NONPLANAR SHEAR FLOWS FOR NONALIGNING NEMATIC LIQUID CRYSTALS*

MITCHELL LUSKIN† AND TSORNG-WHAY PAN‡

ABSTRACT. We investigate the stability of simple planar shear flow between moving parallel plates for nonaligning nematic liquid crystals. We present numerical results for the continuation of the nonplanar solution branch from its bifurcation from the planar solution branch which agree with the experimental results of Pieranski and Guyon [18] that at a critical shear rate the director turns out of the shear plane to an orientation nearly orthogonal to the shear plane.

1. Introduction. The stability of planar shear flow and nonplanar flow instabilities for nonaligning liquid crystals have been the subject of many experimental and theoretical investigations during the past fifteen years [2-4,9,16-21,23-26]. Pieranski and Guyon [18] reported experimental results for flow between moving parallel plates with planar alignment for the director at the walls that at a critical shear rate the director moves from the shear plane to an orientation nearly perpendicular to the shear plane. Zúñiga and Leslie [25,26] have recently reported the results of numerical calculations for the Ericksen-Leslie equations which confirm that as the shear rate is increased the director moves out of the shear plane at the first instability. In this paper, we use numerical continuation techniques to follow the nonplanar solution path, and our numerical results confirm the experimental results of Pieranski and Guyon [18] that the director should turn out of the plane to an orientation nearly orthogonal to the shear plane.

Cladis and Torza [4] have reported experimental results for Couette flow between rotating cylinders with homeotropic alignment of the director at the walls that as the shear rate is increased the first instability is a “tumbling instability” which is characterized by the exchange of stability of the planar configuration by another planar configuration with a more distorted director field. We have numerically computed the stability of both planar and nonplanar modes along the planar solution curve, and our results demonstrate that as the shear rate is increased the first unstable mode can be either planar or nonplanar, depending on the values of the material constants.

*This work is part of the Transitions and Defects in Ordered Materials Project and was supported in part by the National Science Foundation and the Air Force Office of Scientific Research through grants DMS 835-1080, DMS 871-8881 and AFOSR-91-0301, the Army Research Office through grants DAAL03-88-K-0110 and DAAL03-89-G-0081, and by the Minnesota Supercomputer Institute.
†School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 USA
‡Department of Mathematics, University of Houston, Houston, TX 77204 USA

Typeset by AMS-TEX
2. **Planar Flows.** We consider simple shear flow between parallel plates at a distance $2h$ apart which are parallel to the x-y plane. We assume that the upper plate at $z = h$ is at rest while the lower one at $z = -h$ moves with velocity \mathbf{V} in the y direction. The state of the nematic liquid crystal is described by its velocity $\mathbf{v} = (x, y, z, t)$ and its director $\mathbf{n} = (x, y, z, t)$ where $|\mathbf{n}| = 1$.

We first investigate simple planar shear flows of the form

\begin{equation}
(2.1) \quad \mathbf{v} = (0, \mathbf{v}(z, t), 0), \quad \mathbf{n} = (0, \cos \theta(z, t), \sin \theta(z, t)).
\end{equation}

For flows of the form (2.1) the Ericksen-Leslie equations [14] are

\begin{align*}
(2.2) \quad & \rho \frac{\partial \mathbf{v}}{\partial t} = \frac{\partial}{\partial z} \left(g(\theta) \frac{\partial \mathbf{v}}{\partial z} + m(\theta) \frac{\partial \theta}{\partial t} \right), \quad -h \leq z \leq h, \\
(2.3) \quad & 2\gamma_1 \frac{\partial \theta}{\partial t} = 2f(\theta) \frac{\partial^2 \theta}{\partial z^2} + \frac{\partial f(\theta)}{\partial \theta} \left(\frac{\partial \theta}{\partial z} \right)^2 - 2m(\theta) \frac{\partial \mathbf{v}}{\partial z},
\end{align*}

where

\begin{align*}
g(\theta) &= \alpha_1 \sin^2 \theta \cos^2 \theta + \frac{\alpha_5 - \alpha_2}{2} \sin^2 \theta + \frac{\alpha_6 + \alpha_3}{2} \cos^2 \theta + \frac{\alpha_4}{2}; \\
m(\theta) &= (\gamma_1 + \gamma_2 \cos 2\theta)/2; \quad f(\theta) = \kappa_1 \cos^2 \theta + \kappa_3 \sin^2 \theta;
\end{align*}

ρ is the density; $\alpha_1, \ldots, \alpha_6$ are the Leslie viscosities; $\kappa_1, \kappa_2, \kappa_3$ are the Frank elastic constants; and $\gamma_1 = \alpha_3 - \alpha_2$, $\gamma_2 = \alpha_6 - \alpha_5$. Thermodynamic inequalities imply that $g(\theta) > 0$ and $f(\theta) > 0$ for all θ and that $\gamma_1 > 0$ [14]. We shall only consider flows in the nonaligning regime $\gamma_1 > |\gamma_2|$, so $m(\theta) > 0$ for all θ.

We utilize the “strong anchoring” condition for \mathbf{n}, i.e.,

\begin{equation}
(2.4) \quad \theta(-h, t) = \theta(h, t) = \theta_p,
\end{equation}

and the “no-slip” boundary condition for \mathbf{v},

\begin{equation}
(2.5) \quad \mathbf{v}(-h, t) = \mathbf{V}, \quad \mathbf{v}(h, t) = 0.
\end{equation}

For steady flow, the Ericksen-Leslie equations (2.2)–(2.5) are

\begin{align*}
(2.6) \quad & \frac{\partial}{\partial z} \left(g(\theta) \frac{\partial \mathbf{v}}{\partial z} \right) = 0, \quad -h \leq z \leq h, \\
(2.7) \quad & 2f(\theta) \frac{\partial^2 \theta}{\partial z^2} + \frac{\partial f(\theta)}{\partial \theta} \left(\frac{\partial \theta}{\partial z} \right)^2 - 2m(\theta) \frac{\partial \mathbf{v}}{\partial z} = 0, \quad -h \leq z \leq h, \\
(2.8) \quad & \theta(-h) = \theta(h) = \theta_p, \\
(2.9) \quad & \mathbf{v}(-h) = \mathbf{V}, \quad \mathbf{v}(h) = 0.
\end{align*}

Thus,

\begin{equation}
(2.10) \quad g(\theta) \frac{\partial \mathbf{v}}{\partial z} = c
\end{equation}
where \(c \) is an integrating constant for (2.6), and (2.10) can be used to eliminate \(\partial v/\partial z \) from (2.7) to obtain

\[
2f(\theta)\frac{\partial^2 \theta}{\partial z^2} + \frac{\partial f(\theta)}{\partial \theta} \left(\frac{\partial \theta}{\partial z} \right)^2 - 2c \frac{m(\theta)}{g(\theta)} = 0, \quad -h \leq z \leq h, \\
\theta(-h) = \theta(h) = \theta_p.
\]

We can integrate (2.10) to obtain that

\[
(2.12) \quad V = -c \int_{-h}^{h} \frac{1}{g(\theta(z))} \, dz.
\]

All of the solutions \(\theta(z) \) of (2.6)–(2.9) in the nonaligning case have a single critical point at \(z = 0 \) with critical value \(\theta_m \). So,

\[
\theta_m = \theta(0) = \begin{cases}
\max_{-h \leq z \leq h} \theta(z) & \text{for } V \geq 0, \\
\min_{-h \leq z \leq h} \theta(z) & \text{for } V \leq 0,
\end{cases}
\]

and all solutions to (2.6)–(2.9) can be parametrized by \(\theta_m \). Thus,

\[
c = c(\theta_m), \quad \theta(z) = \theta(z, \theta_m).
\]

We have obtained numerical solutions for the linearized stability equations for (2.2)–(2.5) given by the following eigenvalue problem for the perturbations \(e^{i\lambda t}V(z) \) of \(v(z) \) and \(e^{i\lambda t}\Theta(z) \) of \(\theta(z) \)

\[
(2.13) \quad \lambda \rho V = \frac{\partial}{\partial z} \left(\frac{\partial g}{\partial \theta} \frac{\partial V}{\partial z} + g(\theta) \frac{\partial V}{\partial z} + \lambda m(\theta) \Theta \right),
\]

\[
2\lambda \gamma_1 \Theta = 2 \frac{\partial}{\partial z} \left(f(\theta) \frac{\partial \Theta}{\partial z} \right) + 2 \frac{\partial f}{\partial \theta} \frac{\partial^2 \theta}{\partial z^2} \Theta + \frac{\partial^2 f}{\partial \theta^2} \left(\frac{\partial \theta}{\partial z} \right)^2 \Theta
\]

\[
-2 \frac{\partial m}{\partial \theta} \frac{\partial v}{\partial z} \Theta - 2m(\theta) \frac{\partial V}{\partial z},
\]

\[
(2.15) \quad V(-h) = V(h) = 0, \quad \Theta(-h) = \Theta(h) = 0.
\]

The critical velocity for the planar instability or tumbling instability is characterized as the first turning point on the solution curve for (2.6)–(2.9) with respect to the parameter \(V \). We note that turning points of solutions of (2.6)–(2.9) parametrized by \(c \) (where \(dc/d\theta_m = 0 \)) are different from the turning points of solutions of (2.6)–(2.9) parametrized by \(V \) (where \(dV/d\theta_m = 0 \)) since

\[
\frac{dV}{d\theta_m} = -\frac{dc}{d\theta_m} \int_{-h}^{h} \frac{1}{g(\theta(z))} \, dz + c \int_{-h}^{h} \frac{dg}{d\theta} \frac{1}{g^2} \frac{\partial \theta}{\partial \theta_m} \, dz.
\]

If the “no-slip” boundary conditions are replaced by the boundary conditions

\[
(2.16) \quad g(\theta(-h, t)) \frac{\partial v}{\partial z}(-h, t) = \tau, \quad v(h, t) = 0,
\]
where \(\tau \) is the given shear stress on the bottom plate and if the inertial term \(\lambda \rho V \) is dropped, then the integrating constant in (2.13) is 0 and so we have that

\[
(2.17) \quad \frac{\partial g}{\partial \theta} \frac{\partial v}{\partial z} \Theta + g(\theta) \frac{\partial V}{\partial z} + \lambda m(\theta) \Theta = 0, \quad -h \leq z \leq h.
\]

In this case, we can use (2.17) to eliminate \(\partial V/\partial z \) in (2.14) and to obtain for the linearized stability equations the Sturm-Liouville eigenvalue problem

\[
(2.18) \quad 2\lambda \left[\gamma_1 - \frac{m(\theta)^2}{g(\theta)} \right] \Theta = 2 \frac{\partial}{\partial z} \left(f(\theta) \frac{\partial \Theta}{\partial z} \right) + 2 \frac{\partial f}{\partial \theta} \frac{\partial^2 \theta}{\partial z^2} \Theta
+ \frac{\partial^2 f}{\partial \theta^2} \left(\frac{\partial \theta}{\partial z} \right)^2 \Theta - 2 \frac{\partial m}{\partial \theta} \frac{\partial v}{\partial z} \Theta + 2 \frac{m(\theta)}{g(\theta)} \frac{\partial g}{\partial \theta} \frac{\partial v}{\partial z} \Theta,
\]

\[
\Theta(-h) = \Theta(h) = 0.
\]

For \(\lambda = 0 \) the equations (2.13)–(2.15) are the equations defining a critical point for solutions of (2.6)–(2.9) parametrized by the plate velocity \(V \) whereas for \(\lambda = 0 \) the equations (2.18) are the equations defining a critical point for solutions of (2.6)–(2.8), (2.16) parametrized by the boundary shear stress \(\tau \).

3. Nonplanar flows. We have also computed the flow of nematic liquid crystals of the nonplanar form

\[
(3.1) \quad v(z, t) = (u(z, t), v(z, t), w(z, t)),
\]

\[
\mathbf{n}(z, t) = (\cos \phi(z, t) \cos \theta(z, t), \sin \phi(z, t) \cos \theta(z, t), \sin \theta(z, t)).
\]

Since the flow is incompressible, we have that \(w = 0 \). The “no-slip” boundary conditions for \(v \) and the “strong anchoring” boundary conditions for \(\mathbf{n} \) are now given by

\[
(3.2) \quad u(-h, t) = 0, \quad u(h, t) = 0,
\]

\[
v(-h, t) = 0, \quad v(h, t) = 0,
\]

\[
\theta(-h, t) = \theta_p, \quad \theta(h, t) = \theta_p,
\]

\[
\phi(-h, t) = \frac{\pi}{2}, \quad \phi(h, t) = \frac{\pi}{2}.
\]

The linear momentum equations in the Ericksen-Leslie model for flows of the form (3.1) are [14, 15]

\[
(3.3) \quad \rho \frac{\partial u}{\partial t} = \tau_{13,3},
\]

\[
(3.4) \quad \rho \frac{\partial v}{\partial t} = \tau_{23,3},
\]

\[
(3.5) \quad 0 = -\frac{\partial p}{\partial z} - \left(\frac{\partial W}{\partial n_{k,3}} n_{k,3} \right)_{3,3} + \tau_{33,3},
\]
where \(p = p(z, t) \) is the pressure, \(\mathcal{W} = \mathcal{W}(n, \nabla n) \) is the Oseen-Frank free energy [14], and the viscous stresses \(\tau_{13,3} \) and \(\tau_{23,3} \) are given by

\[
\tau_{13} = (M(\theta) + N(\theta) \cos^2 \phi) \frac{\partial u}{\partial z} + N(\theta) \sin \phi \cos \phi \frac{\partial v}{\partial z} + 2K(\theta) \cos \phi \frac{\partial \theta}{\partial t} - 2L(\theta) \sin \phi \frac{\partial \phi}{\partial t},
\]

\[
\tau_{23} = N(\theta) \sin \phi \cos \phi \frac{\partial u}{\partial z} + (M(\theta) + N(\theta) \sin^2 \phi) \frac{\partial v}{\partial z} + 2K(\theta) \sin \phi \frac{\partial \theta}{\partial t} + 2L(\theta) \cos \phi \frac{\partial \phi}{\partial t},
\]

with

\[
M(\theta) = \alpha_4 + (\alpha_5 - \alpha_2) \sin^2 \theta,
\]

\[
N(\theta) = (2\alpha_1 \sin^2 \theta + \alpha_3 + \alpha_6) \cos^2 \theta,
\]

\[
K(\theta) = \alpha_3 \cos^2 \theta - \alpha_2 \sin^2 \theta,
\]

\[
L(\theta) = \alpha_2 \sin \theta \cos \theta.
\]

The equation (3.5) simply yields an expression for the pressure and can therefore be neglected. From the Ericksen-Leslie angular momentum equations we obtain

\[
2f(\theta) \frac{\partial^2 \theta}{\partial z^2} + f'(\theta) \left(\frac{\partial \theta}{\partial z} \right)^2 - G'(\theta) \left(\frac{\partial \phi}{\partial z} \right)^2 - 2m(\theta) \left(\frac{\partial u}{\partial z} \cos \phi + \frac{\partial v}{\partial z} \sin \phi \right) = 2\gamma_1 \frac{\partial \theta}{\partial t},
\]

(3.6)

\[
2G(\theta) \frac{\partial^2 \phi}{\partial z^2} + 2G'(\theta) \frac{\partial \theta}{\partial z} \frac{\partial \phi}{\partial z}
\]

(3.7)

\[
+ \alpha_2 \sin 2\theta \left(\frac{\partial u}{\partial z} \sin \phi - \frac{\partial v}{\partial z} \cos \phi \right) = 2\gamma_1 \cos^2 \theta \frac{\partial \phi}{\partial t},
\]

where \(f(\theta) = \kappa_1 \cos^2 \theta + \kappa_3 \sin^2 \theta \) and \(G(\theta) = \kappa_2 \cos^2 \theta + \kappa_3 \sin^2 \theta \cos^2 \theta \).

In the steady-state case, equations (3.2)–(3.4), (3.6), (3.7) become

\[
\frac{d}{dz} \left((M(\theta) + N(\theta) \cos^2 \phi) \frac{du}{dz} + N(\theta) \sin \phi \cos \phi \frac{dv}{dz} \right) = 0,
\]

\[
\frac{d}{dz} \left(N(\theta) \sin \phi \cos \phi \frac{du}{dz} + (M(\theta) + N(\theta) \sin^2 \phi) \frac{dv}{dz} \right) = 0,
\]

(3.8)

\[
2f(\theta) \frac{d^2 \theta}{dz^2} + f'(\theta) \left(\frac{d\theta}{dz} \right)^2 - G'(\theta) \left(\frac{d\phi}{dz} \right)^2
\]

\[
- 2m(\theta) \left(\frac{du}{dz} \cos \phi + \frac{dv}{dz} \sin \phi \right) = 0,
\]

\[
2G(\theta) \frac{d^2 \phi}{dz^2} + 2G'(\theta) \frac{d\theta}{dz} \frac{d\phi}{dz}
\]

\[
+ \alpha_2 \sin 2\theta \left(\frac{du}{dz} \sin \phi - \frac{dv}{dz} \cos \phi \right) = 0,
\]
with the boundary conditions

\begin{align*}
 u(-h) &= 0, & u(h) &= 0, \\
 v(-h) &= \mathcal{V}, & v(h) &= 0, \\
 \theta(-h) &= \theta_p, & \theta(h) &= \theta_p, \\
 \phi(-h) &= \frac{\pi}{2}, & \phi(h) &= \frac{\pi}{2}.
\end{align*}

(3.9)

The linearized stability equations for the Ericksen-Leishi equations for steady flows of the form (2.1) with respect to flows of the form (3.1) are given by the eigenvalue problem (2.13)–(2.15) for planar perturbations \(e^{i\lambda t}V(z) \) of \(v(z) \) and \(e^{i\lambda t}\Theta(z) \) of \(\theta(z) \), and by the eigenvalue problem for the nonplanar perturbations \(e^{i\lambda t}U(z) \) of \(u(z) = 0 \) and \(e^{i\lambda t}\Phi(z) \) of \(\phi(z) = \pi/2 \) given by

\begin{align*}
 \lambda \rho U &= \frac{d}{dz} \left(g_1(\theta)\frac{dU}{dz} + g_2(\theta)\frac{dv}{dz} \Phi - \lambda \alpha_2 \sin \theta \Phi \right), \\
 \lambda \gamma_1 \Phi &= \frac{d}{dz} \left(f_1(\theta)\frac{d\Phi}{dz} \right) + q_1 \left(\theta, \frac{d\theta}{dz}, \frac{d^2\theta}{dz^2}, \frac{dv}{dz} \right) \Phi - \alpha_2 \sin \theta \frac{dU}{dz}, \\
 U(-h) &= U(h) = 0, & \Phi(-h) &= \Phi(h) = 0,
\end{align*}

(3.10)

where

\begin{align*}
 f_1(\theta) &= \kappa_2 \cos^2 \theta + \kappa_3 \sin^2 \theta, \\
 f_2 \left(\theta, \frac{d\theta}{dz}, \frac{d^2\theta}{dz^2} \right) &= \frac{\kappa_2 - \kappa_1}{2} \sin 2 \theta \frac{d^2\theta}{dz^2} + \left(\kappa_2 - (3\kappa_3 - \kappa_1 - 2\kappa_3) \sin^2 \theta \right) \left(\frac{d\theta}{dz} \right)^2, \\
 q_1 \left(\theta, \frac{d\theta}{dz}, \frac{d^2\theta}{dz^2}, \frac{dv}{dz} \right) &= f_2 \left(\theta, \frac{d\theta}{dz}, \frac{d^2\theta}{dz^2} \right) + \gamma_2 \sin \theta \cos \theta \frac{dv}{dz}, \\
 2g_1(\theta) &= \alpha_4 + (\alpha_5 - \alpha_2) \sin^2 \theta, \\
 2g_2(\theta) &= (\alpha_6 + \alpha_3 + 2\alpha_1 \sin^2 \theta) \cos \theta.
\end{align*}

4. Computational Results. We approximated steady-state solutions to the differential equations for planar shear flow by reformulating the second-order system of ordinary differential system (2.6)–(2.9) as a system of first-order ordinary differential equations and by using the method of collocation at Gauss points with continuous piecewise polynomials of degree four to discretize the system of ordinary differential equations [1,8] to obtain a set of nonlinear equations parametrized by the plate velocity \(\mathcal{V} \). We then used implemented the method of pseudo-arclength continuation [11] by using the software package AUTO [7,8], to compute the solution branch of steady, planar solutions. The starting point for the solution branch was taken to be the trivial solution to (2.6)–(2.9) given by \(v(z) = 0 \) and \(\theta(z) = \theta_p \) at the plate velocity \(\mathcal{V} = 0 \). A simple calculation shows that this starting point is a regular point for the solution branch.

The stability of nonplanar perturbations of the planar solutions on the planar solution branch is determined by the numerical solution of the eigenvalue problem for the numerical approximation of (3.10) which is obtained by using the method of
finite differences with the mesh points taken to be the Gauss quadrature points at which the planar solutions have been obtained. We solved the resulting generalized matrix eigenvalue problem by using stabilized elementary similarity transformations to reduce the the generalized eigenproblem to Hessenberg form and by using the QR method implemented in the EISPACK software package [22].

We first present computational results for solution branches followed by pseudo-arclength continuation for solutions to (2.6)–(2.9) parametrized by \(\mathcal{V} \) which show that the first instability can be planar or nonplanar, depending on the material constants. We model the behavior of 8CB just above the smectic A-nematic transition temperature by the following material constants for \(\epsilon > 0 \):

\[
\begin{align*}
\alpha_1 &= 12\epsilon|\alpha_2|, \quad \alpha_2 = -0.7, \quad \alpha_3 = \epsilon|\alpha_2|, \\
\alpha_4 &= 0.58, \quad \alpha_5 = 0.7, \quad \alpha_6 = \epsilon|\alpha_2|, \\
\kappa_1 &= 1.41 \times 10^6, \quad \kappa_2 = 1.023 \epsilon \kappa_1, \quad \kappa_3 = 2.605 \epsilon \kappa_1,
\end{align*}
\]

where the viscosities are in poise, the elastic constants are in dyne, and \(h = 1 \) cm. The boundary conditions for these computations were given by

\[\theta_p = \pi/2. \]

In Figure 1, we observe that the nonplanar instability occurs at a lower plate velocity \(\mathcal{V} \) than the planar instability for \(0.5 \leq \epsilon < 0.75 \). At \(\epsilon = 0.75 \) a new pair of limit points has developed, and we observe in Figures 1–3 that for \(0.75 \leq \epsilon < 1.1 \) the planar instability occurs at a lower plate velocity \(\mathcal{V} \) than that for any of the nonplanar modes. At \(\epsilon = 1.1 \) we observe that the upper solution curve is no longer stable for velocities larger than the critical velocity. Thus, for \(\epsilon > 1.1 \) at plate velocities \(\mathcal{V} \) larger than the critical plate velocity there is not a stable steady planar solution.

Next, we present computational results for 8CB at 35° C. for the nonplanar solution branch of the form (3.1) which we have numerically continued from the bifurcation point on the planar solution branch. The bifurcation point on the planar solution branch is determined by the planar solution \(\theta(z), v(z) \) with plate velocity \(\mathcal{V} \) for which \(\lambda = 0 \) is an eigenvalue for the nonplanar eigenvalue problem (3.10). We then used the software package AUTO to switch to the nonplanar solution branch defined by the differential system (3.8)–(3.9).

At 35° C., the material constants for 8CB have been measured to be [10,12,13]

\[
\begin{align*}
\alpha_1 &= 1.3420, \quad \alpha_2 = -0.6965, \quad \alpha_3 = 0.1395, \\
\alpha_4 &= 0.5600, \quad \alpha_5 = 0.5275, \quad \alpha_6 = -0.0295, \\
\kappa_1 &= 1.2800 \times 10^6, \quad \kappa_2 = 0.6000 \times 10^6, \quad \kappa_3 = 1.4000 \times 10^6,
\end{align*}
\]

where the viscosities are in poise, the elastic constants are in dyne, and \(h = 1 \) cm. These computations used the boundary data \(\theta_p = 0 \) in (3.9). The position of the bifurcation point in Figure 4 is marked by "+". Profiles of the solution \(u(z), v(z), \phi(z), \) and \(\theta(z) \) are given in Figures 5–8 at the points on the solution branch marked by A–W.

We observe that for plate velocities \(\mathcal{V} > 0.00025 \) cm/sec the director is nearly orthogonal to the shear plane in agreement with the experimental observations of Pieranski and Guyon [18].
Fig. 1. Solution branches for $\epsilon = .5, .6, .7$, and $.75$ for the material constants given in (4.1) and $\theta_p = \pi/2$. For $\epsilon = .5, .6$, and 7 the nonplanar instability occurs at a lower plate velocity V than the planar instability, but a new pair of limit points has developed for $\epsilon = .75$.
FIG. 2. Solution branches for $\epsilon = .77, .79, .81, \text{ and } .86$ for the material constants given in (4.1) and $\theta_p = \pi/2$. For $\epsilon = .77, .79, .81, \text{ and } .86$ the planar instability occurs at a lower plate velocity \mathcal{V} than that for any of the nonplanar modes.
FIG. 3. Solution branches for $\epsilon = .9, 1.0, 1.1,$ and 1.5 for the material constants given in (4.1) and $\theta_p = \pi/2$. For $\epsilon = .9$ and $\epsilon = 1.0$ the planar instability occurs at a lower plate velocity V than that for any of the nonplanar modes. For $\epsilon = 1.1$ and $\epsilon = 1.5$ the upper branch of the solution curve is not stable for plate velocities V larger than the critical plate velocity. Thus, for $\epsilon = 1.1$ and $\epsilon = 1.5$ there does not exist a stable steady planar solution.
FIG. 4. Nonplanar solution branch for 8CB at 35° C. The position of the bifurcation point is marked by "+".
Fig. 5. Solution profile of $u(z)$ for the nonplanar branch shown in Figure 4. The solution profiles are labeled A–W to correspond to points similarly labeled on the nonplanar solution branch in Figure 4.
Fig. 6. Solution profile of $\phi(z)$ for the planar branch shown in Figure 4. The solution profiles are labeled A–W to correspond to points similarly labeled on the nonplanar solution branch in Figure 4.
FIG. 7. Solution profile of $v(z)$ for the planar branch shown in Figure 4.
The solution profiles are labeled A–W to correspond to points similarly
labeled on the nonplanar solution branch in Figure 4.
FIG. 8. Solution profile of $\theta(z)$ for the planar branch shown in Figure 4. The solution profiles are labeled A–W to correspond to points similarly labeled on the nonplanar solution branch in Figure 4.
REFERENCES
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>782</td>
<td>T. Subba Rao</td>
<td>Analysis of nonlinear time series (and chaos) by bispectral methods</td>
</tr>
<tr>
<td>783</td>
<td>Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy</td>
<td>Vortex rings of one fluid in another free fall</td>
</tr>
<tr>
<td>784</td>
<td>Oscar Bruno, Avner Friedman and Fernando Reitich</td>
<td>Asymptotic behavior for a coalescence problem</td>
</tr>
<tr>
<td>785</td>
<td>Johannes C.C. Nitsche</td>
<td>Periodic surfaces which are extremal for energy functionals containing curvature functions</td>
</tr>
<tr>
<td>786</td>
<td>F. Abergel and J.L. Bona</td>
<td>A mathematical theory for viscous, free-surface flows over a perturbed plane</td>
</tr>
<tr>
<td>787</td>
<td>Gunduz Caginalp and Xinfu Chen</td>
<td>Phase field equations in the singular limit of sharp interface problems</td>
</tr>
<tr>
<td>788</td>
<td>Robert P. Gilbert and Yongzhi Xu</td>
<td>An inverse problem for harmonic acoustics in stratified oceans</td>
</tr>
<tr>
<td>789</td>
<td>Roger Fosdick and Eric Volkmann</td>
<td>Normality and convexity of the yield surface in nonlinear plasticity</td>
</tr>
<tr>
<td>790</td>
<td>H.S. Brown, I.G. Kevrekidis and M.S. Jolly</td>
<td>A minimal model for spatio–temporal patterns in thin film flow</td>
</tr>
<tr>
<td>791</td>
<td>Chao–Nien Chen</td>
<td>On the uniqueness of solutions of some second order differential equations</td>
</tr>
<tr>
<td>792</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>The thermistor problem for conductivity which vanishes at large temperature</td>
</tr>
<tr>
<td>793</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>The thermistor problem with one-zero conductivity</td>
</tr>
<tr>
<td>794</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>Separation of variables for the Dirac equation in Kerr Newman space time</td>
</tr>
<tr>
<td>795</td>
<td>E. Knobloch, M.R.E. Proctor and N.O. Weiss</td>
<td>Finite-dimensional description of doubly diffusive convection</td>
</tr>
<tr>
<td>796</td>
<td>V.V. Pukhnachov</td>
<td>Mathematical model of natural convection under low gravity</td>
</tr>
<tr>
<td>797</td>
<td>M.C. Knaap</td>
<td>Existence and non-existence for quasi-linear elliptic equations with the p-laplacian involving critical Sobolev exponents</td>
</tr>
<tr>
<td>798</td>
<td>Statthis Filippas and Wenxiong Liu</td>
<td>On the blowup of multidimensional semilinear heat equations</td>
</tr>
<tr>
<td>799</td>
<td>A.M. Meirmanov</td>
<td>The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution</td>
</tr>
<tr>
<td>800</td>
<td>Bo Guan and Joel Spruck</td>
<td>Interior gradient estimates for solutions of prescribed curvature equations of parabolic type</td>
</tr>
<tr>
<td>801</td>
<td>Hi Jun Choe</td>
<td>Regularity for solutions of nonlinear variational inequalities with gradient constraints</td>
</tr>
<tr>
<td>802</td>
<td>Peter Shi and Yongzhi Xu</td>
<td>Quasistatic linear thermoelasticity on the unit disk</td>
</tr>
<tr>
<td>803</td>
<td>Satyanad Kichenassamy and Peter J. Olver</td>
<td>Existence and non-existence of solitary wave solutions to higher order model evolution equations</td>
</tr>
<tr>
<td>804</td>
<td>Dening Li</td>
<td>Regularity of solutions for a two-phase degenerate Stefan Problem</td>
</tr>
<tr>
<td>805</td>
<td>Marek Fila, Bernhard Kawohl and Howard A. Levine</td>
<td>Quenching for quasilinear equations</td>
</tr>
<tr>
<td>806</td>
<td>Yoshikazu Giga, Shun'ichi Goto and Hitoshi Ishii</td>
<td>Global existence of weak solutions for interface equations coupled with diffusion equations</td>
</tr>
<tr>
<td>807</td>
<td>Mark J. Friedman and Eusebius J. Doedel</td>
<td>Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study</td>
</tr>
<tr>
<td>808</td>
<td>Mark J. Friedman</td>
<td>Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds</td>
</tr>
<tr>
<td>809</td>
<td>Peter W. Bates and Songmu Zheng</td>
<td>Inertial manifolds and inertial sets for the phase-field equations</td>
</tr>
<tr>
<td>810</td>
<td>J. López Gómez, V. Márquez and N. Wolanski</td>
<td>Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition</td>
</tr>
<tr>
<td>811</td>
<td>Xinfu Chen and Fahuai Yi</td>
<td>Regularity of the free boundary of a continuous casting problem</td>
</tr>
<tr>
<td>812</td>
<td>Eden, A., Foias, C., Nicolaenko, B. and Temam, R.</td>
<td>Inertial sets for dissipative evolution equations Part I: Construction and applications</td>
</tr>
<tr>
<td>813</td>
<td>Jose–Francisco Rodrigues and Boris Zaltzman</td>
<td>On classical solutions of the two-phase steady-state Stefan problem in strips</td>
</tr>
<tr>
<td>814</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>Controlling the free boundary of elliptic variational inequalities on a variable domain</td>
</tr>
<tr>
<td>815</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>A variational approach to a free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>816</td>
<td>B.H. Gilding and R. Kersner</td>
<td>Diffusion-convection-reaction, free boundaries, and an integral equation</td>
</tr>
<tr>
<td>817</td>
<td>Shoshana Kamin, Lambertus A. Peletier and Juan Luis Vazquez</td>
<td>On the Barenblatt equation of elasto-plastic filtration</td>
</tr>
<tr>
<td>818</td>
<td>Avner Friedman and Bei Hu</td>
<td>The Stefan problem with kinetic condition at the free boundary</td>
</tr>
<tr>
<td>819</td>
<td>M.A. Grinfeld</td>
<td>The stress driven instabilities in crystals: mathematical models and physical manifestations</td>
</tr>
<tr>
<td>820</td>
<td>Bei Hu and Lihe Wang</td>
<td>A free boundary problem arising in electrophotography: solutions with connected toner region</td>
</tr>
<tr>
<td>821</td>
<td>Yongzhi Xu, T. Craig Poling, and Trent Brundage</td>
<td>Direct and inverse scattering of time harmonic acoustic waves in an inhomogeneous shallow ocean</td>
</tr>
<tr>
<td>822</td>
<td>Steven J. Altschuler</td>
<td>Singularities of the curve shrinking flow for space curves</td>
</tr>
<tr>
<td>823</td>
<td>Steven J. Altschuler and Matthew A. Grayson</td>
<td>Shortening space curves and flow through singularities</td>
</tr>
<tr>
<td>824</td>
<td>Tong Li</td>
<td>On the Riemann problem of a combustion model</td>
</tr>
</tbody>
</table>
L.A. Peletier & W.C. Troy, Self-similar solutions for diffusion in semiconductors
Minkyu Kwak, Finite dimensional description of convective reaction-diffusion equations
Minkyu Kwak, Finite dimensional inertial forms for the 2D Navier-Stokes equations
Victor A. Galaktionov and Sergey A. Posashkov, On some monotonicity in time properties for a quasilinear parabolic equation with source
Victor A. Galaktionov, Remark on the fast diffusion equation in a ball
Hi Jun Choe and Lihe Wang, A regularity theory for degenerate vector valued variational inequalities
Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case.
S. Kamin and W. Liu, Large time behavior of a nonlinear diffusion equation with a source
Shoshana Kamin and Juan Luis Vazquez, Singular solutions of some nonlinear parabolic equations
Bernhard Kawohl and Robert Kersner, On degenerate diffusion with very strong absorption
Avner Friedman and Fernando Reitich, Parameter identification in reaction-diffusion models
E.G. Kalnin, H.L. Manocha and Willard Miller, Jr., Models of q-algebra representations I. Tensor products of special unitary and oscillator algebras
Robert J. Sacker and George R. Sell, Dichotomies for linear evolutionary equations in Banach spaces
Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation of boundaries
Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain
Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem
Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several space dimensions
Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts
Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation
Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type
Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations
H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals
R. Natalini and A. Tesei, On a class of perturbed conservation laws
Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves
S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow
Mario Tabeada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations
Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution
Erasmus Langer, Numerical simulation of MOS transistors
Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n
Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures
Chao–Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient
D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential atttractor for the phase field model
Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4
Walter Schempp, Quantum holography and neurocomputer architectures
D.V. Anosov, An introduction to Hilbert’s 21st problem
Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes
Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves
Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs
Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic of tangles two dimensional quasiperiodic vector fields: theory and applications
Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
Gui-Qiang Chen and Jian–Guo Liu, Convergence of second–order schemes for isentropic gas dynamics
Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion
Jerzy Łuczka, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion
Mitchell Luskin and Tsorng-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals