A CENTRAL LIMIT THEOREM FOR NON-LINEAR VECTOR FUNCTIONALS OF VECTOR GAUSSIAN PROCESSES

By

Tae Il Jeon

and

Tze-Chien Sun

IMA Preprint Series # 745

December 1990
A Central Limit Theorem for Non-linear Vector Functionals of Vector Gaussian Processes

Tae Il Jeon

and

Tze-Chien Sun

Department of Mathematics

Wayne State University

Detroit, Michigan 48202
Abstract

Let \(X_t = (X^1_t, X^2_t) \), \(t = \ldots, -1, 0, 1, \ldots \) be a stationary vector Gaussian random process with covariance function \(r_{ij}(n) = EX^i_tX^j_{t+n}, \ i, j = 1, 2 \). Let \(H(x, y) \) and \(K(x, y) \) be real valued functions with Hermit ranks \(\nu_1 \) and \(\nu_2 \), respectively. Let \(Z^N_H = \frac{1}{\sqrt{N}} \sum_{i=1}^N H(X^1_i, X^2_i) \) and \(Z^N_K = \frac{1}{\sqrt{N}} \sum_{i=1}^N K(X^1_i, X^2_i) \), \(N = 1, 2, \ldots \). We consider the limiting distribution of the vector process \((Z^N_H, Z^N_K) \).

We established the following result: If \(\sum_n |r_{ij}(n)|^{\nu_0} < \infty, i, j = 1, 2 \), where \(\nu_0 = \min\{\nu_1, \nu_2\} \) and some minor conditions hold for the Hermit expansions of \(H \) and \(K \), then \((Z^N_H, Z^N_K) \rightarrow (Z_H, Z_K) \) in distribution as \(N \) tends to \(\infty \), where \(Z^*_H \) and \(Z^*_K \) have a joint normal distribution.

AMS 1980 subject classification: Primary 60F05, secondary 60G15.

Keywords and phrases: central limit theorem, long-range dependence, stationary Gaussian vector processes.
1 Introduction

Many authors have studied the asymptotic distribution of non-linear functions of Gaussian processes or fields [1,2,3,4,5,6,7,8]. They have established Central Limit Theorems (CLT) and Non-Central Limit Theorems (NCLT) depending on the Hermit ranks of the functionals and the rates of the correlation functions. The underlying processes or fields dealt with in those papers are real Gaussian and the functionals are one dimensional real-valued functions. We are interested in the generalization of the results obtained in one dimensional case to the vector case. In this paper we will formulate a CLT of 2-dimensional non-linear functionals of 2-dimensional stationary vector Gaussian process.

Let $X_t = (X^1_t, X^2_t)$, $t = \ldots, -1, 0, 1, \ldots$ be a stationary vector Gaussian process with $EX^1_t = EX^2_t = 0$ and $EX^i_t X^j_{t+n} = r_{ij}(n)$ for $i, j = 1, 2$ and for all t, n. Without loss of generality we can assume

$$r_{11}(0) = r_{22}(0) = 1$$
$$r_{12}(0) = r_{21}(0) = 0,$$

(1)

because otherwise we can define

$$\tilde{X}^1_t = X^1_t / \sqrt{E(X^1_t)^2}$$
$$\tilde{X}^2_t = (X^2_t - E(X^2_t \tilde{X}^1_t) \tilde{X}^1_t) / \sqrt{E[X^2_t - E(X^2_t \tilde{X}^1_t) \tilde{X}^1_t]^2}.$$

Then $\tilde{X} = (\tilde{X}^1_t, \tilde{X}^2_t)$ has the required properties.

Let $H(x, y)$ and $K(x, y)$ be such that $EH(X^1_t, X^2_t) = EK(X^1_t, X^2_t) = 0$ and $E[H(X^1_t, X^2_t)]^2 < \infty, E[K(X^1_t, X^2_t)]^2 < \infty$ for all t. Then H and K have the following expansions

$$H(X^1_t, X^2_t) = \sum_{j=0}^{\infty} \sum_{|m|=j} c_m H_m(X^1_t, X^2_t),$$
$$K(X^1_t, X^2_t) = \sum_{j=0}^{\infty} \sum_{|m|=j} d_m K_m(X^1_t, X^2_t),$$

(2)
with
\[\sum_{j=0}^{\infty} \sum_{|m|=j} c_m^2 m_1! m_2! < \infty, \quad \text{and} \quad \sum_{j=0}^{\infty} \sum_{|m|=j} d_m^2 m_1! m_2! < \infty, \]
where \(m = (m_1, m_2), |m| = m_1 + m_2 \) and \(H_m(x, y) \) is the Hermite polynomial of two variables defined by
\[H_m(x, y) = (-1)^{|m|} e^{x^2 + y^2} \frac{\partial^{|m|}}{\partial x^{m_1} \partial y^{m_2}} e^{-\frac{x^2 + y^2}{2}}. \]
We say that \(H \) has Hermite rank \(\nu_1 \), and \(K \) has Hermite rank \(\nu_2 \) if \(c_m = 0 \) for \(|m| < \nu_1 \) and \(c_m \neq 0 \) for some \(|m| = \nu_1 \), and \(d_m = 0 \) for \(|m| < \nu_2 \) and \(d_m \neq 0 \) for some \(|m| = \nu_2 \) respectively. Let \(\nu_0 = \min(\nu_1, \nu_2) \). Define, for \(N = 1, 2, \ldots, \)
\[Z_H^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} H(X^1_t, X^2_t), \]
\[Z_K^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} K(X^1_t, X^2_t). \]
We are interested in the limiting distribution of the process \((Z_H^N, Z_K^N) \) as \(N \to \infty \). We shall use the following notations.
\[Z_H^N(j) = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} \sum_{|m|=j} c_m H_m(X^1_t, X^2_t), \]
\[Z_K^N(j) = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} \sum_{|m|=j} d_m K_m(X^1_t, X^2_t). \]
and
\[H_m^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} H_m(X^1_t, X^2_t), \]
\[K_m^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} K_m(X^1_t, X^2_t). \]
Using (6), we can write (4) as
\[Z_H^N = \sum_{j=\nu_1}^{\infty} \sum_{|m|=j} c_m H_m^N, \]
\[Z_K^N = \sum_{j=\nu_2}^{\infty} \sum_{|m|=j} d_m K_m^N. \]
To state the main theorem below, we need two assumptions; one on the structure of the underlying process X_t and the other on the expansions of H and K

(i) \[\sum_{n=\infty}^\infty |r_{ij}(n)|^2 < \infty, \quad i, j = 1, 2. \]

(ii) \[\sum_{j=0}^\infty (\sum_{|m|=j} |c_m|)^2 j! < \infty, \]
\[\sum_{j=0}^\infty (\sum_{|m|=j} |d_m|)^2 j! < \infty. \] (9)

Theorem 1. Suppose that the functions H and K have Hermite expansions (2) with ranks ν_1 and ν_2, respectively, and suppose (8) and (9) are satisfied. Then we have

\[\lim_{N \to \infty} E(Z_H^N(j)Z_K^N(j)) \leq C j! \left(\sum_{|m|=j} |c_m| \right) \left(\sum_{|d|=j} |d_{\ell}| \right) \] (10)

for all $j \geq \max(\nu_1, \nu_2)$ and

\[\lim_{N \to \infty} E(Z_H^N Z_K^N) = \rho < \infty, \text{ for some } \rho, \]
\[\lim_{N \to \infty} E(Z_H^N)^2 = \sigma_1^2 < \infty, \text{ for some } \sigma_1^2, \]
\[\lim_{N \to \infty} E(Z_K^N)^2 = \sigma_2^2 < \infty, \text{ for some } \sigma_2^2. \] (11)

Moreover,

\[(Z_H^N, Z_K^N) \overset{d}{\to} (Z_H, Z_K), \] (12)

where (Z_H, Z_K) is a jointly Gaussian random vector with

\[E(Z_H^2) = \sigma_1^2, \quad E(Z_K^2) = \sigma_2^2 \quad \text{and} \quad E(Z_H^* Z_K^*) = \rho. \]

The condition (8) is a generalization of the condition used in [1] for the one dimensional case. The conditions in (9) are stronger than the L^2-conditions (3) on H and K. In the one dimensional case, we only need the L^2-condition for H. Here we need the stronger conditions in (9) because, in the expressions in (2), we have, by (1),

\[E[H_m(X_1^i, X_2^i)H_\ell(X_1^\ell, X_2^\ell)] = 0 \text{ for } m \neq \ell. \] But in expressions in (7), we only have
\[E[H_m^N H_\ell^N] = 0 \text{ for } |m| \neq |\ell|, \text{ or } E[H_m^N H_\ell^N] \text{ may not be zero for } m \neq \ell \text{ but } |m| = |\ell|. \]
The non-orthogonality of H^N_m and H^N_ℓ for $m \neq \ell$ and $|m| = |\ell|$ makes it necessary for the use of assumption (9). It seems that it is very hard to remove conditions like those in (9).

2 Proof of Theorem

First we will introduce a diagram formula about the expectation of a product of Hermit polynomials of standard Gaussian random variables. In order to set up the formula we need some preliminary. We call an undirected graph G with $\sum_{j=1}^p (\ell^1_j + \ell^2_j)$ vertices a diagram of order $l = (\ell^1, \ell^2, \ldots, \ell^p)$, where $\ell^j = (\ell^1_j, \ell^2_j)$ for $j = 1, \ldots, p$, if it satisfies the following three conditions:

(i) The set of vertices V of the graph G has the form

$$V = \bigcup_{j=1}^p S_j,$$

where

$$S_j = L^1_j \cup L^2_j$$

and

$$L^1_j = \{(2j-1, n)|1 \leq n \leq \ell^1_j\},$$

$$L^2_j = \{(2j, n)|1 \leq n \leq \ell^2_j\},$$

$$j = 1, \ldots, p.$$ (for $\ell^k_j = 0, k = 1, 2$, define $L^k_j = \phi$). We call S_j the j^{th} sector of the graph G, L^1_j the $(2j-1)^{th}$ level, and L^2_j the $(2j)^{th}$ level of the graph G.

(ii) Every vertex is of degree 1.

(iii) Edges may pass only between different sectors, i.e. no edge passes between levels L^1_j and L^2_j, for $j = 1, \ldots, p$.

Let $\Gamma = \Gamma(l) = \Gamma (\ell^1, \ldots, \ell^p)$ denote the set of diagrams with properties (i),(ii), and (iii) above. Given a graph $G \in \Gamma$ let $V(G)$ be the set of all edges of G and let $V_G(L^1_{i_1}, L^1_{i_2}), i_1, i_2 = 1, 2; j_1, j_2 = 1, \ldots, p$ be the set of all edges pass between levels
$L_{i_1}^{j_1}$ and $L_{i_2}^{j_2}$. If $\omega \in V_G(L_{i_1}^{j_1}, L_{i_2}^{j_2})$ then define $d_1(\omega) = j_1$ and $d_2(\omega) = j_2$. Define $k_G(j) = |\{\omega \in G|d_1(\omega) = j\}|$. Indeed $k_G(j)$ is the cardinality of the set of edges $w \in V(G)$ which begin at the j^{th} sector and end at sectors of indices higher than j.

Definition 1. We call a diagram regular if its sectors can be paired in such a way that no edge passes between sectors in different pairs.

Now let’s state the diagram formula for random vectors.

Lemma 1. (Diagram Formula) Let $(X_{t_1}, \ldots, X_{t_p})$, $p \geq 2$ be such that $X_{t_i} = (X_{t_i}^1, X_{t_i}^2)$, $i = 1, \ldots, p$ are jointly normal and for each $t, s \in \{t_1, \ldots, t_p\}$ $EX_t^1 = EX_t^2 = 0$, $E(X_t^1)^2 = E(X_t^2)^2 = 1$, $EX_t^1 X_s^2 = 0$, $EX_t^1 X_s^1 = r_{ij}(s-t), i, j = 1, 2$. Then we have

$$E(\prod_{i=1}^{p} H_{\ell}^{\omega}(X_{t_i}^1, X_{t_i}^2)) = \sum_{G \in \Omega(\ell)} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}),$$

where $u(t_{d_1(\omega)} - t_{d_2(\omega)}) = r_{i_1i_2}(t_{j_1} - t_{j_2})$ if $\omega \in V_G(L_{i_1}^{j_1}, L_{i_2}^{j_2})$ and $1 = (\ell^1, \ldots, \ell^p)$.

The lemma above is just slightly modified from the diagram formula for real-valued random variables. Note that the $(m_1, m_2)^{th}$ Hermit polynomial can be expressed as a product of m_1^{th} and m_2^{th} Hermit polynomials, that is,

$$H_m(x, y) = H_{(m_1, m_2)}(x, y) = H_{m_1}(x) H_{m_2}(y).$$

As a special case of the diagram formula, $p = 2$, we have

$$E(H_m(X_{t_1}^1, X_{t_1}^2) H_{\ell}(X_{s_1}^1, X_{s_1}^2)) = 0$$

(14)

if $|m| \neq |\ell|$, because there is no diagram between two sectors with different number of vertices. The property (14) is called the orthogonality of Hermit polynomials. Note that $|m| = m_1 + m_2$. It follows from (14) that

$$E(Z^N_H Z^K_N) = \sum_{j=\nu}^{\infty} E[Z^N_H(j) Z^K_N(j)],$$

7
where $\nu = \max(\nu_1, \nu_2)$. First we will compute $E[Z_H^N(j)Z_K^N(j)]$ for $j \geq \nu$.

\[
E(Z_H^N(j)Z_K^N(j)) = \frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} \sum_{|m|=|\ell|=j} c_m d_{\ell} E[H_{m_1}(X_{t_1}^1)H_{m_2}(X_{t_2}^2)H_{l_1}(X_{l_1}^1)H_{l_2}(X_{l_2}^2)]
\]

\[
= \sum_{|m|=|\ell|=j} c_m d_{\ell} \frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} \sum_{G \in \Gamma(m, \ell)} \prod_{\omega \in \mathcal{V}(G)} u(t_{d_1}(\omega) - t_{d_2}(\omega))
\]

\[
= \sum_{|m|=|\ell|=j} c_m d_{\ell} \frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} \sum_{s=\max(0, m_1-l_2)}^{\min(m_1, l_1)} \binom{m_1}{s} \binom{l_1}{s} \binom{m_2}{l_2-s} \binom{l_2-m_1+s}{l_2-s}
\]

\[
\times[r_{t_1}^{s}(t_1-t_2) r_{t_2}^{m_1-s}(t_1-t_2) r_{t_1-t_2}^{s}(t_1-t_2) r_{t_1-t_2}^{l_1-s}(t_1-t_2)]
\]

\[
= \sum_{|m|=|\ell|=j} c_m d_{\ell} \sum_{s=\max(0, m_1-l_2)}^{\min(m_1, l_1)} \frac{m_1! m_2! l_1! l_2!}{s!(l_1-s)!(m_1-s)!(l_2-m_1+s)!(l_1-s)!}
\]

\[
\times \left[\frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} r_{t_1}^{s}(t_1-t_2) r_{t_2}^{m_1-s}(t_1-t_2) r_{t_1-t_2}^{s}(t_1-t_2) r_{t_1-t_2}^{l_1-s}(t_1-t_2) \right].
\]

(15)

With the condition (8) of the covariance functions we can show that

\[
\frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} r_{t_1}^{s}(t_1-t_2) r_{t_2}^{m_1-s}(t_1-t_2) r_{t_1-t_2}^{s}(t_1-t_2) r_{t_1-t_2}^{l_1-s}(t_1-t_2) \leq C_1
\]

(16)

for some constant C_1 and for all N. In fact, by Hölder’s inequality, we have

\[
\frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} r_{t_1}^{s}(t_1-t_2) r_{t_2}^{m_1-s}(t_1-t_2) r_{t_1-t_2}^{s}(t_1-t_2) r_{t_1-t_2}^{l_1-s}(t_1-t_2)
\]

\[
\leq \sum_{u=-N+1}^{N-1} \left(1 - \frac{|u|}{N}\right)|r_{t_1}^{s}(u)||r_{t_2}^{m_1-s}(u)||r_{t_2}^{l_1-s}(u)||r_{t_2}^{l_1-s}(u)]]^s
\]

\[
\leq \left[\sum_u |r_{t_1}^{s}(u)|^s \right] \cdot \left[\sum_u |r_{t_2}^{m_1-s}(u)|^s \right] \cdot \left[\sum_u |r_{t_2}^{l_1-s}(u)|^s \right] \cdot \left[\sum_u |r_{t_2}^{l_1-s}(u)|^s \right]
\]

\[
\leq \max_{i,j=1,2} \left\{ \sum_u |r_{ij}^{s}(u)|^s \right\} = C_1
\]

(17)

If some of the exponents s, m_1-s, l_2-m_1+s and l_1-s are zero, then the corresponding factor with zero exponent is bounded by 1. Therefore (16) holds true. By (16) and
the following identity

$$\sum_{s=\max(0,m_1-l_2)}^{\min(m_1,l_1)} \frac{m_1!m_2!l_1!l_2!}{s!(l_1-s)!(m_1-s)!(l_2-m_1+s)!} = (m_1 + m_2)!.$$

we have

$$|E(Z_H^N(j)Z_K^N(j))| \leq C_1 j! \left(\sum_{|m|=j} |c_m||\sum_{|\ell|=j} |d_\ell| \right). \quad (18)$$

By (18), Schwartz’s inequality and (9)

$$|E(Z_H^N Z_K^N)| = \left| \sum_{j=\nu}^{\infty} E(Z_H^N(j)Z_K^N(j)) \right| \leq \sum_{j=\nu}^{\infty} |E(Z_H^N(j)Z_K^N(j))|$$

$$\leq C_1 \sum_{j=\nu}^{\infty} j! \left(\sum_{|m|=j} |c_m||\sum_{|\ell|=j} |d_\ell| \right)$$

$$\leq C_1 \sqrt{\left[\sum_{j=\nu}^{\infty} \left(\sum_{|m|=j} |c_m| \right)^2 j! \right] \left[\sum_{j=\nu}^{\infty} \left(\sum_{|\ell|=j} |d_\ell| \right)^2 j! \right]}.$$

Now we will show the existence of \(\rho \) in (11). To show this it is enough to show that \(\{E(Z_H^N Z_K^N)\}_N \) is a Cauchy sequence in \(N \). For a given \(\varepsilon > 0 \) choose \(K \) sufficiently large so that, if \(K < M \leq N \),

$$|E(Z_H^N Z_K^N) - E(Z_H^M Z_K^M)|$$

$$= \left| \sum_{j=\nu}^{\infty} E(Z_H^N(j)Z_K^N(j)) - \sum_{j=\nu}^{\infty} E(Z_H^M(j)Z_K^M(j)) \right|$$

$$= \left| \sum_{j=\nu}^{\infty} [E(Z_H^N(j)Z_K^N(j)) - E(Z_H^M(j)Z_K^M(j))] \right|$$

$$= \left| \sum_{j=\nu}^{\infty} \left(\sum_{|m|=|\ell|=j} c_m d_{\ell j} \times \left[\frac{1}{N} \sum_{t_1=1}^{N} \sum_{t_2=1}^{N} r_{11}^s (t_1 - t_2) r_{12}^{m_1-s} (t_1 - t_2) r_{22}^{l_2-m_1+s} (t_1 - t_2) r_{21}^{l_1-s} (t_1 - t_2) \right] \right. \right.$$
Then the absolute value of the expression inside the bracket of the last term is

\[
\sum_{M \leq |n| < N} (1 - \frac{|n|}{N}) r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n) \]

\[+ \sum_{|n| < M} (1 - \frac{|n|}{M}) r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n) \]

\[= \sum_{M \leq |n| < N} (1 - \frac{|n|}{N}) r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n) \]

\[+ \sum_{|n| < M} [(1 - \frac{|n|}{N}) - (1 - \frac{|n|}{M})] r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n) \]

\[\leq \sum_{M \leq |n| < N} |r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n)| \]

\[+ \sum_{|n| < M} |n| (\frac{1}{M} - \frac{1}{N}) |r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n)| \]

\[\leq \sum_{|n| < M} |n| (\frac{1}{M} - \frac{1}{N}) |r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n)| \]

\[+ \sum_{K < |n|} |r_{11}^{-s}(n) r_{12}^{m_1-s}(n) r_{22}^{l_2-m_1+s}(n) r_{21}^{l_1-s}(n)|. \]

Since the second term above is the tail of a convergent series by (16) we can find a sufficiently large \(K \) which makes the second term less than \(\frac{\varepsilon}{2} \) and choose \(M \) and \(N \), so large that the first term is also less than \(\frac{\varepsilon}{2} \). Hence we have

\[
|E(Z_H^N Z_K^N) - E(Z_H^M Z_K^M)| \leq \varepsilon \sum_{j=\nu}^{\infty} \sum_{|m|=|\ell|=j} |c_m||d_\ell||j!|
\]

\[\leq \varepsilon \sum_{j=\nu}^{\infty} j! \sum_{|m|=|\ell|=j} |c_m||d_\ell|
\]

\[\leq \varepsilon \sum_{j=\nu}^{\infty} j! (\sum_{|m|=j} |c_m|)(\sum_{|\ell|=j} |d_\ell|)
\]

\[\leq \varepsilon \sqrt{\sum_{j=\nu}^{\infty} j!(\sum_{|m|=j} |c_m|)^2} \left(\sum_{j=\nu}^{\infty} j!(\sum_{|\ell|=j} |d_\ell|)^2 \right)^{1/2}.
\]

This implies the existence of \(\rho \) as defined in (11). As a special case, if \(H = K \) in the argument above, we have

\[
\lim_{N \to \infty} E(Z_H^N)^2 = \sigma_1^2 < \infty \quad \text{and} \quad \lim_{N \to \infty} E(Z_K^N)^2 = \sigma_2^2 < \infty.
\]

10
We may assume that the expansions in (2) have only finite terms. To see this let \(H_1, K_1 \) be defined by, for a large number \(T \),
\[
H_1(x, y) = \sum_{j=T}^{\infty} \sum_{|m|=j} c_m H_m(x, y)
\]
\[
K_1(x, y) = \sum_{j=T}^{\infty} \sum_{|\ell|=j} d_\ell H_\ell(x, y).
\]

Then, by (18) and Schwartz’s inequality,
\[
|E(Z_{H_1}^N, Z_{K_1}^N)| = |\sum_{j=T}^{\infty} E(Z_H^N(j)Z_K^N(j))| \\
\leq \sum_{j=T}^{\infty} |E(Z_H^N(j)Z_K^N(j))| \\
\leq C_1 \left[\sum_{j=T}^{\infty} j!(\sum_{|m|=j} |c_m|^2) \right] \left[\sum_{j=T}^{\infty} j!(\sum_{|\ell|=j} |d_\ell|^2) \right] \\
\leq C_1 \left[\sum_{j=T}^{\infty} j!(\sum_{|m|=j} |c_m|^2) \right] \left[\sum_{j=T}^{\infty} j!(\sum_{|\ell|=j} |d_\ell|^2) \right].
\]

Since
\[
\sum_{j=\nu}^{\infty} j!(\sum_{|m|=j} |c_m|^2) < \infty \quad \text{and} \quad \sum_{j=\nu}^{\infty} j!(\sum_{|\ell|=j} |d_\ell|^2) < \infty,
\]
we can find a sufficiently large \(T \) such that
\[
|E(Z_{H_1}^N, Z_{K_1}^N)| < \varepsilon.
\]

Because of relation (19) we can restrict ourselves to the special case when \(H \) and \(K \) are polynomials, in other words, when the sums in (2) are finite.

In order to prove the remaining part of the Theorem we shall apply the method of moments. We will show that the moments of random vector \((Z_H^N, Z_K^N)\) tend to the moments of an appropriate jointly Gaussian random vector. Suppose a set \(\{1, 2, \ldots, n\} \), \(n \) is even, is given. We call the \(n/2 \) ordered pairs \((\tau(1), \tau(2)), (\tau(3), \tau(4)), \ldots, (\tau(n-1), \tau(n))\) a pairing of \(\{1, \ldots, n\} \) if \(\tau \) is a permutation on \(\{1, \ldots, n\} \) and satisfies

\[
(i) \quad \tau(2i - 1) < \tau(2i), \quad \text{for} \quad i = 1, \ldots, \frac{n}{2},
\]
\[
(ii) \quad \tau(2i - 1) < \tau(2j - 1), \quad \text{for} \quad 1 \leq i < j \leq \frac{n}{2},
\]
and this pairing is denoted by τ. Let P be the set of all pairing of $\{1, 2, \ldots, n\}$.

The following lemma is well-known and can be derived from Lemma 1.

Lemma 2. Let X and Y be two random variables with $EX = EY = 0, EX^2 = \sigma_1^2, EY^2 = \sigma_2^2$ and $EXY = \rho$. Then X and Y are jointly Gaussian, if and only if, for every positive integers m and n,

$$E(X^mY^n) = \begin{cases} \sum_{\tau \in P} \prod_{i=1}^{m+n} h_i(\tau) & \text{if } m + n \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

where P is the set of all pairings of $\{1, 2, \ldots, m + n\}$ and

$$h_i(\tau) = \begin{cases} \sigma_1^2 & \text{if } \tau(2i - 1), \ \tau(2i) \leq m \\ \rho & \text{if } \tau(2i - 1) \leq m < \tau(2i) \\ \sigma_2^2 & \text{if } \tau(2i - 1), \ \tau(2i) > m, \end{cases}$$

$i = 1, \ldots, \frac{m+n}{2}$.

By Lemma 2, it is enough to show that, for all positive integers m and n,

$$\lim_{N \to \infty} E[(Z_H^N)^m(Z_K^N)^n] = \begin{cases} \sum_{\tau \in P} \prod_{i=1}^{\frac{m+n}{2}} h_i(\tau) & \text{if } m + n \text{ is even} \\ 0 & \text{otherwise}. \end{cases} \quad (20)$$

Since we may assume

$$H(x, y) = \sum_{j=\nu_1}^{K_1} \sum_{|\ell|=j} c_\ell H_{\ell} \text{ and } K(x, y) = \sum_{j=\nu_2}^{K_2} \sum_{|\ell|=j} d_\ell H_{\ell},$$

we have

$$Z_H^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} \sum_{j=\nu_1}^{K_1} \sum_{|\ell|=j} c_\ell H_{\ell}(X_{t1}^1, X_{t2}^2)$$

$$Z_K^N = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} \sum_{j=\nu_2}^{K_2} \sum_{|\ell|=j} d_\ell H_{\ell}(X_{t1}^1, X_{t2}^2)$$

and

$$(Z_H^N)^m = \frac{1}{(\sqrt{N})^m} \sum_{t_1=1}^{N} \cdots \sum_{t_m=1}^{N} \sum_{j \in E(m, K_1)} \sum_{i=1}^{m} c_{\ell}^{i} H_{\ell_1}^{i}(X_{t1}^1) H_{\ell_2}^{i}(X_{t2}^2)$$

$$(Z_K^N)^n = \frac{1}{(\sqrt{N})^n} \sum_{t_1=1}^{N} \cdots \sum_{t_n=1}^{N} \sum_{j \in E(n, K_2)} \sum_{i=1}^{n} d_{\ell} H_{\ell_1}^{i}(X_{ti}^1) H_{\ell_2}^{i}(X_{ti}^2)$$

$$E[(Z_H^N)^m(Z_K^N)^n] = \frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \sum_{j \in E} \sum_{i \in B} \sum_{i=1}^{m+n} h_i(\tau) \sum_{i=1}^{m+n} H_{\ell_1}^{i}(X_{t1}^1) H_{\ell_2}^{i}(X_{t2}^2)],$$

12
where

\[A = A(m+n, N) = \{ t = (t_1, \ldots, t_{m+n}) \mid 1 \leq t_i \leq N, \ i = 1, \ldots, m+n \}, \]

\[E = E(m+n, (K_1, K_2)) \]

\[= \{ j = (j_1, \ldots, j_{m+n}) \mid \nu_1 \leq j_i \leq K_1, \text{if } 1 \leq i \leq m; \]

\[\nu_2 \leq j_i \leq K_2, \text{if } m + 1 \leq i \leq m+n \}, \]

\[B = B(m+n, j) \]

\[= \{ l = (\ell^1, \ldots, \ell^{m+n}) \mid 0 \leq l^1_i, l^2_i \leq j_i; \ |\ell^i| = l^1_i + l^2_i = j_i, \ i = 1, \ldots, m+n \}, \]

\[\overline{c} = \prod_{i=1}^{m} c_{\ell^i}, \]

\[\overline{d} = \prod_{i=m+1}^{m+n} d_{\ell^i}, \]

and

\[E(m, K_1) = \{ j = (j_1, \ldots, j_m) \mid \nu_1 \leq j_i \leq K_1, \text{if } 1 \leq i \leq m \}. \]

Note that \(B(m+n, j) \) and \(E(m+n, (K_1, K_2)) \) does not increase with \(N \). Let’s fix \(j \) and \(l \). Then we have by the Diagram Formula

\[\frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \overline{c} \overline{d} E[\prod_{i=1}^{m+n} H_{l^1_i} (X^1_{x_i}) H_{l^2_i} (X^2_{x_i})] \]

\[= \frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \overline{c} \overline{d} \sum_{G \in \Gamma(j, l)} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \]

where \(\Gamma(j, l) \) is defined as the set of all diagrams \(\Gamma(j, l) = \Gamma(\ell^1, \ldots, \ell^{m+n}) \), with \(0 \leq l^1_i, l^2_i \leq j_i, \ |\ell^i| = l^1_i + l^2_i = j_i, \ i = 1, \ldots, m+n \). Define

\[T_G(j, l, N) = \frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) . \] (21)

For clarity, in the following, we shall denote \(\Gamma(j, l) \) as the set \(\Gamma(l) \) of diagrams such that \(l \in B(m+n, j) \) and denote \(G(j, l) \) as an element of \(\Gamma(j, l) \).

We need the following proposition to prove our theorem and we shall delay the proof of this proposition to the next section.

Proposition 1. If \(G = G(j, l) \in \Gamma(j, l) \) is not a regular diagram, then

\[\lim_{N \to \infty} T_G(j, l, N) = 0. \]
First, we shall prove the relation (20) by applying Proposition 1. By (21), we have

\[E[(Z^N_H)^m(Z^N_K)^n] = \sum_j \sum_1 \sum_{G \in \Gamma(j,1)} \bar{c} \bar{d} \ T_G(j,1,N). \]

(22)

Let \(\Gamma^*(j,1) \) denote the set of all regular diagrams in \(\Gamma(j,1) \). If \(m+n \) is an odd number then \(\Gamma^*(j,1) \) is empty. Hence the Proposition 1 together with the relation (22) imply that

\[\lim_{N \to \infty} E[(Z^N_H)^m(Z^N_K)^n] = 0 \text{ if } m+n \text{ is an odd number}, \]

(23)

If \(m+n \) is an even number, then write \(m+n = 2q \). Let’s fix a diagram \(G(j,1) \in \Gamma^*(j,1) \). Then there is a pairing \(\tau = ((\tau(1), \tau(2)), \ldots, (\tau(2q-1), \tau(2q))) \) of \(\{1, \ldots, 2q\} \) such that edges go only between sectors \(S_{\tau(2i-1)} \) and \(S_{\tau(2j)} \), \(i = 1, \ldots, q \). Note that \(|\bar{t}_{\tau(2i-1)}| = j_{\tau(2i-1)} = j_{\tau(2i)} = |\bar{t}_{\tau(2i)}| \), or \(S_{\tau(2i-1)} \) and \(S_{\tau(2j)} \) have the same cardinality for \(i = 1, \ldots, q \). Now we can write

\[T_G(j,1,N) = \frac{1}{(\sqrt{N})^{2q}} \sum_{t \in A} \prod_{i=1}^{q} \left(\prod_{\omega \in V(G_i)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right), \]

where \(V(G_i) = \{ \omega \in V(G) | d_1(\omega) = \tau(2i-1), d_2(\omega) = \tau(2i) \} \). Denote

\[E^*(p, (K_1, K_2)) \]

= \{ j \in E \mid \exists \text{ a pairing } \tau \text{ of } \{1, \ldots, p\} \text{ with } j_{\tau(2i-1)} = j_{\tau(2i)}; \forall i = 1, \ldots, \frac{p}{2} \},

where \(p = m+n \). If \(j \) is not in \(E^*(p, (K_1, K_2)) \), then \(\Gamma^*(j,1) = \phi \). By Proposition 1

\[\lim_{N \to \infty} E[(Z^N_H)^m(Z^N_K)^n] = \sum_j \sum_1 \sum_{G \in \Gamma(j,1)} \bar{c} \bar{d} \lim_{N \to \infty} T_G(j,1,N) \]

= \sum_{J \in E^*} \sum_{\omega \in B} \sum_{G \in \Gamma^*} \bar{c} \bar{d} \lim_{N \to \infty} T_G(j,1,N) \]

= \lim_{N \to \infty} \frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \sum_{\omega \in V(G)} \sum_{\omega \in V(G)} \bar{c} \bar{d} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \]

By comparing individual terms appeared in each side of the following equation we can show relation below holds true.

\[\sum_{J \in E^*} \sum_{\omega \in B} \sum_{G \in \Gamma^*} \bar{c} \bar{d} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \]

= \sum_{\tau \in E^*} \left(\sum_{j \in E^*} \sum_{\omega \in B} \sum_{G \in \Gamma^*} \alpha_{2i-1} \alpha_{2i} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right),
where

\[E^*_i = E^*_i(m+n, (K_1, K_2)) \]
\[= \{ j_i = (j_{\tau(2i-1)}, j_{\tau(2i)}) | \nu_1 \leq j_{\tau(k)} \leq K_1, \ if \ \tau(k) \leq m; \]
\[\nu_2 \leq j_{\tau(k)} \leq K_2, \ if \ \tau(k) > m; k = 2i - 1, 2i \}, \]

\[B_i = B_i(m+n, j_i) \]
\[= \{ l_i = (\ell^{\tau(2i-1)}, \ell^{\tau(2i)}) | [\ell^{\tau(2i-1)}] = [\ell^{\tau(2i)}] = j_{\tau(2i-1)} = j_{\tau(2i)}; \]
\[0 \leq l_i^{\tau(k)}, l_i^{\tau(k)} \leq j_{\tau(k)} \ for \ k = 2i - 1, 2i \}, \]

\[\Gamma^*_i = \Gamma^*(j_i, l_i), \]

\[\alpha_k = \begin{cases}
\sigma^{\tau(k)}_2 & if \ \tau(k) \leq m \\
\sigma^{\tau(k)}_2 & \tau(k) > m \\
\end{cases}
\]

Therefore

\[\lim_{N \to \infty} \frac{1}{(\sqrt{N})^{m+n}} \sum_{t \in A} \sum_{j \in E^*} \sum_{l \in B} \sum_{G \in \Gamma^*(j, l)} \sum_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \]
\[= \lim_{N \to \infty} \frac{1}{(\sqrt{N})^{m+n}} \left[\sum_{\tau \in P} \prod_{i=1}^{m+n} \left[\sum_{t_i \in T_i} \sum_{j_i \in E_i^*} \sum_{l_i \in B_i} \sum_{G \in \Gamma^*_i} \sum_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right] \right] \]
\[= \sum_{\tau \in P} \prod_{i=1}^{m+n} h_i(\tau), \]

where the sum \[\sum_{t_i \in T_i} \] means the double sum \[\sum_{t_{\tau(2i-1)}} \sum_{t_{\tau(2i)}} \]

\[h_i(\tau) = \begin{cases}
\sigma^{\tau(2i-1)}_2, \tau(2i) \leq m \\
\rho \ & \tau(2i-1) \leq m < \tau(2i) \\
\sigma^{\tau(2i-1)}_2 \ & m < \tau(2i-1), \tau(2i) \end{cases} \]

Hence the theorem is proved.

3 Proof of the Proposition 1

Let \(G = G(j, l) \) be a non regular diagram. Let \(\sigma \) be a permutation on \(\{1, 2, \ldots, p\} \),

where \(p = m + n \). Define \(\sigma G \) in the following way:
(i) The $\sigma(j)^{th}$ sector of σG is (l_1^j, l_2^j).

(ii) $\omega = \{(m_1, n_1), (m_2, n_2)\} \in V(G)$ if and only if

$$\sigma \omega = \{(\sigma(m_1), n_1), (\sigma(m_2), n_2)\} \in \sigma V(G).$$

Observe that, for $G = G(j, l) \in \Gamma(j, l) = \Gamma((l_1^1, l_2^1), \ldots, (l_1^p, l_2^p))$,

$$\sum_{t_1=1}^{N} \cdots \sum_{t_p=1}^{N} \prod_{i=1}^{p} C_{T^i} \prod_{\omega \in V(G)} u(t_{d_1}(\omega) - t_{d_2}(\omega))$$

$$= \sum_{t_{\sigma(1)}=1}^{N} \cdots \sum_{t_{\sigma(p)}=1}^{N} \prod_{i=1}^{p} C_{T^\sigma(i)} \prod_{\sigma \omega \in \sigma V(G)} u(t_{d_1}(\sigma \omega) - t_{d_2}(\sigma \omega))$$

$$= \sum_{t_1=1}^{N} \cdots \sum_{t_p=1}^{N} \prod_{i=1}^{p} C_{T^\sigma(i)} \prod_{\omega \in \sigma V(G)} u(t_{d_1}(\omega) - t_{d_2}(\omega)) \quad (24)$$

For every diagram G there exists a permutation σ such that $G' = \sigma G$, where G' has the following property; $G' \in \Gamma((l_1^1, l_2^1), \ldots, (l_1^p, l_2^p))$ with some pairs of integers $(l_1^1, l_2^1), \ldots, (l_1^p, l_2^p)$ such that

$$l_1^1 + l_2^1 \leq l_1^2 + l_2^2 \leq \cdots \leq l_1^p + l_2^p. \quad (25)$$

Because of relation (24) it is enough to prove the proposition only for the diagram $G \in \Gamma(j, l)$ which have the property (25). Now we can write

$$\frac{1}{(\sqrt{N})^p} \sum_{t \in A(p, N)} \prod_{i=1}^{p} C_{T^i} \prod_{\omega \in V(G)} u(t_{d_1}(\omega) - t_{d_2}(\omega))$$

$$\leq \frac{1}{(\sqrt{N})^p} \sum_{t \in A(p, N)} \prod_{i=1}^{p} \left| C_{T^i} \right| \prod_{\omega \in V(G)} \left| u(t_{d_1}(\omega) - t_{d_2}(\omega)) \right| \right]. \quad (26)$$

But

$$\prod_{\omega \in V(G)} |u(t_i - t_{d_2}(\omega))| \leq \frac{1}{k_G(i)} \sum_{\omega \in V(G)} |u(t_i - t_{d_2}(\omega))| ^{k_G(i)}, \quad (27)$$

by Jensen’s inequality. Let

$$A_{\gamma}(i) = \bigcup_{n \geq i} V_G(L_n^i, L_n^m),$$

16
where $\delta, \gamma = 1, 2$, so that

$$\{ \omega \in V(G) \mid d_1(\omega) = i \} = \bigcup_{\delta, \gamma = 1, 2} A_{\delta \gamma}(i).$$

Therefore we have

$$\left| \frac{1}{(\sqrt{N})^p} \sum_{t \in A(p,N)} \prod_{i=1}^{p} c_{t,i} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right|$$

$$\leq \frac{1}{(\sqrt{N})^p} \sum_{t \in A(p,N)} \prod_{i=1}^{p} \left[\left| c_{t,i} \right| \frac{1}{k_G(i)} \sum_{\omega \in V(G)} \left| u(t_i - t_{d_2(\omega)}) \right|^{k_G(i)} \right]$$

$$= \frac{1}{(\sqrt{N})^p} \sum_{t_2=1}^{N} \cdots \sum_{t_p=1}^{N} \prod_{i=1}^{p} \left[\frac{1}{k_G(i)} \sum_{\omega \in V(G)} \left| u(t_i - t_{d_2(\omega)}) \right|^{k_G(i)} \right]$$

$$\times \left[\prod_{i=2}^{p} \left[\frac{1}{k_G(i)} \sum_{\omega \in V(G)} \left| u(t_i - t_{d_2(\omega)}) \right|^{k_G(i)} \right] \right]$$

$$= \frac{1}{(\sqrt{N})^p} \sum_{t_2=1}^{N} \cdots \sum_{t_p=1}^{N} \prod_{i=1}^{p} \left[\frac{1}{k_G(i)} \sum_{\omega \in V(G)} \left| u(t_i - t_{d_2(\omega)}) \right|^{k_G(i)} \right]$$

$$\times \left[\sum_{t_1=1}^{N} \left[\frac{1}{k_G(1)} \sum_{\omega \in V(G)} \left| u(t_1 - t_{d_2(\omega)}) \right|^{k_G(1)} \right] \right]. \quad (28)$$

Observe that

$$\sum_{t_1=1}^{N} \frac{1}{k_G(1)} \sum_{\omega \in V(G)} \left| u(t_1 - t_{d_2(\omega)}) \right|^{k_G(1)}$$

$$= \frac{1}{k_G(1)} \sum_{t_1=1}^{N} \sum_{\delta, \gamma = 1, 2} \sum_{\omega \in A_{\delta \gamma}(1)} \left| r_{\delta \gamma}(t_1 - t_{d_2(\omega)}) \right|^{k_G(1)}$$

$$\leq \frac{1}{k_G(1)} \sum_{\delta, \gamma = 1, 2} \sum_{\omega \in A_{\delta \gamma}(1)} \sup_{1 \leq \nu \leq N} \sum_{t_1=1}^{N} \left| r_{\delta \gamma}(t_1 - \nu) \right|^{k_G(1)}$$

$$\leq \frac{1}{k_G(1)} \sum_{\delta, \gamma = 1, 2} \sum_{\omega \in A_{\delta \gamma}(1)} \sum_{|s| < N} \left| r_{\delta \gamma}(s) \right|^{k_G(1)}$$

$$\leq \sum_{|s| < N} \sum_{\delta, \gamma = 1, 2} \left| r_{\delta \gamma}(s) \right|^{k_G(1)}. \quad (29)$$

By (28) and (29) and the iteration of the above procedure for t_2, \ldots, t_p we have

$$\left| \frac{1}{(\sqrt{N})^p} \sum_{t \in A(p,N)} \prod_{i=1}^{p} c_{t,i} \prod_{\omega \in V(G)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right|$$

$$\leq \frac{1}{(\sqrt{N})^p} \prod_{i=1}^{p} \left| c_{t,i} \right| \sum_{|s| < N} \sum_{\delta, \gamma = 1, 2} \left| r_{\delta \gamma}(s) \right|^{k_G(i)}. \quad (30)$$
Since \(t_1^i + t_2^i \geq \nu_0 \) for all \(i \), we have

\[
\sum_{|s|<N} \sum_{\delta, \gamma=1,2} |r_{\delta \gamma}(s)|^{k_G(i)} \leq C \cdot N^{1-g(i)} \tag{31}
\]

if \(k_G(i) = 0 \) or \(k_G(i) = t_1^i + t_2^i \), where \(g(i) = \frac{k_G(i)}{t_1^i + t_2^i} \). On the other hand, we shall claim that

\[
\sum_{|s|<N} \sum_{\delta, \gamma=1,2} |r_{\delta \gamma}(s)|^{k_G(i)} = o(N^{1-g(i)}) \tag{32}
\]

if \(0 < k_G(i) < t_1^i + t_2^i \). Indeed, because of \(\sum |r_{\delta \gamma}(s)|^\ell < \infty \); \(\ell \geq \nu_0 \); \(\delta, \gamma = 1,2 \), for any \(\varepsilon > 0 \), we can find a positive integer \(N_0 \) such that

\[
\sum_{|s|>N_0} |r_{\delta \gamma}(s)|^\ell < \varepsilon \quad \delta, \gamma = 1,2 \quad \text{for all} \quad \ell \geq \nu_0 .
\]

By Hölder’s inequality, the left side of (31) is

\[
\sum_{|s|\leq N_0} \sum_{\delta, \gamma=1,2} |r_{\delta \gamma}(s)|^{k_G(i)} + \sum_{N_0<|s|<N} \sum_{\delta, \gamma=1,2} |r_{\delta \gamma}(s)|^{k_G(i)}
\leq C(\varepsilon) + \left(\sum_{N_0<|s|<N} 1 \right)^{1-g(i)} \cdot \left\{ \sum_{\delta, \gamma=1,2} \left(\sum_{N_0<|s|<N} |r_{\delta \gamma}(s)|^{|\vec{t}^i|g(i)} \right) \right\}
\leq C(\varepsilon) + 4\varepsilon^{g(i)}(2N)^{1-g(i)} .
\]

Since \(\varepsilon \) is arbitrary small, relation (32) holds true. Now (30), (31) and (32) imply that

\[
\left| \frac{1}{(\sqrt{N})^p} \sum_{t \in A(p,N)} \prod_{i=1}^p c_{\ell^i} \prod_{\omega \in G(V)} u(t_{d_1(\omega)} - t_{d_2(\omega)}) \right| = O(N^{\frac{p}{2} - \sum_{i=1}^p g(i)}) \tag{33}
\]

and (33) holds with \(o(\cdot) \) if \(0 < k_G(i) < |\vec{t}^i| \) for some \(i \). Now observe that there are two cases of a non regular diagram. The first case is the one such that at least one of inequality in (25) is strict. The second one is that all terms in (25) are equal. Consider the first case. A non regular diagram of the first case satisfies one of the following properties:

(i) \(0 < k_G(i) < |\vec{t}^i| \) for some \(i \)
(ii) G contains an edge between sectors of different cardinality. Clearly, if (i) holds, Proposition 1 follows. Also we can show that

$$\sum_{i=1}^{p} g(i) \geq \frac{p}{2},$$

where this inequality is strict if G contains an edge connecting sectors of different cardinality, and hence Proposition 1 follows. For any given edge $\omega \in V(G)$, define the numbers $p_1(\omega)$ and $p_2(\omega)$ as the cardinalities of the $d_1(\omega)^{th}$ and $d_2(\omega)^{th}$ sectors, respectively. Because of property (25) we have $p_1(\omega) \leq p_2(\omega)$ for all $\omega \in V(G)$. Hence

$$2 \sum_{i=1}^{p} g(i) = 2 \sum_{i=1}^{p} \frac{k_G(i)}{|\ell^i|} = 2 \sum_{\omega \in V(G)} \frac{1}{p_1(\omega)} \geq \sum_{\omega \in V(G)} \left(\frac{1}{p_1(\omega)} + \frac{1}{p_2(\omega)} \right) = p.$$ (35)

Note that the inequality is strict if (ii) is true, because it implies $p_1(\omega) < p_2(\omega)$ for some ω. Now consider the second case (i.e. all terms in (25) are equal). For such a diagram, which is non regular, there always exists an integer j such that

$$0 < k_G(j) < |\ell^j|,$$ (36)

because there exists a sector S_j and two edges ω_1, ω_2 such that

$$d_2(\omega_1) = j \quad \text{and} \quad d_1(\omega_2) = j$$

by the definition of non-regularity of G. Therefore (33) holds with $a(\cdot)$ and hence we have proved Proposition 1.
Reference

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>662</td>
<td>Geneviève Raugel and George R. Sell</td>
<td>Navier-Stokes equations in thin 3d domains: Global regularity of solutions I</td>
</tr>
<tr>
<td>663</td>
<td>Emanuel Parzen</td>
<td>Time series, statistics, and information</td>
</tr>
<tr>
<td>664</td>
<td>Andrew Majda and Kevin Lamb</td>
<td>Simplified equations for low Mach number combustion with strong heat release</td>
</tr>
<tr>
<td>665</td>
<td>Ju. S. Il'yashenko</td>
<td>Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation</td>
</tr>
<tr>
<td>666</td>
<td>James F. Reineck</td>
<td>Continuation to gradient flows</td>
</tr>
<tr>
<td>667</td>
<td>Mohamed Sami Elbialy</td>
<td>Simultaneous binary collisions in the collinear N–body problem</td>
</tr>
<tr>
<td>668</td>
<td>John A. Jacquez and Carl P. Simon</td>
<td>Aids: The epidemiological significance of two different mean rates of partner-change</td>
</tr>
<tr>
<td>669</td>
<td>Carl P. Simon and John A. Jacquez</td>
<td>Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations</td>
</tr>
<tr>
<td>670</td>
<td>Matthew Stafford</td>
<td>Markov partitions for expanding maps of the circle</td>
</tr>
<tr>
<td>671</td>
<td>Ciprian Foias and Edriss S. Titi</td>
<td>Determining nodes, finite difference schemes and inertial manifolds</td>
</tr>
<tr>
<td>672</td>
<td>M.W. Smiley</td>
<td>Global attractors and approximate inertial manifolds for abstract dissipative equations</td>
</tr>
<tr>
<td>673</td>
<td>M.W. Smiley</td>
<td>On the existence of smooth breathers for nonlinear wave equations</td>
</tr>
<tr>
<td>674</td>
<td>Hitay Özbay and Janos Turi</td>
<td>Robust stabilization of systems governed by singular integro-differential equations</td>
</tr>
<tr>
<td>675</td>
<td>Mary Silber and Edgar Knobloch</td>
<td>Hopf bifurcation on a square lattice</td>
</tr>
<tr>
<td>676</td>
<td>Christophe Golé</td>
<td>Ghost circles for twist maps</td>
</tr>
<tr>
<td>677</td>
<td>Christophe Golé</td>
<td>Ghost tori for monotone maps</td>
</tr>
<tr>
<td>678</td>
<td>Christophe Golé</td>
<td>Monotone maps of $T^n \times \mathbb{R}^m$ and their periodic orbits</td>
</tr>
<tr>
<td>679</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>Hypergeometric expansions of Heun polynomials</td>
</tr>
<tr>
<td>680</td>
<td>Victor A. Pliss and George R. Sell</td>
<td>Perturbations of attractors of differential equations</td>
</tr>
<tr>
<td>681</td>
<td>Avner Friedman and Peter Knabner</td>
<td>A transport model with micro- and macro-structure</td>
</tr>
<tr>
<td>682</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>A note on group contractions and radar ambiguity functions</td>
</tr>
<tr>
<td>683</td>
<td>George R. Sell</td>
<td>References on dynamical systems</td>
</tr>
<tr>
<td>684</td>
<td>Shui-Nee Chow, Kening Lu and George R. Sell</td>
<td>Smoothness of inertial manifolds</td>
</tr>
<tr>
<td>685</td>
<td>Shui-Nee Chow, Xiao-Biao Lin and Kening Lu</td>
<td>Smooth invariant foliations in infinite dimensional spaces</td>
</tr>
<tr>
<td>686</td>
<td>Kening Lu</td>
<td>A Hartman–Grobman theorem for scalar reaction-diffusion equations</td>
</tr>
<tr>
<td>687</td>
<td>Christophe Golé and Glen R. Hall</td>
<td>Poincaré’s proof of Poincaré’s last geometric theorem</td>
</tr>
<tr>
<td>688</td>
<td>Mario Taboada</td>
<td>Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations</td>
</tr>
<tr>
<td>689</td>
<td>Peter Rejto and Mario Taboada</td>
<td>Weighted resolvent estimates for Volterra operators on unbounded intervals</td>
</tr>
<tr>
<td>690</td>
<td>Joel D. Avrin</td>
<td>Some examples of temperature bounds and concentration decay for a model of solid fuel combustion</td>
</tr>
<tr>
<td>691</td>
<td>Susan Friedlander and Misha M. Vishik</td>
<td>Lax pair formulation for the Euler equation</td>
</tr>
<tr>
<td>692</td>
<td>H. Scott Dumas</td>
<td>Ergodization rates for linear flow on the torus</td>
</tr>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko</td>
<td>Finite dimensional exponential attractors for semilinear wave equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Hölder continuity for the inverse of Mañé’s projection</td>
</tr>
<tr>
<td>696</td>
<td>Michel Chipot and Charles Collins</td>
<td>Numerical approximations in variational problems with potential wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang</td>
<td>Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencséri and Zsuzsanna Vágó</td>
<td>A strong approximation theorem for estimator processes in continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencséri</td>
<td>Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
</tbody>
</table>
H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging

M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

Kang-Ping Chen and Daniel D. Joseph, Lubrication theory and long waves

J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices

Mario Taboada and Yuncheng You, Some stability results for perturbed semilinear parabolic equations

A.J. Lawrence, Local and deletion influence

Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media

Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers

Yongzhi Xu, Scattering of acoustic wave by obstacle in stratified medium

Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type

Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun'ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations