RECENT ADVANCES IN THE USE OF SEPARATION
OF VARIABLES METHODS IN GENERAL RELATIVITY

By

E.G. Kalnins
Willard Miller, Jr.

and

G.C. Williams

IMA Preprint Series # 948
April 1992
RECENT ADVANCES IN THE USE OF SEPARATION OF VARIABLES
METHODS IN GENERAL RELATIVITY

E.G. KALNINS†, WILLARD MILLER, JR.‡ AND G. C. WILLIAMS†

Abstract. This review article is a guide to work that uses the method of separation of variables for problems that occur in general relativity. The main emphasis is on recent progress in the solution of important systems of equations such as Dirac’s equation, Maxwell’s equations and the gravitational perturbation (or spin 2) equations. Recent advances and established results for these equations in Kerr black hole and Robertson-Walker space time backgrounds form the central theme of the discussion. These two important physical examples also illustrate some of the difficulties in a theory of solution by separation of variables methods for systems of equations. Other aspects of this subject such as solutions of the Rarita Schwinger equation (spin 3/2) and the role of generalized Hertz potentials are also discussed.

1. Introduction and Scalar Equations. The method of separation of variables is a well known procedure in classical and quantum mechanics. It enables the solution of many of the fundamental (scalar) partial differential equations of mathematical physics to be reduced to the solution of ordinary differential equations. Typically one tries to represent a solution of the original problem as a sum or product of functions, each term depending on a single coordinate. This is frequently successful for the Hamilton-Jacobi, Helmholtz and Schrödinger equations. A comprehensive theory exists for which a review has been given by Miller (1988). The aims of the theory are twofold; first to obtain explicit solutions of partial differential equations and second, to find intrinsic characterizations of the separable coordinates, separation parameters and frames that occur in the solutions. The natural place for these methods as applied to scalar problems in general relativity is in the solution of the equations for the geodesics. An obvious question to ask is for what space times is it possible to solve the Hamilton-Jacobi equation for the geodesics, $g^{ij}\partial_i S \partial_j S = \lambda$, by separation of variables? Although this problem has not been comprehensively solved, a significant contribution was made by Carter (1968). He investigated spaces with a two parameter Abelian isometry group for which the Hamilton-Jacobi equation for the geodesics is soluble by additive separation of variables in such a way that a certain natural canonical orthonormal frame is determined. Carter included in his studies the extension of the classical separation of variables ideas to include charged particles in the presence of an electromagnetic field. Through imposition of only the existence of a two dimensional Abelian isometry group a detailed study was possible. The additional requirement that the Schrödinger equation also separates via the product separation ansatz further made the

†Department of Mathematics and Statistics, University of Waikato, Hamilton, New Zealand
‡School of Mathematics and Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455. Work supported in part by the National Science Foundation under grant DMS 91–100324.
complete characterization for such systems possible. These requirements lead to a metric of the form

\[ds^2 = \frac{Z}{\Delta_{\lambda}} d\lambda^2 + \frac{Z}{\Delta_{\mu}} d\mu^2 + \frac{\Delta_{\mu}}{Z} [P_{\lambda} d\psi - Q_{\lambda} d\sigma]^2 + \frac{\Delta_{\lambda}}{Z} [P_{\mu} d\psi - Q_{\mu} d\sigma]^2 \]

where \(\psi \) and \(\sigma \) are ignorable variables (i.e. the components of the metric tensor do not depend on these coordinates) and \(\lambda \) and \(\mu \) are the two non-ignorable variables. Here \(\Delta_{\kappa}, P_{\kappa}, Q_{\kappa} \) are functions of \(\kappa = \lambda, \mu \). The function \(Z \) is defined by \(Z = P_{\lambda} Q_{\mu} - P_{\mu} Q_{\lambda} \) where \(\frac{\partial^2 Z}{\partial \lambda \partial \mu} = 0 \).

The simplest electromagnetic field which is compatible with separability of the Hamilton-Jacobi equation in these coordinates is a covariant vector potential of the form

\[A = \frac{P_{\lambda} X_{\mu} + P_{\mu} X_{\lambda}}{Z} d\psi - \frac{Q_{\lambda} X_{\mu} + Q_{\mu} X_{\lambda}}{Z} d\sigma \]

with \(X_{\kappa} \) functions of \(\kappa \) as above. The complete solution of the Einstein vacuum equations (with and without a cosmological term) and the Einstein-Maxwell equations for these restrictions results in four classes of solutions.

\[[A] \quad ds^2 = (\lambda^2 + \mu^2) \left[\frac{d\lambda^2}{\Delta_{\lambda}} + \frac{d\mu^2}{\Delta_{\mu}} \right] + \frac{\Delta_{\mu}[d\chi - \lambda^2 d\psi]^2 - \Delta_{\lambda}[d\chi + \mu^2 d\psi]^2}{\lambda^2 + \mu^2} \]

where

\[\Delta_{\lambda} = \frac{1}{3} \Lambda \lambda^4 + h \lambda^2 - 2m \lambda + p + e^2 \quad \Delta_{\mu} = \frac{1}{3} \Lambda \mu^4 - h \mu^2 + 2q \mu + p \]

\[A = e^{\left(\lambda \mu(\nu \cos \alpha + \lambda \sin \alpha) + \lambda \mu(\nu \cos \alpha - \lambda \sin \alpha) \right)} \frac{d\psi}{\lambda^2 + \mu^2} \]

\[[\tilde{B}(\pm)] \quad ds^2 = (\lambda^2 + \ell^2) \left[\frac{d\lambda^2}{\Delta_{\lambda}} + \frac{d\mu^2}{\Delta_{\mu}} + \Delta_{\mu} d\psi^2 \right] - \frac{\Delta_{\lambda}[d\chi + 2\ell \mu d\psi]^2}{\lambda^2 + \ell^2} \]

where

\[\Delta_{\lambda} = \Lambda (\frac{1}{3} \lambda^4 + 2\ell^2 \lambda^2 - \ell^4) + h(\lambda^2 - \ell^2) - 2m \lambda + e^2 \quad \Delta_{\mu} = -h \mu^2 + 2q \mu + p \]

\[A = e^{\left(\mu \frac{2\ell \cos \alpha + (\lambda^2 + \ell^2) \sin \alpha}{\lambda^2 + \ell^2} \right)} d\psi + \frac{\lambda \cos \alpha}{\lambda^2 + \ell^2} d\chi \]

\[[\tilde{B}(-)] \quad ds^2 = (\mu^2 + k^2) \left[\frac{d\lambda^2}{\Delta_{\lambda}} + \frac{d\mu^2}{\Delta_{\mu}} - \Delta_{\lambda} d\psi^2 \right] + \frac{\Delta_{\mu}[d\chi - 2k \lambda d\psi]^2}{\mu^2 + k^2} \]
where

\[\Delta_\lambda = h\lambda^2 - 2m\lambda + n \quad \Delta_\mu = \Lambda(\frac{1}{3}\mu^4 + 2k^2\mu^2 - k^4) - h(\mu^2 - k^2) + 2q\mu - \epsilon^2 \]

\[A = e \left[\lambda(\mu^2 + k^2) \cos \alpha + 2k\mu \sin \alpha \right] \frac{d\psi}{\mu^2 + k^2} + \frac{\mu \sin \alpha}{\mu^2 + k^2} d\chi \right], \]

\[[D] \quad ds^2 = \frac{d\lambda^2}{\Delta_\lambda} + \frac{d\mu^2}{\Delta_\mu} + \Delta_\mu d\chi^2 - \Delta_\lambda d\psi^2 \]

where

\[\Delta_\lambda = (\Lambda + \epsilon^2)\lambda^2 - 2m\lambda + n \quad \Delta_\mu = (\Lambda + \epsilon^2)\mu^2 - 2q\mu + p \]

\[A = e \{ \lambda \cos \alpha d\psi - \mu \sin \alpha d\chi \}. \]

Other results are available on this topic, as for instance in Boyer, Kalnins and Miller (1981).

2. **Separation of Variables in Non Scalar Equations.** The theory for the solution of systems of equations by methods that directly or indirectly relate to separation of variables has remained unclear in general relativity. However, from a knowledge of group theory it is straightforward to obtain a decoupling, in spherical coordinates, of the equations associated with the Schwarzschild metric, because of the inherent spherical symmetry of this metric, Gel’fand, Minlos and Shapiro (1963). This is also true for Robertson Walker cosmological models which admit six dimensional isometry groups, Kalnins and Miller (1991). The first results that indicated that separation of variables is possible for a Kerr space time were those due to Teukolsky (1973). Teukolsky showed that that certain components of the gravitational perturbations of a Kerr black hole were solvable by the means of the separation of variables method. [The gravitational perturbation equations (11) describe spin 2 particles with zero mass, Lifshitz and Khalatnikov (1963).] Furthermore his analysis extended to the spinor Maxwell and neutrino field equations. These ideas have been further extended to the solution of the Dirac equation in an Einstein-Maxwell space time by Kamran and McLenaghan (1984ab). One of the crucial steps was the solution of the Dirac equation in the space time of a Kerr black hole, achieved by Chandrasekhar (1976). This result was later extended by Page (1976) to the case of an electron in the Kerr-Newman space time background of a charged black hole. In this article we also show that the separation also works in the presense of a magnetic charge \(g \). The expression for the infinitesimal distance in this case is (in spherical coordinates)

\[ds^2 = (1 - \frac{2Mr}{\rho^2}) dt^2 - \rho^2 \left(\frac{dr^2}{\Delta} + d\theta^2 \right) - \left((r^2 + a^2) + \frac{2a^2Mr \sin^2 \theta}{\rho^2} \right) \sin^2 \theta \ d\varphi^2 + \frac{4aMr \sin^2 \theta}{\rho^2} \ dt \ d\phi \]
where $\Delta = r^2 + a^2 + q^2 + g^2 - 2Mr$, $\bar{\rho} = r + ia\cos \theta$, $\rho^2 = \bar{\rho}\rho^*$ and the associated electromagnetic field has the components

$$A = \frac{q r[dt - a \sin^2 \theta \, d\varphi] + g \cos \theta[a \, dt - (r^2 + a^2) d\varphi]}{\rho^2}.$$

This metric corresponds to the Kerr Newman black hole solution when $q = 0$ and the Kerr solution when $q = 0$ also. Associated with this metric is the null tetrad of vectors given by

$$\ell_i dx^i = \frac{1}{\Delta}(\Delta dt - \rho^2 dr - a \Delta \sin^2 \theta d\phi), \quad n_i dx^i = \frac{1}{2\rho^2}(\Delta dt + \rho^2 dr - a \Delta \sin^2 \theta d\phi)$$

$$m_i dx^i = \frac{1}{\bar{\rho}\sqrt{2}}(ia \sin \theta dt - \rho^2 d\theta - i(r^2 + a^2) \sin \theta d\phi)$$

The null tetrad is used when physical equations are rewritten in spinor form using the null tetrad formalism as expounded in Penrose and Rindler (1984). (These vectors are aligned with the principal null directions of the Weyl spinor.) The non-zero spin coefficients are

$$\rho = -\frac{1}{\bar{\rho}^*}, \quad \beta = \frac{\cot \theta}{\sqrt{2\bar{\rho}^*}}, \quad \pi = \frac{ia \sin \theta}{\sqrt{2} \bar{\rho}^*}, \quad \tau = -\frac{ia \sin \theta}{\sqrt{2} \rho^*},$$

$$\mu = \frac{\Delta}{2\rho^2 \bar{\rho}^*}, \quad \gamma = \mu + \frac{r - M}{2\rho^2}, \quad \alpha = \pi - \beta^*.$$

The only non-zero component of the Weyl spinor is $\Psi_2 = -\frac{M}{(\rho^*)^3}$.

The key observation of Teukolsky was obtained by examining the linear perturbation equations $\delta R_{\alpha\beta} = 0$ for a Kerr black hole. From the Bianchi and Ricci identities the following relations hold true

$$(\delta^* - 4\alpha + \pi)\hat{\Psi}_0 - (D - 4\rho^*)\hat{\Psi}_1 = 3\hat{\kappa}\Psi_2, \quad (\Delta - 4\gamma + \mu)\hat{\Psi}_0 - (\delta - 4\tau - 2\beta)\hat{\Psi}_1 = 3\hat{\sigma}\Psi_2$$

$$(D - \rho - \rho^*)\hat{\sigma} - (\delta - \tau + \pi^* - \alpha^* - 3\beta)\hat{\kappa} = \hat{\Psi}_0,$$

$$(\delta + 4\beta - \rho^*)\hat{\Psi}_4 - (\Delta + 2\gamma + 4\mu)\hat{\Psi}_3 = -3\dot{\nu}\Psi_2, \quad (D - \rho^*)\hat{\Psi}_4 - (\delta^* + 4\pi + 2\alpha)\hat{\Psi}_3 = -3\dot{\lambda}\Psi_2$$

$$(\Delta + \mu + \mu^* + 3\gamma - \gamma^*)\hat{\lambda} - (\delta^* + 3\alpha + \beta^* + \pi - \tau^*)\dot{\nu} = -\hat{\Psi}_4$$

where $D = \ell^i \partial_{x^i}$, $\Delta = n^i \partial_{x^i}$, and $\delta = m^i \partial_{x^i}$. (In these equations $\hat{\Psi}_0, \hat{\Psi}_1, \hat{\Psi}_3, \hat{\Psi}_4, \hat{\sigma}, \hat{\kappa}, \dot{\nu}$ and $\hat{\lambda}$ are first order components of the Weyl spinor and the spin coefficients, respectively.)

As a result of the identities that result from the commutation relations of the directional derivatives the perturbed components of the Weyl spinor Ψ_0 and Ψ_4 satisfy the decoupled equations

$$[(D - 2\rho - \rho^*)\Delta - 4\gamma + \mu] - (\delta - 2\tau + \pi^* - \alpha^* - 3\beta)(\delta^* - 4\alpha + \pi)]\hat{\Psi}_0 = \Psi_2\hat{\Psi}_0$$
\[(\Delta + 2\mu + \mu^* + 3\gamma - \gamma^*)(D - \rho) - (\delta^* + 3\alpha + \beta^* + 2\pi - \tau^*)(\delta + 4\beta - \tau)] \hat{\Phi}_4 = \Psi_2 \hat{\Psi}_4\]

where \(\Phi_4 e^{i(\sigma t + m\varphi)} = (\rho)^4 \hat{\Psi}_4, \Phi_0 e^{i(\sigma t + m\varphi)} = \Psi_0 \). Teukolsky deduced that these equations can be reduced to the forms

\[\Delta D_1 L^\dagger - 6i\sigma(r + ia \cos \theta) \Phi_0 = 0, \quad \Delta D_1 L^\dagger - 6i\sigma(r + ia \cos \theta) \Phi_4 = 0\]

where

\[L_n = \frac{\partial}{\partial \theta} + Q + n \cot \theta, \quad L_n^\dagger = \frac{\partial}{\partial \theta} - Q + n \cot \theta, \quad Q = \sigma \sin \theta + m \csc \theta \]

\[D_n = \frac{\partial}{\partial r} + \frac{K}{\Delta} + \frac{2n(r - M)}{\Delta}, \quad D_n^\dagger = \frac{\partial}{\partial r} - \frac{K}{\Delta} + \frac{2n(r - M)}{\Delta}, \quad \Delta = (r^2 + a^2) \sigma + am\]

From these equations we can see that a solution of the separated form \(\Phi_0 = R_2(r)S_2(\theta) \) and \(\Phi_4 = R(-2(r)S_{-2}(\theta) \) is possible if the functions \(R_{\pm 2}(r), S_{\pm 2}(\theta) \) satisfy the ordinary differential equations

\[(\Delta D_1 L^\dagger - 6i\sigma r)R_2 = \lambda R_2, \quad (L_1 L_2 + 6a \sigma \cos \theta)S_2 = -\lambda S_2\]

\[(\Delta D_1 L^\dagger - 6i\sigma r)R_{-2} = \lambda R_{-2}, \quad (L_{-1} L_2 - 6a \sigma \cos \theta)S_{-2} = -\lambda S_{-2}\]

These are the equations for Teukolsky functions of spin 2. Similar results have also been deduced for spin 1 Maxwell’s equations and the spin 1/2 neutrino field. In the appendix Teukolsky functions for general spin are discussed together with some of their properties.

Dirac’s equation for spin 1/2 particles with charge e in an electromagnetic field has the form

\[\gamma^\mu (\nabla_\mu - ieA_\mu) \psi = im_\epsilon \psi \quad \text{where} \quad \{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} I_4, \quad \text{and} \quad \{,\} \text{ is the anticommutator.} \]

In spinor form the Dirac equation is

\[(\nabla^B_{B'} - ieA^B_{B'}) \varphi_B = \frac{im_\epsilon}{\sqrt{2}} \chi_{B'}, \quad (\nabla^B_{B'} - ieA^B_{B'}) \chi_{B'} = -\frac{im_\epsilon}{\sqrt{2}} \varphi_B.\]

Restricted to a black hole space time with both electric and magnetic charge and expressed in terms of the modified field components \(\varphi_0 = \phi_0 e^{i(m\varphi + \sigma t)}, \quad \varphi_1 = \phi_1 e^{i(m\varphi + \sigma t)}, \quad \chi_{0'} = X_0 e^{i(m\varphi + \sigma t)}, \quad \chi_{1'} = X_1 e^{i(m\varphi + \sigma t)} \), these equations assume the form

\[-(L_{1/2} - \frac{ieg}{\sqrt{2}} \cot \theta) \phi_0 + (D_0 - \frac{iegr}{\sqrt{2} \Delta}) \phi_1 = -im_\epsilon (r - ia \cos \theta) X_0\]

\[(\Delta D_{1/2}^\dagger + \frac{iegr}{\sqrt{2} \Delta}) \phi_0 + (L_{1/2} + \frac{ieg}{\sqrt{2}} \cot \theta) \phi_1 = -im_\epsilon (r - ia \cos \theta) X_1\]

\[-(L_{1/2} + \frac{ieg}{\sqrt{2}} \cot \theta) X_0 + (D_0 - \frac{iegr}{\sqrt{2} \Delta}) X_1 = im_\epsilon (r + ia \cos \theta) \phi_0\]

\[(\Delta D_{1/2}^\dagger + \frac{iegr}{\sqrt{2}}) X_0 + (L_{1/2} - \frac{ieg}{\sqrt{2}} \cot \theta) X_1 = im_\epsilon (r + ia \cos \theta) \phi_1.\]
They can be solved by the separation ansatz

\[\phi_0 = R_{1/2} S_{1/2}, \quad \phi_1 = R_{-1/2} S_{1/2}, \quad X_0 = -R_{1/2} S_{-1/2}, \quad X_1 = R_{-1/2} S_{-1/2} \]

to give the coupled equations

\[
(L_{1/2} - \frac{ieq}{\sqrt{2}} \cot \theta) S_{1/2} = (\lambda - am_\epsilon \cos \theta) S_{-1/2}, \quad (D_0 - \frac{ieq r}{\sqrt{2} \Delta}) R_{1/2} = (\lambda + im_\epsilon r) R_{1/2},
\]
\[
(D_{1/2} + \frac{ieq}{\sqrt{2}} \cot \theta) S_{-1/2} = (\lambda + am_\epsilon \cos \theta) S_{1/2}, \quad (\Delta D_{1/2} + \frac{ieq r}{\sqrt{2}}) R_{1/2} = (\lambda - im_\epsilon r) R_{-1/2}.
\]

where \(\lambda \) is a constant. The basic question left open by this work was how is the separation parameter \(\lambda \) invariantly characterized. This is answered by the existence of a non-trivial symmetry operator associated with the Killing-Yano tensor \(\bar{K}_{A A' B B'} \). In tensorial notation, a Killing-Yano tensor of order \(p \) is any skew symmetric tensor \(K_{\mu_1 \mu_2 \ldots \mu_p} \) which satisfies \(\nabla_{(\mu} K_{\nu)\mu_2 \ldots \mu_p} = 0 \). For \(p = 2 \) this condition, in spinor notation, is equivalent to the conditions

\[\nabla_{(A A'} K_{B C)} = 0, \quad \nabla_{A(A'} \bar{K}_{B'C')} = 0, \quad \nabla_{B A'} K^B_A + \nabla_{A B'} \bar{K}^{B'}_{A'} = 0 \]

where

\[K_{\alpha \beta} = K_{A A' B B'} = \frac{1}{2} [\epsilon_{A' B'} K_{A B} + \epsilon_{A B} \bar{K}_{A' B'}] \]

is the decomposition of \(K_{\alpha \beta} \) in terms of symmetric Killing spinors \(K_{A B}, \bar{K}_{A' B'} \). For Kerr space time there is only one Killing Yano tensor of valence two and it has non zero components \(K_{A B} = -\bar{\rho}^*, \) and \(\bar{K}_{A' B'} = \bar{\rho} \).

The corresponding characterization of the separation parameter is given by:

\[\begin{bmatrix} 0 & L_{A' A} \\
N^A_{A'} & 0 \end{bmatrix} \begin{pmatrix} \phi_A \\ -\chi_{A'} \end{pmatrix} = \frac{\lambda}{\sqrt{2}} \begin{pmatrix} \phi_A \\ -\chi_{A'} \end{pmatrix} \]

where

\[L_{A A'} = K_{A A'} B B' \nabla_{B B'} + \frac{1}{3} M_{A A'}, \quad N_{A A'} = K_{A A'} B B' \nabla_{B B'} - \frac{1}{3} M_{A A'}. \]

Here \(M_{A A'} \) is a Killing vector obtained from the Killing-Yano tensor via

\[M_{A B'} = \frac{1}{3} \nabla^{B A'} K_{A A' B B'}, \quad \nabla_{(A(A'} M_{B)B')} = 0. \]

This result is due to Carter and McLenaghan (1979) though originally expressed in tensor rather than spinor form. Writing the Dirac equation (1) in the form

\[H \begin{pmatrix} \phi_A \\ -\chi_{A'} \end{pmatrix} = \frac{im_\epsilon}{\sqrt{2}} \begin{pmatrix} \phi_A \\ -\chi_{A'} \end{pmatrix} \]

one can show that the operator on the lefthand side of (2) is a symmetry operator for the Dirac equation, i.e., it commutes with H. This operator together with the trivial symmetry operators ∂_{ϕ}, ∂_t is responsible for the separation. The separation constants are just the eigenvalues of these operators.

In fact the most general first order formally self-adjoint operator that commutes with the Dirac operator has, in tensor notation, the form, McLenaghan and Spindel (1979), Kamran, Légaré, McLenaghan and Winternitz (1988)

$$L = (iB^iI_4 + iC\gamma^i + D^j_\gamma\gamma^j + E^i_{jk}\gamma^{jk})\nabla_i + RI_4 - \frac{3}{4}(\nabla_jE^j)\gamma^5 + \frac{1}{4}(\nabla_k^2D^k_j)\gamma^j - \frac{1}{4}\nabla_kB_j\gamma^{jk}$$

where C and R are real valued constants, B_i, D_{ij} and E_{ijk} are Killing-Yano tensors, $D_{ij} = \frac{1}{2}\varepsilon_{ijkl}D^{kl}$, $E_i = \frac{1}{6}\varepsilon_{ijk}E^{ijkl}$, $\gamma^5 = \frac{1}{24}\varepsilon_{\alpha\beta\gamma\delta}\gamma^\alpha\gamma^\beta\gamma^\gamma\gamma^\delta$ and $\gamma^{ijk} = \gamma^j\gamma^k - \gamma^k\gamma^j$.

A lesson to be learned from this invariant characterization is that the existence of a Killing-Yano tensor is crucial to the uncoupling of the Dirac equation in a Kerr space time. An immediate observation is that the notion of separation of variables component by component is not able to describe this method of solution. The occurrence of the factors $\tilde{\rho}$ and $\tilde{\rho}^*$ in the form of the solution indicate an alternative form of separation of variables. Separation that occurs in this manner in the Dirac equation can be described using the idea of factorisable systems as formulated by Shapovalov and E'kle (1974ab), see also Miller (1988).

Definition A factorisable system for the Dirac equation

$$H\Psi \equiv \gamma^\mu\nabla_\mu\Psi \equiv (H_i\frac{\partial}{\partial x^i} + V)\Psi = im_e\Psi$$

is a collection of four first order partial differential equations of the form

$$\frac{\partial}{\partial x^i}\Psi = (S^i_j\lambda^j - V_i)\Psi$$

where the λ^i are complex parameters, the functions S_{ij}, V_i are 4×4 matrices where the determinant of the 16×16 matrix $[S_{ij}]$ is non zero and where substitution of (5) into (4) yields an identity. A factorisable system is said to be separable in the local coordinate x^ℓ if

$$\frac{\partial S_{ij}}{\partial x^k} = \frac{\partial V_i}{\partial x^k} = 0, \text{ for } k \neq i.$$

The significance of this definition is the relation between factorisable systems and complete sets of commuting first order operators. In fact the integrability conditions

$$\left[\frac{\partial^2}{\partial x^i\partial x^j} - \frac{\partial^2}{\partial x^j\partial x^i}\right]\Psi = 0, \text{ } i \neq j$$
for the existence of a factorisable system are satisfied if and only if there exist functions \(A^{ik}, B^i \) such that the first order partial differential operators

\[
A^{(i)} := A^{ik} \frac{\partial}{\partial x^k} + B^i, \quad i = 1, \ldots, n
\]

commute:

\[
[A^{(i)}, A^{(j)}] = 0, \quad \text{for } i \neq j
\]

\[
H = A^{(1)}, \quad A^{ik} S_{kj} = S_{jk} A^{ki} = \delta_j^i I, \quad \text{and } B^i = A^{ik} V_k.
\]

Here, \(I \) is the \(4 \times 4 \) identity matrix. As a corollary of this definition of a factorisable system, the (separable) solutions \(\Psi \) of (5) are simultaneous eigenfunctions of the operators \(A^{(i)} \). A question arising from this mechanism is what space times and coordinate systems permit separation via the factorisation method. Debever and McLenaghan (1981) have obtained a very general null tetrad fitting this method and given by

\[
\ell_i dx^i = \frac{1}{\sqrt{2}} |Z(z, w)|^{1/2} (g_0^{-2} W(w)^{-1} dw + f_0 W(w) Z(x, w)^{-1} (\epsilon_1 du + m(x) dv)
\]

\[
n_i dx^i = \frac{1}{\sqrt{2}} |Z(z, w)|^{1/2} (-f_0 g_0^{-2} W(w)^{-1} dw + W(w) Z(w, z)^{-1} (\epsilon_1 du + m(x) dv)
\]

\[
m_i dx^i = \frac{1}{\sqrt{2}} |Z(x, w)|^{1/2} (i X(x)^{-1} dx + X(x) Z(x, w)^{-1} (\epsilon_2 du + p(w) dv)
\]

where

\[
Z(w, x) = \epsilon_1 p(w) - \epsilon_2 m(x), \quad g_0 = \left[\frac{1}{2} (1 + f_0^2) \right]^{1/2}, \quad \epsilon_1 = \cos \gamma, \quad \epsilon_2 = \sin \gamma
\]

and

\[
p(w) = (c^2 w^2 + k^2 + \ell^2) \cos \gamma + 2ckw, \quad m(x) = -(c^2 x^2 + k^2 + \ell^2) \sin \gamma - 2clx,
\]

\[
W(w)^2 = -\frac{1}{3} \lambda c^2 w^4 \cos^2 \gamma - \frac{4}{3} \lambda ckw^3 \cos \gamma + f_2 w^2 + f_1 w + f_0,
\]

\[
X(x)^2 = -\frac{1}{3} \lambda c^2 x^4 \sin^2 \gamma - \frac{4}{3} \lambda clx^3 \sin \gamma - [f_2 + 2\lambda (k^2 + \ell^2)] x^2 + g_1 x + g_0,
\]

where \(\lambda, f_0, f_1, g_0, g_1, k, \ell, c \) and \(\gamma \) are constants. The metric is given by \(g_{ij} = 2(\ell_{(i} n_{j)} - m_{(i} m^{*}_{j)}) \) and is a solution of the Einstein field equations with cosmological constant. The Dirac equation admits a solution separable in the form

\[
\psi = e^{i(\lambda^2 u + \lambda^4 v)} \begin{bmatrix} e^{i\beta} H_1(x) K_2(w) \\ e^{i\beta} H_2(x) K_1(w) \\ e^{-i\beta} H_1(x) K_1(w) \\ e^{-i\beta} H_2(x) K_2(w) \end{bmatrix}
\]
where \(e^{i\beta} = Z^{1/4}(h(w) - ig(x))^{-1/2} \), \(h(w) = cw \cos \gamma + \ell \) and \(g(x) = cx \sin \gamma + k \). The separated ordinary differential equations are given by

\[
\frac{1}{\sqrt{2}} \left(W \frac{\partial}{\partial w} + f_0 g_0^{-2} W^{-1} (p \lambda^3 - \epsilon_2 \lambda^4) + \frac{1}{2} W' \right) K_1 - \lambda^1 h K_2 = \lambda^2 K_2
\]

\[
\frac{1}{\sqrt{2}} \left(-f_0 W \frac{\partial}{\partial w} + g_0^{-2} W^{-1} (p \lambda^3 - \epsilon_2 \lambda^4) \right) - \frac{1}{2} f_0 W' K_2 - \lambda^1 h K_1 = -\lambda^2 K_1
\]

\[
\frac{1}{\sqrt{2}} \left(-i X \frac{\partial}{\partial x} + X^{-1} (\epsilon_1 \lambda^3 - m \lambda^4) - \frac{i}{2} X' \right) H_2 - i \lambda^1 g H_1 = -\lambda^2 H_1
\]

\[
\frac{1}{\sqrt{2}} \left(i X \frac{\partial}{\partial x} + X^{-1} (\epsilon_1 \lambda^3 - m \lambda^4) + \frac{i}{2} X' \right) H_1 - i \lambda^1 g H_2 = \lambda^2 H_2.
\]

The notion of factorisable systems is not, however, sufficient for a comprehensive treatment of separable solutions of the Dirac equation. This is made clear by the example, Fels and Kamran (1990), of a space time with the infinitesimal distance

\[
(6) \quad ds^2 = dt^2 - a(t)^2 (dx^2 + b(x)^2(dy^2 + c(y)^2dz^2)).
\]

Metrics of this form include the various Robertson-Walker cosmological models. A suitable choice of null tetrad frame is

\[
\ell_j dx^j = \frac{1}{\sqrt{2}} (dt + a(t)dx), \quad n_j dx^j = \frac{1}{\sqrt{2}} (dt - a(t)dx), \quad m_j dx^j = \frac{a(t)b(x)}{\sqrt{2}} (dy + ic(y)dz).
\]

The non-zero spin coefficients are

\[
\epsilon = -\gamma = \frac{a'(t)}{2\sqrt{2}a(t)}, \quad \rho = -\frac{1}{\sqrt{2}a(t)} (a'(t) + \frac{b'(x)}{b(x)})
\]

\[
\mu = \frac{1}{\sqrt{2}a(t)} (a'(t) - \frac{b'(x)}{b(x)}), \quad \alpha = -\beta = \frac{c'(y)}{2\sqrt{2}a(t)b(x)c(y)}.
\]

The metric given here has a Petrov type \(D \) Weyl tensor with \(\ell^i, n^i \) aligned with its repeated null directions. The non-zero Weyl scalar is given by

\[
\Psi_2 = (c(y)(b'(x)^2 - b(x)b''(x)) + c''(y))/6a(t)^2b(x)^2c(y).
\]

Separable solutions of Dirac’s equation when written in spinor form relative to this null tetrad frame are

\[
\varphi_0 = A_1(t)B_1(x)C_1(y)e^{i\lambda^4 z}, \quad \varphi_1 = A_1(t)B_2(x)C_2(y)e^{i\lambda^4 z}
\]

\[
\chi_0' = A_2(t)B_1(x)C_1(y)e^{i\lambda^4 z}, \quad \chi_1' = A_2(t)B_2(x)C_2(y)e^{i\lambda^4 z}
\]
where the functions appearing in the above solutions satisfy the coupled set of ordinary differential equations

\[
\begin{align*}
a(t) \frac{dA_2}{dt} - i\sqrt{2} \lambda^1 A_1 + \frac{3a'(t)}{2} A_2 &= i\lambda^2 A_2, & a(t) \frac{dA_1}{dt} - i\sqrt{2} \lambda^1 A_2 - \frac{3a'(t)}{2} A_1 &= -i\lambda^2 A_1 \\
b(x) \frac{dB_1}{dx} + b'(x) B_1 - ib(x) \lambda^2 B_1 &= i\lambda^3 B_2, & -b(x) \frac{dB_2}{dx} - b'(x) B_1 - ib(x) \lambda^2 B_2 &= i\lambda^3 B_1 \\
\frac{dC_2}{dy} - \frac{\lambda^4}{c(y)} C_2 + \frac{c'(y)}{2c(y)} C_2 &= -i\lambda^3 C_1, & \frac{dC_1}{dy} + \frac{\lambda^4}{c(y)} C_1 + \frac{c'(y)}{2c(y)} C_1 &= -i\lambda^3 C_2.
\end{align*}
\]

In contrast to the solution of the Dirac equation in the case of a Kerr-Newman space time, it is not possible to characterize all the separation constants as the eigenvalues of first order symmetry operators. In fact the space of first order symmetry operators commuting with the Dirac operator is three dimensional in this case. This follows from the fact that for a general metric of the form (6) there is only one Killing-Yano tensor of each type: a valence one Killing-Yano tensor \(K^i \) with only one nonzero component \(K^2 = 1 \), a valence two Killing-Yano tensor \(K^{ij} \) with only nonzero component \(K^{yz} = 1/a(t)b(x)c(y) \) and a valence three Killing-Yano tensor \(K^{ijk} \) with only nonzero component \(K^{xyz} = 1/a(t)b(x)^2c(y) \). The corresponding first order symmetry operators can be read off from the general form given in (3):

\[
K = K^i I_4 \nabla_i - \frac{1}{4} \nabla_i K_{j\ell} \gamma^{j\ell}, \quad L = K^i_\gamma^5 \gamma^5 \nabla_i + \frac{1}{3} (\nabla_i K^\ell_m) \gamma^m, \quad N = K_{jk} \gamma^{jk} \nabla_i - \frac{3}{4} (\nabla_i K^\ell) \gamma^5.
\]

The corresponding Dirac spinor solutions are eigensolutions of the operators \(K, N \) and \(L^2 \) with corresponding eigenvalues \(i\lambda^4, i\lambda^2 \) and \(\lambda^3 \lambda^3 \). These operators together with the Dirac operator \(H = \gamma^\ell \nabla_\ell \) all commute. (Here a complete characterization of the separation parameters requires second order symmetry operators. Examples of separation for the Dirac equation are known that require even higher order symmetries.)

Recently Iyer and Kamran(1991) have studied separation of variables for the Dirac equation in an extended class of Lorentzian metrics with rotational symmetry. Explicit solutions of the Dirac equation have been extensively studied in Minkowski space time. For a description of this work see Bagrov and Gitman (1990), Shiskin and Villalba (1989). In particular, Shiskin’s approach to obtaining separable coordinates and eigenvalue characterizations holds promise for extension to curved space times.

4. Spin 1/2, 1 and 3/2 Equations in a Curved Space Time Background.
Equations that have explicit solution by separation techniques similar to those for the Dirac equation are the neutrino equation, Maxwell’s equations and the Rarita-Schwinger spin 3/2 equations. We consider in all cases the Kerr space time background and, in the case of Maxwell’s equations, Robertson-Walker type space time also.

(1) The Neutrino Equation
The neutrino equation is in fact a special form of the Dirac equation for which \(m_\epsilon = 0 \):

\[
\nabla^{AA'} \varphi_A = 0.
\]

The eigenvalue equation for the non trivial symmetry operator is

\[
L_{A'}^B N_{A}^A \varphi_A = -\frac{\lambda^2}{2} \varphi_B.
\]

Kamran and McLenaghan (1984b) have shown that the Weyl neutrino equation is separable in the class of solutions which are Petrov type D electrovac with non-singular aligned Maxwell field satisfying the generalized Goldberg-Sachs theorem and that within this class of space times the Dirac equation is separable in Carter's \([A]\) family of solutions and in the \(A_0\) null orbit solution of Debever and McLenaghan (1981).

\(2\) Maxwell's Equations

These equations in spinor form are \(\nabla_{A'}^A \varphi_{AB} = 0\), \(\varphi_{AB} = \varphi_{BA}\). The separated components of two of the three distinct components of \(\varphi_{AB}\) have the form

\[
\varphi_{00} = R_1 S_1 e^{i(m\varphi + \sigma t)}, \quad \varphi_{11} = 2(\rho^*)^2 R_{-1} S_{-1} e^{i(m\varphi + \sigma t)}
\]

where \(R_{\pm 1}, S_{\pm 1}\) are Teukolsky functions, i.e., they satisfy the second order ordinary differential equations

\[
\begin{align*}
(\Delta D_1 D_1^\dagger - 2i\sigma r - \lambda) R_{+1} &= 0, \quad (\Delta D_0 D_0^\dagger + 2i\sigma r + \lambda) R_{-1} = 0 \\
(L_0^\dagger L_1 + 2\sigma a \cos \theta + \lambda) S_{+1} &= 0, \quad (L_0 L_1^\dagger - 2\sigma a \cos \theta - \lambda) S_{-1} = 0.
\end{align*}
\]

From these equations and by suitable normalisation we obtain the so called Teukolsky identities for spin 1:

\[
\Delta D_0 D_0 R_{-1} = \Delta D_0 D_0^\dagger \Delta R_{+1}, \quad \Delta D_0 D_0^\dagger \Delta R_{+1} = C^* R_{-1}, \quad L_0 L_1 S_{+1} = CS_{-1}
\]

\[
L_0^\dagger L_1^\dagger S_{-1} = CS_{+1}, \quad C^2 = \lambda^2 - 4\alpha^2 \sigma^2, \quad \alpha^2 = a^2 + (am/\sigma).
\]

One can then obtain

\[
\varphi_{01} = \frac{1}{\sqrt{2\rho^* C}} \left[D_0 L_1 - \frac{1}{\rho^*} (L_1 + ia \sin \theta D_0) \right] R_{-1} S_{+1}.
\]

The constants \(\lambda\) and \(C\) have been shown by Kalnins, Miller and Williams (1989a) to be characterized by eigenvalue equations of symmetry operators

\[
\Lambda_{(A\phi_B)C}^C = \left[K_{(A)}^{A'EE'} \nabla_{EE'} - M_{(A)}^{A'} \right] \left[K_{A'}^{DD'} \nabla_{DD'} + 2M_{A'}^C \right] \phi_{(B)C} = \frac{1}{2} \lambda \phi_{AB}
\]
\[
C_{A'B'}^{AB} \phi_{AB} = \left[K_{(A')}^{A'E'} \nabla_{E'E'} + M_{(A')}^{A'} \right] \left[K_{(B')}^{B'D'} \nabla_{D'D'} + 2M_{(B')}^{B'} \right] \phi_{AB} = C\phi_{A'B'}.
\]

As with the Dirac and Weyl neutrino equations, the Killing-Yano tensor and its associated Killing tensor play a crucial role in the separation of Maxwell’s equations. These equations can also be solved for the Robertson-Walker type space times. Indeed, solutions can be found of the form

\[
\varphi_{00} = A(t)h_0(x)g_0(y)e^{-i\lambda z}, \quad \varphi_{01} = A(t)h_1(x)g_1(y)e^{-i\lambda z}, \quad \varphi_{11} = A(t)h_2(x)g_2(y)e^{-i\lambda z}
\]

where the separation functions satisfy

\[
\left[\frac{\partial}{\partial y} - \frac{\lambda}{c(y)} + \frac{c'(y)}{c(y)} \right] g_0(y) = \lambda_4 g_1(y), \quad \left[\frac{\partial}{\partial y} - \frac{\lambda}{c(y)} \right] g_1(y) = \lambda_3 g_2(y)
\]

\[
\left[\frac{\partial}{\partial y} + \frac{\lambda}{c(y)} \right] g_1(y) = \lambda_2 g_0(y), \quad \left[\frac{\partial}{\partial y} + \frac{\lambda}{c(y)} + \frac{c'(y)}{c(y)} \right] g_2(y) = \lambda_1 g_1(y)
\]

\[
\frac{\lambda_4}{b(x)}h_0 + \left[u + \frac{\partial}{\partial x} - 2\frac{b'(x)}{b(x)} \right] h_1 = 0, \quad \frac{\lambda_3}{b(x)}h_1 + \left[u + \frac{\partial}{\partial x} - \frac{b'(x)}{b(x)} \right] h_2 = 0
\]

\[
\left[u - \frac{\partial}{\partial x} - \frac{b'(x)}{b(x)} \right] h_0 + \frac{\lambda_2}{b(x)}h_1 = 0, \quad \left[u - \frac{\partial}{\partial x} - 2\frac{b'(x)}{b(x)} \right] h_1 + \frac{\lambda_1}{b(x)}h_2 = 0.
\]

These equations are consistent if \(\lambda_1 \lambda_3 = \lambda_2 \lambda_4 \). For a suitable choice of frame it is also possible to solve the massive spin 1 equations in Robertson-Walker type space times. It is not, however, possible to proceed in this manner for free field equations of spin greater than 1. The reason for this is that the whole process developed for these space times directly mimics the procedure used in Minkowski space time, where group theory guarantees the results, Gel’fand, Minlos and Shapiro (1963). The recurrence formulas amongst the matrix elements that are necessary to achieve separation in that case can only be mimicked for general Robertson-Walker metrics for spins 1, 1/2 or 0. Any attempt to mimic these methods of solution for higher spin equations requires that the metric

\[
ds^2 = dx^2 + b^2(x)(dy^2 + c^2(y)dz^2)
\]

correspond to a space of constant curvature. This occurs in the case of the various Robertson-Walker cosmological models as has been shown by Kalnins and Miller (1991).

(3) The Rarita-Schwinger Equation

The separation and solution of the equations for various scalars associated with a Rarita-Schwinger field in a curved space time was first achieved by Guven (1980). Guven, in proving the no-hair conjecture for the uncharged black holes of supergravity theory, showed that all solutions of the Rarita-Schwinger equation in the Kerr space time that cannot be
transformed away via a supersymmetry transformation are expressible in terms of Teukolsky functions for \(s = \pm 3/2 \). Kamran (1985) later showed the separability of the Rarita-Schwinger equation for all type \(D \) vacuum space times. The Rarita-Schwinger equation can be written in spinor form as \(\nabla^A \theta_{ABB'} = 0 \), where \(\theta_{ABB'} = \theta_{(AB)B'} \). One can construct a new field \(\phi_{ABC} \) from the Rarita-Schwinger field by

\[
\phi_{ABC} = \nabla_{(AA'} \theta^A_{B'BC)}
\]

It is not too difficult to show that the new field \(\phi_{ABC} \) must satisfy

\[
\nabla^A_{A'} \phi_{ABC} = \Psi_{BC} \theta^K_{KL} - \Phi_{(BA')L} \theta^K_{C} - \Lambda \theta_{BC} A'
\]

where \(\Psi, \Phi \) and \(\Lambda \), respectively, are the components of the Riemann curvature spinor Penrose and Rindler (1984, 1986). At this point we will abandon the Rarita-Schwinger equation and consider the more general coupled system formed by equations (8) and (9).

In a vacuum we have then

\[
\nabla^A_{A'} \phi_{ABC} = \Psi_{BC} \theta^K_{KL}, \quad \nabla_{(AA'} \theta^A_{B'BC)} = \phi_{ABC}.
\]

This system is consistent in a (vacuum) space time. Note that any solution \(\theta_{ABB'} \) of the Rarita-Schwinger equation will be a solution of this coupled system (although the converse is not true in general).

In a Petrov type \(D \) vacuum space time and with a canonical tetrad, the above pair of equations give rise to the following three equations involving \(\phi_0 \):

\[
(D - \epsilon - 3\rho)\phi_1 - (\delta + \pi - 3\alpha)\phi_0 = -\Psi_2 \theta_{000'},
\]

\[
(\delta - \beta - 3\tau)\phi_1 - (\Delta - 3\gamma + \mu)\phi_0 = -\Psi_2 \theta_{001'},
\]

\[
(D - \rho \tilde{\rho})\theta_{001'} - (\delta - \alpha^* - 2\beta + \pi^*)\theta_{000'} = \phi_0.
\]

In Kerr space time and with

\[
\Phi_0 = \phi_0, \Phi_1 = \tilde{\rho}^* \phi_1, \eta_{000'} = \sqrt{2\tilde{\rho}^*} \theta_{000'}, \eta_{001'} = \sqrt{2\tilde{\rho}^*} \theta_{001'}
\]

these three equations become

\[
\left[D_0 + \frac{2}{\tilde{\rho}^*} \right] \Phi_1 - \left[L_{3/2} - \frac{2ia \sin \theta}{\tilde{\rho}^*} \right] \Phi_0 = -\Psi_2 \eta_{000'}
\]

\[
\left[L_{-1/2}^\dagger + \frac{2ia \sin \theta}{\tilde{\rho}^*} \right] \Phi_1 + \Delta \left[D_{3/2}^\dagger - \frac{2}{\tilde{\rho}^*} \right] \Phi_0 = -\Psi_2 \eta_{001'}
\]
\[
\left[D_0 - \frac{1}{\rho^*} \right] \eta_{001'} - \left[L_{-1/2}^\dagger - \frac{ia \sin \theta}{\rho^*} \right] \eta_{000'} = 2\rho^* \rho^* \Phi_0.
\]

Together these equations imply that \(\Phi_0 \) satisfies the second order separable equation
\[
\left[\Delta D_1 D_{3/2}^\dagger + L_{-1/2}^\dagger L_{3/2} - 4i\sigma\rho \right] \Phi_0 = 0
\]

which admits the solution \(\Phi_0 = R_{+3/2} S_{+3/2} \). The functions \(R_{+3/2} \) and \(S_{+3/2} \) satisfy the Teukolsky equations
\[
(\Delta D_1 D_{3/2}^\dagger - 4i\sigma r)R_{+3/2} = \lambda R_{+3/2}, \quad (L_{-1/2}^\dagger L_{3/2} + 4\sigma a \cos \theta)S_{+3/2} = -\lambda S_{+3/2}.
\]

A solution can now be found for the rest of the components of the two fields. Such a solution is
\[
\Phi_0 = R_{+3/2} S_{+3/2}
\]
\[
\eta_{000'} = \frac{1}{\Psi_2} \left[L_{3/2} - \frac{2ia \sin \theta}{\rho^*} \right] R_{+3/2} S_{+3/2}, \quad \eta_{001'} = -\frac{1}{\Psi_2} \Delta \left[D_{3/2}^\dagger - \frac{2}{\rho^*} \right] R_{+3/2} S_{+3/2}
\]

with the remaining components of the two fields being zero. By considering the equations in which \(\phi_3 \) appears, one can construct a second solution
\[
\Phi_3 = R_{-3/2} S_{-3/2}
\]
\[
\eta_{110'} = \frac{1}{\Psi_2} \left[D_0 - \frac{2}{\rho^*} \right] R_{-3/2} S_{-3/2}, \quad \eta_{111'} = \frac{1}{\Psi_2} \left[L_{3/2}^\dagger - \frac{2ia \sin \theta}{\rho^*} \right] R_{-3/2} S_{-3/2}
\]
\[
\Phi_3 = \rho^* \phi_3, \quad \Phi_2 = \rho^* \phi_2, \quad \eta_{110'} = \sqrt{2} \rho^* \theta_{110'}, \quad \eta_{111'} = \sqrt{2} \rho^* \theta_{111'}
\]

where the Teukolsky functions \(R_{-3/2} \) and \(S_{-3/2} \) satisfy the equations
\[
(\Delta D_{-1/2} D_0 + 4i\sigma r)R_{-3/2} = \lambda R_{-3/2}, \quad (L_{-1/2} L_{3/2}^\dagger - 4\sigma a \cos \theta)S_{-3/2} = -\lambda S_{-3/2}.
\]

5. **Generalized Hertz Potentials.** The use of generalized Hertz potentials to produce solutions to various equations in algebraically special space times is due to Cohen and Kegeles (1979). A generalized Hertz potential is a totally symmetric \(2s \)-spinor \(\bar{P}_{A_1 A_2 \ldots A_2} \), satisfying
\[
\nabla_{AX} \nabla_{AX'} \bar{P}_{A_1 A_2 \ldots A_2} - 2\nabla_{B(A_1} \bar{C}_{B(A_2} \ldots A_2)} - (2s - 1) s \Psi_{B'C'} (\bar{A}_1 A_2 \ldots A_2)_{B'C'} = 0
\]
where $G_{B}^{A_{1}'...A_{2s}'}$ is an arbitrary gauge field and $Ψ$ is the Weyl spinor. One can construct a spin s field from the potential and gauge field as follows:

$$\phi_{A_{1}A_{2}...A_{2s}} =$$

$$\nabla_{A_{1}A_{1}'} \nabla_{A_{2}A_{2}'} ... \nabla_{A_{2s-1}A_{2s-1}'} \left[\nabla_{A_{2s}A_{2s}'} P^{A_{1}A_{1}'...A_{2s}'} - G_{A_{2s}A_{2s}'}^{A_{1}A_{1}'...A_{2s}'} \right].$$

In a flat space time the resulting field $\phi_{A_{1}...A_{2s}}$ will satisfy the massless spin s field equation $\nabla_{B'}^{B'} \phi_{BA_{2}...A_{2s}} = 0$. However when the space time is curved the field $\phi_{A_{1}A_{2}...A_{2s}}$ satisfies the massless spin s field equations for $s = 1/2$ and $s = 1$ only. For $s = 2$ the method of generalized Hertz potentials can be used to construct a solution for the linear gravitational perturbations of the Kerr space time. Solving the equation for the generalized Hertz potential via separation of variables depends crucially on making the right choice of gauge field.

For the Weyl neutrino equation the corresponding Hertz potential $P^{A'}$ satisfies the equation $\nabla^{B'A'} \nabla_{B'B'} \bar{P}^{B'} - \nabla^{B'A'} G_{B} = 0$ where G_{B} is an arbitrary gauge field. The new field is constructed as follows: $\varphi_{A} = \nabla_{A'A'} \bar{P}^{A'} - G_{A}$. In the Kerr black hole space time a convenient choice of gauge field is $G_{B}^{00'} = U_{BB'} P_{B'}$ where $U_{BB'}$ is the vector having the components

$$\bar{U}_{00'} = \rho^{*}, \quad \bar{U}_{01'} = -\pi^{*}, \quad \bar{U}_{10'} = \tau^{*}, \quad \bar{U}_{11'} = -\mu^{*}.$$

This choice leads to Hertz potentials with solutions

$$\bar{P}^{00'} = R_{-1/2} S_{1/2} e^{i(m\varphi + \sigma t)}, \quad \bar{P}^{11'} = 0 \quad \text{or} \quad \bar{P}^{11'} = \bar{\rho} R_{1/2} S_{-1/2} e^{i(m\varphi + \sigma t)}, \quad \bar{P}^{00'} = 0$$

where $R_{\pm 1/2}, S_{\pm 1/2}$ are Teukolsky functions obtained from the separation equations for Dirac's equation by setting $m_{e} = 0$. Both possible choices of Hertz potential give rise to the same neutrino field.

For the spinor form of Maxwell's equations a similar potential can be found by writing

$$\varphi_{AB} = \nabla_{(A'A)} \left[\nabla_{B'B} \bar{P}^{A'B'} - G_{B}^{A'} \right].$$

The new field satisfies Maxwell's equations in spinor form. With the specific choice of gauge field $G_{C}^{B} = -2U_{C'C'} P^{B'C'}$ (Kerr black hole) the form of the Maxwell field given in (7) is recovered with the Hertz potentials being of the form

$$\bar{P}^{00'} = R_{-1} S_{+1} e^{i(\sigma t + m\varphi)}, \quad \bar{P}^{01'} = \bar{P}^{11'} = 0$$

$$\quad \text{or} \quad \bar{P}^{11'} = \bar{\rho}^{2} R_{+1} S_{-1} e^{i(\sigma t + m\varphi)}, \quad \bar{P}^{00'} = \bar{P}^{00'} = 0.$$

Both these forms of the Hertz potential lead to the same Maxwell spinors. An interesting feature of the Hertz potential equation is that the choice of gauge function $G_{B}^{A_{1}'...A_{2s}'} = -2s U_{BB'} P^{B'A_{2}'...A_{2s}'}$ yields solutions whose only non zero components are of the form

$$\bar{P}^{00'} = R_{-s} S_{s} e^{i(m\varphi + \sigma t)}, \quad \text{or} \quad \bar{P}^{11'} = \bar{\rho} S_{s} S_{-s} e^{i(m\varphi + \sigma t)}$$

15
where $R_{\pm s}$, $S_{\pm s}$ are the spin s Teukolsky functions satisfying the second order equations
\begin{align}
& (\Delta D^1_{-s} D_0 + 2(2s-1)i\sigma \tau) R_{-s} = \lambda R_{-s}, \quad (\Delta D^1_{1-s} - 2(2s-1)i\sigma \tau) R_s = \lambda R_s \\
& (L^1_{1-s} L_s + 2(2s-1)\sigma a \cos \theta) S_{+s} = -\lambda S_{+s}, \quad (L^1_{-s} L_s - 2(2s-1)\sigma a \cos \theta) S_{-s} = -\lambda S_{-s}.
\end{align}

These potential functions can be used to obtain components of the perturbed metric tensor corresponding to gravitational perturbations. The perturbed Einstein vacuum field equations $\delta R_{\alpha\beta} = 0$ take the form
\begin{align}
\nabla_\rho \nabla^\rho h_{\alpha\beta} - \nabla_\rho \nabla_\nu (h^\rho_\alpha) + \nabla_\alpha \nabla_\beta h = 0, h = h^\mu_\mu, \quad h_{\mu\nu} = h_{\nu\mu}.
\end{align}

Here $h_{\nu\mu}$ is the perturbed metric tensor. This can be thought of also as a spin 2 wave equation. In terms of the Hertz potential and gauge spinors the perturbed metric is given by
\begin{align}
h_{\pm DM'N'} = (\nabla_{(CP')} \nabla_{D'}) Q'_{M'N'} - \nabla_{(CP')G_D} M'_{M'N'} P')' \pm (\nabla_{E(M'N')} D')_{E(D')} - \nabla_{E(M'G_D')N')} D_{E(C'D')} E)
\end{align}

and the perturbed Weyl tensor is given by $\Psi_{ABCD} = \nabla_{(AW')} \nabla_{BX'} h_{W'X'CD}).$ The explicit expressions for the perturbed metric tensor are
\begin{align}
h_{\mu\nu} = \{-\ell_\mu \ell_\nu [(\delta^* + \alpha + 3\beta^* - \tau^*)(\delta^* + 4\beta^* + 3\tau^*) + m^* \mu_m^* (D - \rho^*)(D + 3\rho^*) + \ell_{(\mu m^* \nu)} \\
[(D + \rho - \rho^*)(\delta^* + 4\beta^* + 3\tau^*) + (\delta^* - \alpha + 3\beta^* - \pi - \tau^*)(D + 3\rho^*)] R_{-s} S_2 e^{i(\sigma t + m \varphi)} \\
\pm \{-\ell_\mu \ell_\nu [(\delta + \alpha^* + 3\beta^* - \tau)(\delta + 4\beta^* + 3\tau) + m_\mu m_\nu (D - \rho)(D + 3\rho)] + \ell_{(\mu m_\nu)} \\
[(D + \rho - \rho^*)(\delta + 4\beta^* + 3\tau) + (\delta - \alpha^* + 3\beta^* - \pi^* - \tau)(D + 3\rho)] R_{-s} S_2 e^{i(\sigma t + m \varphi)}
\end{align}

where the choice of gauge is $\ell^\mu h_{\mu\nu} = 0, h = 0$. An alternative method of solution of the gravitational perturbation problem has been given in Chandrasekhar’s book (1983). In his solution the expressions for the perturbed components of the metric are more complex. A question that remains unanswered is for what operator can the perturbed components of the metric be represented as eigenfunctions with eigenvalue λ? In addition to the two solutions given above, is it possible to construct solutions of the gravitational perturbation equations in the de Donder gauge: $\nabla^\mu h_{\mu\nu} = 0, h = 0$? In his book Chandrasekhar investigated the problem of the combined electromagnetic and gravitational perturbations for the case of a Kerr-Newman black hole. He was unable to achieve a decoupling analogous to that achieved for the Kerr black hole. One way to approach this problem would be to look for a second order symmetry for the combined system of perturbation equations. If such exists then it would indicate the possibility of obtaining closed form solutions for this problem. This matter is currently being investigated.

We have seen that the solution of systems of differential equations that arise in general relativity via some sort of separation of variables contains elegant examples but as yet no theoretical basis. More work needs to be done to improve this situation as well as to solve some of the problems specific to general relativity itself, e.g., the combined perturbation problem for the Kerr-Newman black hole.
APPENDIX: Teukolsky Functions and Teukolsky-Starobinsky Identities.

The Teukolsky functions $R_{\pm s}$ and $S_{\pm s}$, which satisfy the second order differential equations (10), have a number of interesting properties. The equations satisfied by the $S_{\pm s}$ functions are forms of the confluent Heun equation. Expansion theorems and studies of the spectrum of the parameter λ and its various asymptotic forms have been worked out by Fackerell and Crossman (1977) and Leaver (1986). In particular it is possible to generalize the properties given above for the case of the Maxwell field and, implicitly, for the spin 1/2 field with $m_e = 0$. The relations which generalize these for spin s are the so called Teukolsky-Starobinsky identities. We first note that R_{-s} and $\Delta^s R_{+s}$ satisfy complex conjugate equations. Similarly $S_{+s}(\pi - \theta)$ satisfies the same equation as $S_{-s}(\theta)$.

The following two identities (Kalnins, Miller and Williams (1989b)) hold for $s = 1/2$, 1, 3/2, 2, 5/2, ⋯:

\begin{equation}
\Delta^s D_0^{2s} (\Delta D^\dagger_{1-s} D_0 + 2(2s - 1)i \sigma r) = (\Delta D^\dagger_{1-s} D_0 + 2(2s - 1)i \sigma r)\Delta^s D_0^{2s},
\end{equation}

\[L_{1-s} L_{2-s} \cdots L_{s-1} L_s (L^\dagger_{1-s} L_s + 2(2s - 1) \sigma a \cos \theta) = (L^\dagger_{1-s} L_s - 2(2s - 1) \sigma a \cos \theta)L_{1-s} L_{2-s} \cdots L_{s-1} L_s. \]

Two very similar identities are obtained by taking the complex conjugate of the first identity, ($D \leftrightarrow D^\dagger$), and by letting $\theta \rightarrow \pi - \theta$ in the second identity, ($L \leftrightarrow -L^\dagger$):

\begin{equation}
\Delta^s D_0^{12s} (\Delta D^\dagger_{1-s} D_0^\dagger + 2(2s - 1)i \sigma r) = (\Delta D^\dagger_{1-s} D_0^\dagger + 2(2s - 1)i \sigma r)\Delta^s D_0^{12s},
\end{equation}

\[L^\dagger_{1-s} L^\dagger_{2-s} \cdots L^\dagger_{s-1} L^\dagger_s (L_{1-s} L_s + 2(2s - 1) \sigma a \cos \theta) = (L_{1-s} L_s + 2(2s - 1) \sigma a \cos \theta)L^\dagger_{1-s} L^\dagger_{2-s} \cdots L^\dagger_{s-1} L^\dagger_s. \]

A direct consequence of these is the following. If one acts on the function R_{-s} with both sides of (12) then one finds that $\Delta^s D_0^{2s} R_{-s}$ is a solution of the Teukolsky equation for $\Delta^s R_{+s}$. Similarly by acting on the function $\Delta^s R_{+s}$ with both side of (13) one finds that $\Delta^s D_0^{12s} \Delta^s R_{+s}$ is a solution of the Teukolsky equation for R_{-s}. By suitably choosing the relative normalization of the functions R_{-s} and R_{+s} we can write

\[\Delta^s D_0^{2s} R_{-s} = C_s \Delta^s R_{+s}, \quad \Delta^s D_0^{12s} \Delta^s R_{+s} = C_s^* R_{-s} \]

where C is a complex constant.

A similar treatment of the angular identities results in the relations

\[L_{1-s} L_{2-s} \cdots L_{s-1} L_s S_{+s} = B_s S_{-s}, \quad L_{1-s} L_{2-s} \cdots L_{s-1} L_s S_{-s} = B_s S_{+s} \]

17
where B_s is a real constant ($\tilde{B}_s = (-1)^s B_s$). Here C_s and B_s are referred to as Starobinsky constants.

By use of the mapping $r \leftrightarrow \omega = ia \cos \theta$ one can make the above radial and angular identities almost formally identical. By such means one can show that $B_s^2 = (-1)^{2s}|C_s|^2 |_{M=0}$. Computation of $|C_s|^2$ can be achieved by examining the identity $\Delta^s D^{'2s}_0 \Delta^s D^{'2s}_0 R_{-s} = |C_s|^2$ and replacing the occurrences of second order (and higher) derivatives of R_{-s} with first and zeroth order terms by means of the Teukolsky equation that R_{-s} must satisfy. Such a procedure is very protracted for all but the first few small values of s. Chandrasekhar (1991) has shown how to determine the general expression for the Teukolsky-Starobinsky identity $|C_s|^2$ in the form of a determinant resulting from considerations following from the notion of algebraically special solutions. The Starobinsky constants for spin $1/2$ and 1 have already been mentioned. For spin $3/2$ and 2 they are

$$|C_{3/2}|^2 = \lambda^2(\lambda + 1) - 16\sigma^2(\lambda a^2 - a^2)$$

$$|C_2|^2 = \lambda^2(\lambda + 2)^2 - 8\sigma^2\lambda(5\lambda + 6) + 96\sigma^2\lambda a^2 \lambda + 144\sigma^4 a^4 + 144\sigma^2 M^2$$

where $\alpha^2 = a^2 + \frac{ma}{\sigma}$.

We note here that it is possible to invent a relativistically invariant equation system which has the general spin s Teukolsky functions appearing in their solution, in fact the coupled system of equations

$$\nabla^{AA'} \varphi_{AA_1...A_2} = (2s - 1)(s - 1)\Psi^{BC}_{(A_2 A_3 \theta^{A'}_{A_4...A_2})BC}$$

$$I \nabla_{(A_1 A_2 A_2...A_s)} - \frac{1}{6} (2s - 3) \theta^{A'}_{(A_2...A_2, \nabla A_1) A'} I = I \varphi_{A_1 A_2...A_s}$$

where $I = \Psi^{ABC}_{A_1 A_2 A_3} \Psi^{B_{A_1}C_{A_2}D_{A_3}}$. Typically this system has solutions of the form

$$\varphi_{0...0} = R_s S_s e^{i (\sigma t + m \varphi)}, \ \theta^0_{0...0} = \frac{-1}{\sqrt{2} \rho^2 (2s - 1)(s - 1) \Psi_2} \Delta(D^t_s - (2s - 1) \frac{1}{\rho^2}) \varphi_{0...0}$$

$$\theta^{1}_{0...0} = \frac{-1}{\sqrt{2} \rho^2 (2s - 1)(s - 1) \Psi_2} (L^t_s - (2s - 1) \frac{i a \sin \theta}{\rho^2}) \varphi_{0...0}$$

with similar expressions existing for solutions with indices consisting of all 1's.
REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>866</td>
<td>Gui-Qiang Chen and Tai-Ping Liu</td>
<td>Zero relaxation and dissipation limits for hyperbolic conservation laws</td>
</tr>
<tr>
<td>867</td>
<td>Gui-Qiang Chen and Jian-Guo Liu</td>
<td>Convergence of second-order schemes for isentropic gas dynamics</td>
</tr>
<tr>
<td>868</td>
<td>Aleksander M. Simon and Zbigniew J. Grzywna</td>
<td>On the Larché–Cahn theory for stress-induced diffusion</td>
</tr>
<tr>
<td>869</td>
<td>Jerzy Łuczka, Adam Gadomski and Zbigniew J. Grzywna</td>
<td>Growth driven by diffusion</td>
</tr>
<tr>
<td>870</td>
<td>Mitchell Luskin and Tsong-Whay Pan</td>
<td>Nonplanar shear flows for nonaligning nematic liquid crystals</td>
</tr>
<tr>
<td>871</td>
<td>Mahmoud Affouf</td>
<td>Unique global solutions of initial-boundary value problems for thermodynamic phase transitions</td>
</tr>
<tr>
<td>872</td>
<td>Richard A. Brualdi and Keith L. Chavey</td>
<td>Rectangular L-matrices</td>
</tr>
<tr>
<td>873</td>
<td>Xinfu Chen, Avner Friedman and Bei Hu</td>
<td>The thermistor problem with zero–one conductivity II</td>
</tr>
<tr>
<td>874</td>
<td>Raoul LePage</td>
<td>Controlling a diffusion toward a large goal and the Kelly principle</td>
</tr>
<tr>
<td>875</td>
<td>Raoul LePage</td>
<td>Controlling for optimum growth with time dependent returns</td>
</tr>
<tr>
<td>876</td>
<td>Marc Hallin and Madan L. Puri</td>
<td>Rank tests for time series analysis a survey</td>
</tr>
<tr>
<td>877</td>
<td>V.A. Solonnikov</td>
<td>Solvability of an evolution problem of thermocapillary convection in an infinite time interval</td>
</tr>
<tr>
<td>878</td>
<td>Horia I. Ene and Bogdan Vernescu</td>
<td>Viscosity dependent behaviour of viscoelastic porous media</td>
</tr>
<tr>
<td>879</td>
<td>Kaushik Bhattacharya</td>
<td>Self-accommodation in martensite</td>
</tr>
<tr>
<td>880</td>
<td>D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden</td>
<td>The heavy top: a geometric treatment</td>
</tr>
<tr>
<td>881</td>
<td>Leonid V. Kalachev</td>
<td>Some applications of asymptotic methods in semiconductor device modeling</td>
</tr>
<tr>
<td>882</td>
<td>David C. Dobson</td>
<td>Phase reconstruction via nonlinear least-squares</td>
</tr>
<tr>
<td>883</td>
<td>Patricio Aviles and Yoshihiko Giga</td>
<td>Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation</td>
</tr>
<tr>
<td>884</td>
<td>Patricio Aviles and Yoshihiko Giga</td>
<td>Partial regularity of least gradient mappings</td>
</tr>
<tr>
<td>885</td>
<td>Charles R. Johnson and Michael Lundquist</td>
<td>Operator matrices with chordal inverse patterns</td>
</tr>
<tr>
<td>886</td>
<td>B.J. Bayly</td>
<td>Infinitely conducting dynamos and other horrible eigenproblems</td>
</tr>
<tr>
<td>887</td>
<td>Charles M. Elliott and Stefan Luckhaus</td>
<td>‘A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy’</td>
</tr>
<tr>
<td>888</td>
<td>Christian Schmeiser and Andreas Unterreiter</td>
<td>The derivation of analytic device models by asymptotic methods</td>
</tr>
<tr>
<td>889</td>
<td>LeRoy B. Beasley and Norman J. Pullman</td>
<td>Linear operators that strongly preserve the index of primitivity</td>
</tr>
<tr>
<td>890</td>
<td>Jerry Donato</td>
<td>The Boltzmann equation with lie and cartan</td>
</tr>
<tr>
<td>891</td>
<td>Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson</td>
<td>A method for resolving the laser induced local heating of moving magneto-optical recording media</td>
</tr>
<tr>
<td>892</td>
<td>E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee</td>
<td>Models of q-algebra representations: the group of plane motions</td>
</tr>
<tr>
<td>893</td>
<td>T.R. Hoffend Jr. and R.K. Kaul</td>
<td>Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium</td>
</tr>
<tr>
<td>894</td>
<td>Reinhold von Schwerin</td>
<td>Two metal deposition on a microdisk electrode</td>
</tr>
<tr>
<td>895</td>
<td>Vladimir I. Oliker and Nina N. Uraltseva</td>
<td>Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows</td>
</tr>
<tr>
<td>896</td>
<td>Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom</td>
<td>Rank incrementation via diagonal perturbations</td>
</tr>
<tr>
<td>897</td>
<td>Mingxiang Chen, Xu-Yan Chen and Jack K. Hale</td>
<td>Structural stability for time-periodic one-dimensional parabolic equations</td>
</tr>
<tr>
<td>898</td>
<td>Hong-Ming Yin</td>
<td>Global solutions of Maxwell’s equations in an electromagnetic field with the temperature-dependent electrical conductivity</td>
</tr>
<tr>
<td>899</td>
<td>Robert Grone, Russell Merris and William Watkins</td>
<td>Laplacian unimodular equivalence of graphs</td>
</tr>
<tr>
<td>900</td>
<td>Miroslav Fiedler</td>
<td>Structure-ranks of matrices</td>
</tr>
<tr>
<td>901</td>
<td>Miroslav Fiedler</td>
<td>An estimate for the nonstochastic eigenvalues of doubly stochastic matrices</td>
</tr>
<tr>
<td>902</td>
<td>Miroslav Fiedler</td>
<td>Remarks on eigenvalues of Hankel matrices</td>
</tr>
<tr>
<td>903</td>
<td>Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche</td>
<td>Spectra with positive elementary symmetric functions</td>
</tr>
<tr>
<td>904</td>
<td>Pierre-Alain Gremaud</td>
<td>Thermal contraction as a free boundary problem</td>
</tr>
<tr>
<td>905</td>
<td>K.L. Cooke, Janos Turi and Gregg Turner</td>
<td>Stabilization of hybrid systems in the presence of feedback delays</td>
</tr>
<tr>
<td>906</td>
<td>Robert P. Gilbert and Yongzhi Xu</td>
<td>A numerical transmutation approach for underwater sound propagation</td>
</tr>
<tr>
<td>907</td>
<td>LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader</td>
<td>Combinatorial orthogonality</td>
</tr>
<tr>
<td>908</td>
<td>Richard A. Brualdi and Bryan L. Shader</td>
<td>Strong hall matrices</td>
</tr>
<tr>
<td>909</td>
<td>Håkan Wennerström and David M. Anderson</td>
<td>Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability</td>
</tr>
<tr>
<td>910</td>
<td>Shmuel Friedland</td>
<td>Eigenvalues of almost skew symmetric matrices and tournament matrices</td>
</tr>
<tr>
<td>911</td>
<td>Avner Friedman, Bei Hu and J.L. Velazquez</td>
<td>A Free Boundary Problem Modeling Loop Dislocations in Crystals</td>
</tr>
<tr>
<td>912</td>
<td>Ezio Venturino</td>
<td>The Influence of Diseases on Lotka-Volterra Systems</td>
</tr>
<tr>
<td>913</td>
<td>Steve Kirkland and Bryan L. Shader</td>
<td>On Multivariate Tournament Matrices with Constant Team Size</td>
</tr>
<tr>
<td>914</td>
<td>Shmuel Friedland</td>
<td>Eigenvalues of almost skew symmetric matrices and tournament matrices</td>
</tr>
<tr>
<td>915</td>
<td>Avner Friedman, Bei Hu and J.L. Velazquez</td>
<td>A Free Boundary Problem Modeling Loop Dislocations in Crystals</td>
</tr>
</tbody>
</table>
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinikuhler and A. Ruchli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick’s Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O’Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains
Nicholas J. Higham, Perturbation theory and backward error for $AX - XB = C$
Z. Strakos and A. Greenbaum, Open questions in the convergence analysis of the lanczos process for the real symmetric eigenvalue problem
Zhaojun Bai, Error analysis of the lanczos algorithm for the nonsymmetric eigenvalue problem
Pierre-Alain Gremaud, On an elliptic-parabolic problem related to phase transitions in shape memory alloys
Bojan Mohar and Neil Robertson, Disjoint essential circuits in toroidal maps
Bojan Mohar, Convex representations of maps on the torus and other flat surfaces
Bojan Mohar and Svatoš Plužík Eigenvalues in combinatorial optimization
Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Conditional sign-solvability
Roger Fosdick and Ying Zhang, The torsion problem for a nonconvex stored energy function
René Felrand and Gaston Giroux, An unbounded mean-field intensity model: Propagation of the convergence of the empirical laws and compactness of the fluctuations
Wei-Ming Ni and Izumi Takagi, Spike-layers in semilinear elliptic singular Perturbation Problems
Henk A. Van der Vorst and Gerard G.L. Sleijpen, The effect of incomplete decomposition preconditioning on the convergence of conjugate gradients
S.P. Hastings and L.A. Peletier, On the decay of turbulent bursts
Apostolos Hadjidimos and Robert J. Plemmons, Analysis of p-cyclic iterations for Markov chains
ÅBjörck, H. Park and L. Eldén, Accurate downdating of least squares solutions
E.G. Kalnins, William Miller, Jr. and G.C. Williams, Recent advances in the use of separation of variables methods in general relativity
G.W. Stewart, On the perturbation of LU, Cholesky and QR factorizations
G.W. Stewart, Gaussian elimination, perturbation theory and Markov chains
G.W. Stewart, On a new way of solving the linear equations that arise in the method of least squares
G.W. Stewart, On the early history of the singular value decomposition
G.W. Stewart, On the perturbation of Markov chains with nearly transient states
Umberto Mosco, Composite media and asymptotic dirichlet forms
Walter F. Mascarenhas, The structure of the eigenvectors of sparse matrices
Walter F. Mascarenhas, A note on Jacobi being more accurate than QR
Raymond H. Chan, James G. Nagy and Robert J. Plemmons, FFT-based preconditioners for Toeplitz-Block least squares problems
Zhaojun Bai, The CSD, GSVD, their applications and computations
D.A. Gregory, S.J. Kirkland and N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank
Richard A. Brualdi, Shmuel Friedland and Alex Pothen, Sparse bases, elementary vectors and nonzero minors of compound matrices
J.W. Demmel, Open problems in numerical linear algebra
James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic matrices
James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR
J.J.L. Velázquez, Estimates on the $(N - 1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation