15) \[q(s) = \sup_{t>s} \{ w(t)^{-1}w(s) L(t,s) \}, \ s \in I. \]

Notice that condition (2.6) can be written as \(\int q(s) \, ds < \infty \). By the Lipschitz condition, we see that the successive approximations satisfy

\[\| x_{n+1} - x_n \|_w \leq \frac{1}{n!} \left(\int q(s) \, ds \right)^n \leq \frac{(B^*)^n}{n!} \| x_0 \|_w. \]

Therefore the sequence \(\{x_n(t)\} \) converges in norm in \(C(I,w) \) to a function \(x(t) \). To see that \(x(t) \) is a solution of (2.12), consider an arbitrary compact subinterval \(J \) of \(I \). Let \(M = \max_J w(t) \). Given \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \) such that \(\sup_J |x_n(t) - x(t)| \leq M\varepsilon \) for \(n \geq N(\varepsilon) \), which means that \(\{x_n(t)\} \) converges uniformly on \(J \). Therefore, we can pass to the limit in (2.14), and \(x(t) \) is a solution of (2.12) on any compact subinterval of \(I \), hence on all of \(I \).

We next show that this solution is unique in \(C(I,w) \). Let \(x(t) \) and \(y(t) \) be any two solutions of (2.12) in \(C(I,w) \). We have

\[x(t) - y(t) = \int_a^t [F(t,s,x(s)) - F(t,s,y(s))] \, ds, \] which implies, as in Thm. 2.2,

(2.16) \[|w(t)^{-1}\{x(t) - y(t)\}| \leq \int w(t)^{-1}w(s) L(t,s)w(s)^{-1} |x(s) - y(s)| \, ds \quad s \in I ; \ s \leq t \]

Let us define \(q(s) = \sup_{t>s} \{ w(t)^{-1}w(s) L(t,s) \}, \ s \in I, \) and \(\phi(t) = w(t)^{-1} |x(t) - y(t)| \). Then, as a consequence of (2.16), we have
(2.17) \[\phi(t) \leq \int_a^t q(s)\phi(s) \, ds \] .

By induction, we obtain

(2.18) \[\phi(t) \leq \frac{1}{n!} \left(\int_a^t q(s) \, ds \right)^n \leq \frac{(B*^n)}{n!} . \]

If we let \(n \to \infty \), it follows that \(\phi(t) = 0 \) for all \(t \) in \(I \), hence \(x(t) \) and \(y(t) \) are identical.

Remark 2.1. Notice that the conditions for existence and uniqueness are much less restrictive in the case of a Volterra equation. This difference between the behaviors of Fredholm and Volterra equations is typical. To give just one example, in the simplest case of a linear operator, the spectral radius of a Volterra operator is 0, whereas that of a Fredholm operator is usually nonzero (we refer to [9] for a treatment of the linear case in a weighted space).

Remark 2.2 By taking \(w = 1 \), the results of Thms. 2.1-2.4 give conditions for the existence and/or uniqueness of a bounded solution for an integral equation of Fredholm of Volterra type.

3. Existence and Uniqueness in \(L^p(I,w) \)

In this section, we develop an existence and uniqueness theory in the Lebesgue space \(L^p(I,w) \), since these arise as the natural solution spaces in many applications. As before, we shall consider both Fredholm and Volterra equations of the form

(3.1) \[x(t) = g(t) + \int_1^t F(t,s,x(s)) \, ds \quad , \quad t \in I \]

and

(3.2) \[x(t) = g(t) + \int_a^t F(t,s,x(s)) \, ds \]

and we shall give conditions for the existence and/or uniqueness of solutions of these in \(L^p(I,w) \). Some of the proofs are very similar to those in Section 2, and therefore they will be omitted.
Theorem 3.1 Consider Eq. (3.1), under the following assumptions

(3.3) There exists a measurable function $L(t,s)$ such that

$$|F(t,s,x) - F(t,s,y)| \leq L(t,s) |x - y| \text{ for all } t,s \in I \text{ and } x,y \in R.$$

(3.4) $F(t,s,0) = 0$.

(3.5) $g \in LP(I,w)$

(3.6) Assume that the number B defined by

$$B = \left[\int_1 w(t)^{-1} \left(\int_I w(s)^{q/p} L(t,s)^{q} ds \right)^{p/q} dt \right]^{1/p}$$

satisfies $B \leq 1/2$. Then (3.1) has at least one solution in $LP(I,w)$.

The proof is very similar to that of Thm. 2.1, with the Hölder inequality playing the same role as the sup estimates; we omit the details.

Theorem 3.2 Assume that (3.3)-(3.5) hold, and in addition $B < 1$. Then Eq. (3.1) has at most one solution in $LP(I,w)$.

Proof. Let $x(.)$ and $y(.)$ be two solutions of (3.1) in $LP(I,w)$. Then, by subtraction, we obtain

$$|x(t) - y(t)| \leq \int_I L(t,s) |x(s) - y(s)| ds$$

which implies, by (3.3) and Hölder's inequality, that

(3.7) $w(t)^{-1/p} |x(t) - y(t)| \leq q(t) \left[\int_I w(s)^{-1} |x(s) - y(s)|^p ds \right]^{1/p}$

where

(3.8) $q(t) = w(t)^{-1/p} \left[\int_I w(s)^{q/p} L(t,s)^q ds \right]^{1/q}.$
By defining $\phi(t) = w(t)^{1/p} |x(t) - y(t)|$, we can rewrite (3.7) as

\[(3.9) \quad \phi(t) \leq q(t) \left[\int_I \phi(s)^p \, ds \right]^{1/p} .\]

By raising both sides to the p-th power and integrating in t over I, we obtain

\[\int_I \phi(t)^p \, dt \leq \int_I q(t)^p \, dt \cdot \int_I \phi(s)^p \, ds .\]

Therefore, since $\int_I q(t)^p \, dt = B < 1$, we have

\[\|\phi\|_p \leq B \|\phi\|_p ,\]

which implies that $\|\phi\|_p = \|x(.) - y(.)\|_{w,p} = 0$. Hence the solutions x and y coincide in $L^p(I,w)$.

Theorem 3.3 Consider now the Volterra equation (3.2), where F satisfies the same conditions as in Thm. 3.1 on the triangular region $a \leq s \leq t$, $t \in I$, and $g \in L^p(I,w)$. Let us also assume, instead of (3.6), that $B < \infty$. Then Eq. (3.2) has a unique solution in $L^p(w,I)$.

Proof. The existence of solutions follows by a procedure very similar to that of Thm 2.3, with $q(t)$ replaced by the function defined in (3.8). In order to prove uniqueness, we proceed as in Thm. 3.2 (with the appropriate change in the range of integration), to obtain

\[(3.10) \quad \phi(t) \leq q(t) \left[\int_a^t \phi(s)^p \, ds \right]^{1/p} .\]

By the L^p version of the Gronwall inequality (cf. [W], Lemma 2.2), this implies that $\|\phi\|_p = 0$, therefore $x = y$ in $L^p(I,w)$, which establishes uniqueness.
4. Equations of the First Kind

We now extend the above results to equations of the first kind. Let us note that, even in very simple examples, there is a lack of uniqueness of solutions. For example the integral equation

\[
(4.1) \quad \int_0^t (2t - 3s) x(s) \, ds = 0
\]

has the infinite family of solutions \(x(t) = ct \), where \(c \) is an arbitrary constant.

As we shall see, one can give (rather stringent) conditions for the unique solvability of Volterra equations of the first kind in a weighted space by using an approach similar to that of Section 2.

Theorem 4.1 Consider the Volterra equation of the first kind

\[
(4.2) \quad \int_a^t F(t,s,x(s)) \, ds = g(t),
\]

where \(a \geq -\infty \), and let \(w \) be a weight function on \(I = [a,\infty) \) or \(\mathbb{R} \) and assume:

\[
(4.3) \quad F(t,s,x) \text{ and } \frac{\partial}{\partial t} F(t,s,x) \text{ are continuous for } a \leq s \leq t, x \in \mathbb{R}, \text{ and } \frac{\partial}{\partial t} F(t,s,x) \text{ satisfies the following Lipschitz condition in } x:
\]

\[
(4.4) \quad \frac{\partial}{\partial t} F(t,s,x) - \frac{\partial}{\partial t} F(t,s,y) \mid \leq L(t,s) \mid x - y \mid,
\]

where \(L(t,s) \) is an integrable function.

Assume also that

\[
(4.5) \quad \text{The equation } F(t,t,x) = z \text{ has a unique solution } x \text{ for all } z \in \mathbb{R} \text{ and } t \in I = [a,\infty),
\]

\[
(4.6) \quad \text{There exists a } \theta > 0 \text{ such that } \mid K(t,t,x) - K(t,t,y) \mid \geq \theta \mid x - y \mid \text{ for all } x,y \in \mathbb{R} \text{ and all } t \in I,
\]
(4.7) \quad g(a) = 0 \text{ and } g'(t) \in C(w,R).

Finally, assume that

(4.8) \quad B^* = \int \sup_{t>s} t w(t)^{-1} w(s) \ L(t,s) \ ds < \infty.

Then Eq. (3.2) has a unique solution in $C(w,R)$.

Proof. Let us differentiate (3.2) to obtain

(4.9) \quad F(t,t,x(t)) + \int_a^t \frac{\partial}{\partial t} F(t,s,x(s)) \ ds = g'(t).

Define now a sequence $\{x_n(.)\}$ in $C(w,R)$ by taking an arbitrary $x_0(.)$ in $C(w,R)$, and

(4.10) \quad F(t,t,x_{n+1}(t)) + \int_a^t \frac{\partial}{\partial t} F(t,s,x_n(s)) \ ds = g'(t).

Notice that assumption (3.5) ensures that $x_{n+1}(.)$ is a well-defined function. In order to prove that $x_{n+1}(.)$ remains in $C(w,R)$, and that the sequence converges in $C(w,R)$, let us estimate

(4.11) \quad | F(t,t,x_{n+1}(t)) - F(t,t,x_n(t)) | \leq \int_a^t (F_t(t,s,x_n(s)) - F_t(t,s,x_{n-1}(s))) \ ds \leq \int_a^t L(t,s) \ |x_{n+1}(s) - x_n(s)| \ ds.

Therefore, by (3.6), we have

(4.12) \quad |w(t)^{-1}[x_{n+1}(t) - x_n(t)]| \leq \theta^{-1} \int_a^t \sup_{s \geq t} t w(t)^{-1} w(s) \ L(t,s) \ |w(s)^{-1}[x_{n+1}(s) - x_n(s)]| \ ds.
Define \(q(s) = \sup_{t>s} \{ w(t)^{-1}w(s) | L(t,s) | \} \), \(s \in I \), and \(\phi_{n+1}(t) = w(t)^{-1} | x_{n+1}(t) - x_n(t) | \). Then

\[
(4.13) \quad | \phi_{n+1}(t) | \leq \int_{\mathbb{A}} q(s) \phi_n(s) \, ds
\]

and, by induction, it follows that

\[
(4.14) \quad | \phi_{n+1}(t) | \leq \frac{1}{n!} \left(\int_{\mathbb{A}} q(s) \, ds \right)^n B^* \| x_0 \|_w \leq \frac{(B^*)^{n+1}}{n!} \| x_0 \|_w.
\]

By taking the sup over \(t \in I \) on the left-hand side, we see that

\[
(4.15) \quad \| x_{n+1}(.) - x_n(.) \|_w \leq \frac{(B^*)^{n+1}}{n!} \| x_0 \|_w.
\]

This shows that \(x_{n+1}(.) \in C(w,R) \) for all \(n \geq 0 \), and that the sequence \(\{ x_{n+1}(.) \} \) is convergent in \(C(w,R) \). Therefore, Eq. (3.2) has a solution in \(C(w,R) \). The uniqueness of this solution can be proved by a method very similar to that used in Thm. 2.4, hence we omit the details.

5. Applications

In this section, we show how the existence and uniqueness theorems proved in the previous sections specialize for special types of equations. For simplicity, we shall consider the convolution equation

\[
(5.1) \quad x(t) = g(t) + \int_{-\infty}^{t} a(t - s) f(s, x(s)) \, ds,
\]

where we assume that \(a, g \) and \(f \) are continuous, and \(f \) satisfies

\[
(5.2) \quad | f(s, x) - f(s, y) | \leq \lambda(s) | x - y |,
\]

where \(\lambda \) is a measurable function.

As an application of Thm.2.4, we obtain:
Theorem 5.1 Assume that $g \in C(R,w)$ and

$$\int_{\mathbb{R}} \lambda(s) \sup_{t>s} \{ w(t)^{-1}w(s) |a(t-s)| \} ds < \infty.$$

Then Eq. (5.1) has a unique solution in $C(R,w)$.

An interesting special case occurs when the weight is monotone:

Corollary 5.2 Let the same assumptions as in Thm. 5.1 hold, and in addition assume that the weight $w(.)$ is monotone nondecreasing. Then, if

$$\int_{\mathbb{R}} \lambda(s) \sup_{t>s} \{|a(t-s)|\} ds < \infty,$$

Eq. (5.1) has a unique solution in $C(R,w)$.

Proof. The result follows by noticing that $w(t)^{-1}w(s) \leq 1$ for all $t > s$.

Corollary 5.3 If, in addition to the assumptions of Cor. 5.2, $|a(.)|$ is monotone nonincreasing, one obtains a further simplification of (5.4):

$$\int_{\mathbb{R}} \lambda(s) ds < \infty.$$

Remark The methods developed in this paper can also be applied to Volterra integro-differential equations, since these can be transformed into Volterra integral equations (with a modified kernel). The methods can also be easily adapted to nonlinear operators which are sums of Volterra and Fredholm operators, as considered in [11].

Acknowledgement. The work of the second author was supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University, under Contract DAAG29-85-C-0018.
References

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>662</td>
<td>Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I</td>
</tr>
<tr>
<td>663</td>
<td>Emanuel Parzen, Time series, statistics, and information</td>
</tr>
<tr>
<td>664</td>
<td>Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release</td>
</tr>
<tr>
<td>665</td>
<td>Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation</td>
</tr>
<tr>
<td>666</td>
<td>James F. Reineck, Continuation to gradient flows</td>
</tr>
<tr>
<td>667</td>
<td>Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N–body problem</td>
</tr>
<tr>
<td>668</td>
<td>John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change</td>
</tr>
<tr>
<td>669</td>
<td>Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations</td>
</tr>
<tr>
<td>670</td>
<td>Matthew Stafford, Markov partitions for expanding maps of the circle</td>
</tr>
<tr>
<td>671</td>
<td>Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds</td>
</tr>
<tr>
<td>672</td>
<td>M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations</td>
</tr>
<tr>
<td>673</td>
<td>M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations</td>
</tr>
<tr>
<td>674</td>
<td>Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations</td>
</tr>
<tr>
<td>675</td>
<td>Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice</td>
</tr>
<tr>
<td>676</td>
<td>Christophe Golé, Ghost circles for twist maps</td>
</tr>
<tr>
<td>677</td>
<td>Christophe Golé, Ghost tori for monotone maps</td>
</tr>
<tr>
<td>678</td>
<td>Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits</td>
</tr>
<tr>
<td>679</td>
<td>E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials</td>
</tr>
<tr>
<td>680</td>
<td>Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations</td>
</tr>
<tr>
<td>681</td>
<td>Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure</td>
</tr>
<tr>
<td>682</td>
<td>E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions</td>
</tr>
<tr>
<td>683</td>
<td>George R. Sell, References on dynamical systems</td>
</tr>
<tr>
<td>684</td>
<td>Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds</td>
</tr>
<tr>
<td>685</td>
<td>Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces</td>
</tr>
<tr>
<td>686</td>
<td>Kening Lu, A Hartman–Groban theorem for scalar reaction-diffusion equations</td>
</tr>
<tr>
<td>687</td>
<td>Christophe Golé and Glen R. Hall, Poincaré's proof of Poincaré's last geometric theorem</td>
</tr>
<tr>
<td>688</td>
<td>Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations</td>
</tr>
<tr>
<td>689</td>
<td>Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals</td>
</tr>
<tr>
<td>690</td>
<td>Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion</td>
</tr>
<tr>
<td>691</td>
<td>Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation</td>
</tr>
<tr>
<td>692</td>
<td>H. Scott Dumas, Ergodization rates for linear flow on the torus</td>
</tr>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé's projection</td>
</tr>
<tr>
<td>696</td>
<td>Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencsér, Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng, Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
</tbody>
</table>
H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging

M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

KangPing Chen and Daniel D. Joseph, Lubrication theory and long waves

J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices

Mario Taboada and Yuncheng You, Some stability results for perturbed semilinear parabolic equations

A.J. Lawrance, Local and deletion influence

Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media

Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers

Yongshu Xu, Scattering of acoustic wave by obstacle in stratified medium

Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type

Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun’ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations
Author/s

662 Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I
663 Emanuel Parzen, Time series, statistics, and information
664 Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
665 Ju. S. I’lyashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation
666 James F. Reineck, Continuation to gradient flows
667 Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem
668 John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change
669 Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations
670 Matthew Stafford, Markov partitions for expanding maps of the circle
671 Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
672 M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
673 M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
674 Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
675 Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
676 Christophe Golé, Ghost circles for twist maps
677 Christophe Golé, Ghost tori for monotone maps
678 Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits
679 E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
680 Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
681 Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
682 E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
683 George R. Sell, References on dynamical systems
684 Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
685 Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
686 Kening Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations
687 Christophe Golé and Glen R. Hall, Poincaré's proof of Poincaré's last geometric theorem
688 Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations
689 Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
690 Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
691 Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
692 H. Scott Dumas, Ergodization rates for linear flow on the torus
693 A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
694 A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
695 A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé's projection
696 Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
697 Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
698 László Gerencsér and Zsuzsanna Vághó, A strong approximation theorem for estimator processes in continuous time
699 László Gerencsér, Multiple integrals with respect to L-mixing processes
700 David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
701 Bo Deng, Symbolic dynamics for chaotic systems
703 Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
704 Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces
705 A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation