EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER

By

Richard E. Ewing

and

Hong Wang

IMA Preprint Series # 1014
August 1992
EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER*

RICHARD E. EWING† and HONG WANG‡

Abstract. In this paper, we present Eulerian-Lagrangian localized adjoint methods (ELLAM) to solve convection-diffusion-reaction equations governing contaminant transport in groundwater flowing through an adsorbing porous medium. These ELLAM schemes are developed for various combinations of boundary conditions. The derived schemes do conserve mass. Numerical results are presented and discussed.

§1. INTRODUCTION.

In recent years, the contamination and pollution of groundwater resources have made it increasingly more important to understand underground flows of contaminant fluids and to predict them effectively. However, mathematical models are, in general, strongly convection-dominated partial differential equations, which may be solved analytically for only a limited number of special cases. More general solutions require numerical approximations to the governing equations. The purpose of this paper is to develop some effective numerical methods to simulate contaminant transport with adsorption in groundwater.

First, let us review the physical and mathematical background of this problem. We consider the transport of a solute, labeled α, in a fluid phase F flowing through a porous medium. The fluid phase may consist of many molecular species, such as water and dissolved minerals. We use the letter β to index all of these species. We think of the specific species α as a soluble contaminant in the fluid. The porous medium is composed of a rock phase, which we index by R, and which also can consist of many molecular species. We are especially interested in transfers of material α between the fluid and rock phases, which can occur when some of the contaminant adsorbs onto the rock as it travels through the porous medium.

From the species mass balance [1,19], for the solute α in the fluid phase F, we have

$$
\frac{\partial}{\partial t} \left(\phi_F \rho_F^\alpha \right) + \nabla \cdot \left(\mathbf{v}_F^\alpha \phi_F \rho_F^\alpha \right) = r_F^\alpha,
$$

where ϕ_F is a volume fraction, ρ_F is the mass of the fluid per unit volume of fluid; ρ_F^α is the mass of the solute in the fluid phase per unit volume of fluid, and $\omega_F^\alpha = \rho_F^\alpha / \rho_F$. The quantity \mathbf{v}_F^α is the velocity of the solute in the fluid phase, and r_F^α is the rate of

*This research was supported in part by Office of Naval Research Contract No. 0014–88–K–0370, by National Science Foundation Grant No. DMS–8922865, by funding from the Institute for Scientific Computation at the University of Wyoming, and by the funding form the Norwegian Research Council for Science and the Humanities.

†Departments of Mathematics, Chemical Engineering, and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071.

‡Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071.
all transfers of mass from other constituents, including the species α in other phases, into the solute α in the fluid phase.

Similarly, for the solute α in the rock phase R, we have

$$
\frac{\partial}{\partial t} \left(\phi_R \rho_R^\alpha \right) + \nabla \cdot \left(\mathbf{v}_R^\alpha \phi_R \rho_R^\alpha \right) = r_R^\alpha,
$$

where the definitions of variables are similar to those in equation (1.1).

Let $\mathbf{v}_F = (\sum_{\beta} \nu_{F,\beta}^\beta \mathbf{v}_F^\beta)/\rho_F$ be the barycentric velocity of the fluid; $\nu_{F,\beta}^\beta = \mathbf{v}_{F,\beta}^\beta - \mathbf{v}_F$ be the diffusion velocity of constituent β; and $\mathbf{j}^\beta = \omega_{F,\beta}^\beta \mathbf{v}_F^\beta$ the diffusive flux of species β. Here β can be any constituent in the fluid. We assume that we know the Darcy velocity $\mathbf{v} = \phi_F \mathbf{v}_F$ of the fluid in the rock. Also we denote ρ_F^α by u. Then equation (1.1) can be rewritten as

$$
\frac{\partial}{\partial t} \left(\phi_F \rho_F^\alpha \right) + \nabla \cdot \left(\mathbf{v} \rho_F^\alpha \right) + \nabla \cdot \left(\phi_F \rho_F^\alpha \mathbf{j}^\alpha \right) = r_F^\alpha.
$$

Now we consider the diffusive flux \mathbf{j}^α. For actual groundwater systems \mathbf{j}^α can be very complicated. A common model [1,19] for this variable, called hydrodynamic dispersion model, is $\phi_F \rho_F \mathbf{j}^\alpha = -D \nabla u$, where D is the diffusion tensor. Mathematically, D is a symmetric and positive definite matrix whose entries depend on the Darcy velocity \mathbf{v}, \mathbf{x}, and t.

For this problem, we make following assumptions:

1. $\phi_F + \phi_R = 1$. That is, we only have two phases, fluid and rock. [1,19] also discuss multiphase case.

2. $r_F^\alpha + r_R^\alpha = -Ku$, for some coefficient $K \geq 0$. In other words, the solute can transfer between the fluid and rock phases by adsorbing and desorbing, and the solute decays to another molecular species by a first-order chemical reaction with rate K. When $K = 0$, net reaction is zero.

Because the rock is stationary, in (1.2), $\mathbf{v}_R^\alpha = 0$. Adding (1.2) to (1.3) and using these assumptions, we get

$$
\frac{\partial}{\partial t} \left[(1 - \phi_F) \rho_R \omega_R^\alpha + \phi_F \rho_F \mathbf{v} \right] + \nabla \cdot \left(\mathbf{v} \rho_F \mathbf{v} \right) - \nabla \cdot \left(D \nabla u \right) = -Ku.
$$

While adsorption in nature can exhibit tremendous variation depending on the chemistry of the materials involved, there are a few relatively simple functional forms that often appear in mathematical models [1]. In this paper, we assume the following linear form:

$$
\omega_R^\alpha = \mu u,
$$

that is often reasonable for groundwater systems. Here, μ is a nonnegative constant. Then (1.4) can be rewritten as

$$
\frac{\partial}{\partial t} \left(\Phi \rho_F \mathbf{v} \right) + \nabla \cdot \left(\mathbf{v} \rho_F \mathbf{v} \right) - \nabla \cdot \left(D \nabla u \right) = -Ku.
$$

where $\Phi = (1 - \phi_F) \rho_R \mu + \phi_F$.

These strongly convection-dominated problems, which also arise in the numerical simulation of oil reservoirs and a multitude of other applications, often present serious
numerical difficulties [1,19]. Conventional methods usually exhibit some combination
of nonphysical oscillation and excessive numerical diffusion [1,19,25]. Because of the
Lagrangian nature of advective transport, Eulerian-Lagrangian methods (ELM) have
be successfully applied to these problems [14,17,18,27,32]. The principal drawbacks
of ELM are their failure to conserve mass and the difficulty of formulating them for
general boundary conditions.

Celia, Russell, Herrera and Ewing have recently developed Eulerian-Lagrangian
localized adjoint methods (ELLAM) [7] to solve convection-diffusion problems. ELL-
LAM are formulated to maintain mass conservation and to treat general boundary
conditions. Thus, ELLAM overcome the two principal shortcomings of ELM while
maintaining their numerical advantages. In this paper, we develop ELLAM schemes
to solve convection-diffusion-reaction problems. We carefully treat various combina-
tions of inflow and outflow boundary conditions in this paper. Numerical results are
presented, compared, and discussed.

We first briefly describe these methods. The ELLAM formulation was motivated
by localized adjoint methods (LAM) [3,5,6]. Let

\begin{equation}
Lu = f, \quad x \in \Omega \text{ or } (x,t) \in \Omega,
\end{equation}

denote a partial differential equation in space or space-time. Integrating against a
test function \(w\), we obtain the weak form

\begin{equation}
\int_{\Omega} Lu \ w \ d\Omega = \int_{\Omega} f \ w \ d\Omega.
\end{equation}

If we choose test functions \(w\) to satisfy the formal adjoint equation \(L^*w = 0\), except
at certain nodes or edges denoted by \(l_i\) on \(\Omega\), then integrating by parts (the divergence
theorem in higher dimensions) yields

\begin{equation}
\sum_i \int_{l_i} u \ L^*w \ ds = \int_{\Omega} f \ w \ d\Omega.
\end{equation}

By choosing various test functions \(w\) in (1.9), we can focus upon different types of in-
formation. Herrera has built an extensive theory around this concept [22,23]. Within
this framework, we can also obtain optimal spatial methods and general characteristic
methods [7,20,28,29]. We will discuss this further in Section 2.

In this paper, we develop ELLAM to solve the one-dimensional linear constant-
coefficient convection-diffusion-reaction equation,

\begin{equation}
Lu \equiv u_t + Vu_x - Du_{xx} + Ku = f(x,t), \quad a < x < b, \quad 0 < t \leq T,
\end{equation}

subject to one of the following boundary conditions at the inflow boundary \(x = a,\)

\begin{equation}
\begin{align*}
u(a,t) &= g_1(t), \quad 0 < t \leq T, \\
-Du_x(a,t) &= g_2(t), \quad 0 < t \leq T, \\
Vu(a,t) - Du_x(a,t) &= g_3(t), \quad 0 < t \leq T;
\end{align*}
\end{equation}
one of the analogous conditions at the outflow boundary \(x = b, \)

\[
 u(b, t) = h_1(t), \quad 0 < t \leq T,
\]

\[
 -D u_x(b, t) = h_2(t), \quad 0 < t \leq T,
\]

\[
 V u(b, t) - D u_x(b, t) = h_3(t), \quad 0 < t \leq T;
\]

and also subject to the initial condition

\[
 u(x, 0) = u_0(x), \quad a \leq x \leq b,
\]

where \(D \) and \(V \), which are positive constants, represent diffusion and velocity, respectively. \(K \) represents the reaction coefficient.

The remainder of this paper is organized as follows. In Section 2, we derive a variational formulation satisfied by the exact solution of the problem (1.10). In Sections 3, we develop ELLAM schemes based on the formulation obtained in Section 2. In Section 4, we perform various numerical experiments.

\section{An ELLAM Formulation.}

In this section, we derive the formulation satisfied by the exact solution of problem (1.10). Let \(E \) and \(N \) be two positive integers; then define the mesh and the partition of space and time as follows:

\[
 \Delta x = \frac{b - a}{E}, \quad x_i = a + i \Delta x, \quad i = 0, 1, \cdots, E,
\]

\[
 \Delta t = \frac{T}{N}, \quad t^n = n \Delta t, \quad n = 0, 1, \cdots, N.
\]

In the numerical scheme, we consider space-time test functions \(w \) that vanish outside \([a, b] \times (t^n, t^{n+1}]\) and are discontinuous at each time level \(t^n \), whose exact form will be given below as part of the ELLAM development. With these test functions, we can rewrite (1.8) as

\[
 \int_a^b u(x, t^{n+1}) w(x, t^{n+1}) dx + \int_{t^n}^{t^{n+1}} \int_a^b Du_x w_x d\Omega,
\]

\[
 + \int_{t^n}^{t^{n+1}} (V u - D u_x) w|_a^b dt - \int_{t^n}^{t^{n+1}} \int_a^b u (w_t + V w_x - K w) d\Omega
\]

\[
 = \int_a^b u(x, t^n) w(x, t^n) dx + \int_{t^n}^{t^{n+1}} f w d\Omega,
\]

where \(w(x, t_n^+) = \lim_{t \to t^n^+} w(x, t) \).

The homogeneous adjoint equation for equation (1.10) is:

\[
 \mathcal{L}^* w \equiv -w_t - V w_x - D w_{xx} + K w = 0.
\]

As discussed above, the test function \(w(x, t) \) is chosen from the solution space of the homogeneous adjoint equation (2.3). The solution space is infinite-dimensional.
Because the objective of the numerical procedure is the derivation of a finite number of algebraic equations, only a finite number of test functions should be chosen. Different choices of test functions lead to different classes of approximations, including optimal spatial methods and characteristic methods [7]. For adjoint equation (2.3), we naturally have the following three operator splittings:

1. We can split the adjoint operator \(\mathcal{L}^* \) into a spatial operator and a temporal operator

\[
\begin{align*}
 w_t &= 0, \\
 -V w_x - D w_{xx} + K w &= 0.
\end{align*}
\]

(2.5)

This splitting leads to a class of optimal spatial methods involving exponential upstream weighting in space [3,5,6]. Numerical solutions with these methods are characterized by significant time truncation errors, numerical diffusion, and some phase errors. The Courant number is generally restricted to be less than or equal to one, and sometimes must be much less than one [3].

2. Recalling the strong Lagrangian nature of this problem, we can split (2.3) in the following way:

\[
\begin{align*}
 w_t + V w_x &= 0, \\
 -D w_{xx} + K w &= 0.
\end{align*}
\]

(2.6)

The test functions are constants along the characteristics and the reaction term \(K w \) is lumped at time \(t^{n+1} \). This splitting leads to a class of characteristic methods.

3. We can also write (2.3) into the form

\[
\begin{align*}
 w_t + V w_x - K w &= 0, \\
 -D w_{xx} &= 0.
\end{align*}
\]

(2.7)

The splitting (2.7) determines the test functions that are hat functions at each time level and vary exponentially along the characteristics. In this manner, the test functions. Recalling that the exact solution of problem (1.10) varies exponentially along the characteristics, splitting (2.7) reflects the intrinsic physics of the problem (1.10) naturally.

We now define our test functions \(w_i(x,t) \). First, we discuss the expressions of the characteristics. At time \(t^{n+1} \), the characteristic \(X(\theta;x,t^{n+1}), t^n \leq \theta \leq t^{n+1} \), which emanates backward from \((x,t^{n+1})\), is given by

\[
X(\theta;x,t^{n+1}) - x = V(\theta - t^{n+1}), \quad t^n \leq \theta \leq t^{n+1}.
\]

(2.8)

For a given point \(x \) at time \(t^{n+1} \), when it is clear from the context, we shall also write \(x(\theta) \) in place of \(X(\theta;x,t^{n+1}) \).

Similarly, at the outflow boundary \(\{x = b, \ t^n \leq t \leq t^{n+1}\} \), the characteristic \(X(\theta;x_E,t), t^n \leq \theta \leq t, \) emanating backward from \((x_E,t)\) is

\[
X(\theta;x_E,t) - x_E = V(\theta - t), \quad t^n \leq \theta \leq t.
\]

(2.9)
Also, let \(x^* = X(t^n; x, t^{n+1}) \) or \(x^*_E(t) = X(t^n; x_E, t) \) be the foot of the characteristic defined by (2.8) or (2.9); and let \(x_i^* = X(t^n; x, t^{n+1}) \), \(i = 0, 1, \ldots, E \), or \(x_i^* = X(t^n; x_E, t_i) \), \(i = E + 1, \ldots, E + IC \), where \(t_i \) is given in (2.12) below.

Also, let

\[
(2.10) \quad \tilde{x} = x + V\Delta t,
\]

i.e., \((\tilde{x}, t^{n+1})\) is the head of the characteristic with the foot \((x, t^n)\). Especially, \(\tilde{x}_0\) is the point such that the characteristic traced backward from \((\tilde{x}_0, t^{n+1})\) meets the inflow boundary \(x = x_0\) at time level \(t^n\).

In order to discuss the inflow boundary conditions effectively, we define the notation:

\[
(2.11) \quad \Delta t(x) = \begin{cases}
 t^{n+1} - t^n, & \text{if } x \geq \tilde{x}_0, \\
 t^{n+1} - t^*(x), & \text{if } x < \tilde{x}_0,
\end{cases}
\]

where \(\tilde{x}_0\) is given in (2.10) with \(x = x_0\); \(t^*(x)\) refers to the time when the characteristic \(x(\theta)\) traced backward from \((x, t^{n+1})\) meets the inflow boundary; i.e., \(x_0 = X(t^*(x); x, t^{n+1}) = x(t^*(x)); t_i^* = t^*(x_i), i = 0, 1, \ldots, IC\), where \(Cu = V\Delta t/\Delta x\) is the Courant number and \(IC = [Cu]\) is the integer part of \(Cu\). For later convenience, in addition to the notations \(t_i^*, i = 0, 1, \ldots, IC\), given above, we also define a notation \(t_{IC+1}^* = t^n\). However, we point out that \(t_{IC+1}^*\) may not be \(t^*(x_{IC+1})\), in general.

For \(i = E, E + 1, \ldots, E + IC - 1\), we define:

\[
(2.12) \quad t_i = t^{n+1} - \frac{(i - E)\Delta x}{V}, \quad \text{with } t_{E+IC} = t^n.
\]

That is, we partition the outflow boundary \(\{x = b, t^n \leq t \leq t^{n+1}\}\) according to the magnitude of the Courant number. For \(0 < Cu < 2\), we will not partition \([t^n, t^{n+1}]\) further; \([t^n, t^{n+1}]\) has no sub-elements. For \(Cu \geq 2\), we further partition \([t^n, t^{n+1}]\) into \(IC\) subintervals. The first \(IC - 1\) subintervals are of length \(\Delta t/Cu\). The last one, which may be up to twice the size of the others, is of length \([(Cu - IC) + 1]\Delta t/Cu\).

Now we define the test functions. For \(i = 0, 1, \ldots, E\), at current time level \(t^{n+1}\), \(w_i(x, t)\) is the standard hat function associated with the node \(x_i\); for \(i = E, \ldots, E + IC\), at the outflow boundary \([t^n, t^{n+1}]\), \(w_i(x, t)\) is the standard hat function associated with \(t_i\). All \(w_i(x, t), i = 0, 1, \ldots, E + IC\), vary exponentially along the characteristics and are zero outside \([t^n, t^{n+1}]\) since we want \(w_i\) to be localized.

\[
(2.13) \quad w_i(x(\theta), \theta) = w_i(x, t^{n+1})e^{-K(t^{n+1-\theta})}, \quad t^n < \theta \leq t^{n+1}, \quad i = 0, 1, \ldots, E;
\]

\[
w_i(X(\theta; x_E, t), \theta) = w_i(x_E, t)e^{-K(t-\theta)}, \quad t^n < \theta \leq t, \quad i = E, E + 1, \ldots, E + IC.
\]

Noticing that the test functions satisfy the adjoint equation (2.3), if we put these test functions into (2.2), the last term on the left-hand side of (2.2) vanishes. Let \(w\) be any of the test functions defined above. For the second term on the left-hand side of (2.2), if we evaluate temporal integral by a one-point (backward Euler) approximation at \(t^{n+1}\), simple computations yield
\[\int_{t^n}^{t^{n+1}} \int_a^b Du_x w_x d\Omega \]

\[= \int_{t^n}^{t^{n+1}} \int_{x_0}^{x_{E}(s)} Du_x w_x d\Omega + \int_{t^n}^{t^{n+1}} \int_{x_{E}(s)}^{x_0} Du_x w_x d\Omega \]

\[= \int_{x_0}^{x_{E}} D \Theta(\Delta t(x))u_x(x, t^{n+1})w_x(x, t^{n+1})dx \]

(2.14)

\[- \int_{t^n}^{t^{n+1}} D\Theta(t - t^n)u_x(x_E, t) \left[w_t(x_E, t) - Kw(x_E, t) \right] dt \]

\[- \int_a^b \left\{ \int_{t^n}^{t^{n+1}} Du_{\tau x}(x(\theta), \theta) d\theta \right\} e^{-K(t^{n+1} - \tau)} d\tau \int_{x_0}^{x_{E}} w_x(x, t^{n+1})dx \]

\[+ \int_{t^n}^{t^{n+1}} \left\{ \int_{t^n}^{t} Du_x(X(\theta; x_E, t), \theta) d\theta \right\} e^{-K(t - \tau)} d\tau \]

\[\cdot \left[w_t(x_E, t) - Kw(x_E, t) \right] dt, \]

where

(2.15)

\[\Theta(x) = \frac{1 - e^{-Kx}}{K}, \quad x > 0. \]

For the last term on the right-hand side of (2.2), as (2.14), we have

\[\int_{t^n}^{t^{n+1}} \int_a^b f w(x, t) dx dt \]

\[= \int_a^b \Theta(\Delta t(x))f(x, t^{n+1})w(x, t^{n+1})dx \]

(2.16)

\[+ \int_{t^n}^{t^{n+1}} \Theta(t - t^n)f(x_E, t)w(x_E, t) V dt \]

\[- \int_a^b \left\{ \int_{t^n(x)}^{t^{n+1}} \int_{t^n}^{t^{n+1}} f_{\theta}(x(\theta), \theta) d\theta \right\} e^{-K(t^{n+1} - \tau)} d\tau \int_{x_0}^{x_{E}} w(x, t^{n+1})dx \]

\[- \int_{t^n}^{t^{n+1}} \left\{ \int_{t^n}^{t} f_{\theta}(X(\theta; x_E, t), \theta) d\theta \right\} e^{-K(t - \tau)} d\tau \int_{x_0}^{x_{E}} w(x_E, t) V dt. \]

Putting (2.14) and (2.16) into (2.2), we obtain the formulation satisfied by the solution of problem (1.10) as follows:
\begin{align}
 \int_a^b u(x, t^{n+1})w(x, t^{n+1})dx + \int_a^b D(\Delta t(x))u_x(x, t^{n+1})w_x(x, t^{n+1})dx \\
 + \int_{t_n}^{t_{n+1}} [V u - D u_x](x_E, t) w(x_E, t)dt - \int_{t_n}^{t_{n+1}} [V u - D u_x](x_0, t) w(x_0, t)dt \\
 - \int_{t_n}^{t_{n+1}} D \Theta(t - t^n) u_x(x_E, t)[w_t(x_E, t) - Kw(x_E, t)]dt \\
 = e^{-K\Delta t} \int_{\tilde{x}_0}^b u(x^*, t^n)w(x, t^{n+1})dx + \int_{t_n}^{t_{n+1}} e^{-K(t-t^n)}u(x_E(t), t^n)w(x, t)Vdt \\
 + \int_a^b \Theta(\Delta t(x))f(x, t^{n+1})w(x, t^{n+1})dx \\
 + \int_{t_n}^{t_{n+1}} \Theta(t - t^n)f(x_E, t)w(x_E, t)Vdt \\
 - R_x^{n+1}(w(x, t^{n+1})) - R_t^{n+1}(w(x_E, t)),
\end{align}

where \(R_x^{n+1}(w(x, t^{n+1})) \)

\begin{align}
 &= \int_a^b \left\{ \left[\int_{t(x)}^{t_n} Du_{\theta x}(x(\theta), \theta) d\theta \right] e^{-K(t^{n+1}-\tau)}d\tau \right\} w_x(x, t^{n+1})dx \\
 - \int_a^b \left\{ \left[\int_{t(x)}^{t_n} f_\phi(x(\theta), \theta) d\theta \right] e^{-K(t^{n+1}-\tau)}d\tau \right\} w(x, t^{n+1})dx,
\end{align}

\(R_t^{n+1}(w(x_E, t)) \)

\begin{align}
 &= -\int_{t_n}^{t_{n+1}} \left\{ \left[\int_{t}^{t_n} D u_{\theta x}(X(\theta; x_E, t), \theta) d\theta \right] e^{-K(t-\tau)}d\tau \right\} \\
 \cdot [w_t(x_E, t) - Kw(x_E, t)] dt \\
 - \int_{t_n}^{t_{n+1}} \left\{ \left[\int_{t}^{t_n} f_\phi(X(\theta; x_E, t), \theta) d\theta \right] e^{-K(t-\tau)}d\tau \right\} w(x_E, t)Vdt.
\end{align}

\section*{§3. ELLAM Schemes}

In this section, we develop ELLAM schemes based on the formulation derived in Section 2. First we discuss the choice of the trial functions.

\subsection*{3.1. Trial function}

At time \(t^{n+1} \), we use a piecewise-linear trial function. At the inflow boundary, for Neumann or flux boundary conditions, the node values are the known \(U(x_0, t^n) \) and the unknown \(U(x_0, t^{n+1}) \); we do not introduce any extra unknowns. For an inflow Dirichlet boundary condition, \(U(x_0, t^n) \) and \(U(x_0, t^{n+1}) \) are
known. When $Cu \geq 1$, we do not introduce any extra equations; when $Cu < 1$, we introduce one extra unknown at the inflow boundary. We will discuss these in detail in the following subsections. At the outflow boundary $[t^n, t^{n+1}]$, we need to consider two cases. For the outflow Neumann or flux boundary condition, the unknown is the trial function itself. Thus, we use a piecewise-linear approximation at the outflow boundary $[t^n, t^{n+1}]$:

\begin{equation}
U(x_E, t) = \sum_{i=E}^{E+IC} U(x_E, t_i)w_i(x_E, t), \quad t^n \leq t \leq t^{n+1}.
\end{equation}

For the outflow Dirichlet boundary condition, the unknown is the normal derivative of the trial function. Thus, we use a piecewise-constant approximation at the outflow boundary (t^n, t^{n+1}):

\begin{equation}
U_x(x_E, t) = \sum_{i=E+1}^{E+IC} U(x_E, t_{i-1/2})\chi_{(t_{i-1}, t_i)}(t), \quad t^n < t \leq t^{n+1},
\end{equation}

where $\chi_{(t_{i-1}, t_i)}(t)$ is the standard characteristic function that is 1 on (t_i, t_{i-1}) and 0 outside, and $U_x(x_E, t_{i-1/2})$ denotes the constant value of $U_x(x_E, t)$ over (t_i, t_{i-1}), where $t_{i-1/2} = (t_{i-1} + t_i)/2$.

3.2. Numerical schemes for the interior points. Let U be a piecewise-linear function at time t^{n+1} and $w_i(x, t)$ be the test function defined by (2.13). If we replace u in (2.17) by U and drop the last two terms on the right-hand of (2.17), we obtain our ELLAM scheme at $i = IC + 2, \ldots, E - 1$ as follows:

\begin{equation}
\int_{x_{i-1}}^{x_{i+1}} U(x, t^{n+1})w_i(x, t^{n+1})dx + \int_{x_{i-1}}^{x_{i+1}} D\Theta(\Delta t)U_x(x, t^{n+1})w_{ix}(x, t^{n+1})dx
\end{equation}

\begin{equation}
= e^{-K\Delta t} \int_{x_{i-1}}^{x_{i+1}} U(x^*, t^n)w_i(x, t^{n+1})dx + \int_{x_{i-1}}^{x_{i+1}} \Theta(\Delta t)f(x, t^{n+1})w_i(x, t^{n+1})dx.
\end{equation}

When one or more of the characteristics $x_{i-1}(\tau)$, $x_i(\tau)$ or $x_{i+1}(\tau)$ intersects the spatial boundary, the general ELLAM scheme (3.3) should be modified. In this case, inflow or outflow boundary conditions are introduced into the ELLAM schemes. In the next two subsections, we consider ELLAM equations related to inflow and outflow boundaries.

3.3. Numerical schemes for the inflow boundary. In this subsection, we develop ELLAM schemes related to the inflow boundary conditions. Since the approximation of boundary conditions directly affects the approximation in the interior of the domain and also affects the mass conservation property, we need to be very careful. First, we consider the inflow flux boundary condition. Putting the third condition in (1.11) into (2.17), we obtain ELLAM scheme at $i = 0, 1, \ldots, IC + 1$ as follows:
\[
\int_{x_{i-1}}^{x_{i+1}} U(x, t^{n+1}) w_i(x, t^{n+1}) \, dx + \int_{x_{i-1}}^{x_{i+1}} D \Theta(\Delta t(x)) U_x(x, t^{n+1}) w_{ix}(x, t^{n+1}) \, dx \\
= e^{-K \Delta t} \int_{[x_{i-1}, x_{i+1}] \cap (x \geq x_0)} U(x^*, t^n) w_i(x, t^{n+1}) \, dx \\
+ \int_{x_{i-1}}^{x_{i+1}} \Theta(\Delta t(x)) f(x, t^{n+1}) w_i(x, t^{n+1}) \, dx + \int_{t^*_1}^{t^*_1-1} g_3(t) w_i(x_0, t) \, dt,
\]
(3.4)

where at \(i = 0 \), the \([x_{i-1}, x_{i+1}]\) and \([t^*_1, t^*_1]\) in (3.4) should be replaced by \([x_0, x_1]\) and \([t^*_1, t^*_1]\), respectively.

For the inflow Neumann boundary condition, if we repeat the above derivation, we obtain the ELLAM scheme at \(i = 0, 1, \ldots, IC + 1 \) as follows:

\[
\int_{x_{i-1}}^{x_{i+1}} U(x, t^{n+1}) w_i(x, t^{n+1}) \, dx + \int_{x_{i-1}}^{x_{i+1}} D \Theta(\Delta t(x)) U_x(x, t^{n+1}) w_{ix}(x, t^{n+1}) \, dx \\
- \int_{t^*_1}^{t^*_1-1} U(x_0, t) w_i(x_0, t) V \, dt \\
= e^{-K \Delta t} \int_{[x_{i-1}, x_{i+1}] \cap (x \geq x_0)} U(x^*, t^n) w_i(x, t^{n+1}) \, dx \\
+ \int_{x_{i-1}}^{x_{i+1}} \Theta(\Delta t(x)) f(x, t^{n+1}) w_i(x, t^{n+1}) \, dx + \int_{t^*_1}^{t^*_1-1} g_2(t) w_i(x_0, t) \, dt.
\]
(3.5)

Remark 3.1. A negative term involving \(U(x_0, t) \) appears on the left-hand side of equation (3.5). We can use constant or linear interpolations along the time direction to approximate this term. However, linear interpolation introduces some nonzero entries in its first column, as does the matrix derived in [7], and so violates the tridiagonal structure of the coefficient matrix. The system derived is more expensive to solve than a tridiagonal system that we expect to have. Constant interpolation can maintain the tridiagonal structure of the system. However, the corresponding numerical solutions are strongly time-dominated. We present some numerical results about this in Section 4. It is the Eulerian nature of the interpolations along the time direction that makes these interpolations inconsistent with the Lagrangian treatment in the interior domain. In order to overcome this difficulty, we combine the last term on the left-hand side of (3.5), translated along the characteristic from \((x_0, t^*(x))\) to \((x, t^{n+1})\), with the first term on the left side of (3.5) to get a term \(\int_{[x_{i-1}, x_{i+1}] \cap (x \geq x_0)} U(x, t^{n+1}) w_i(x, t^{n+1}) \, dx \). The error involves the first-order derivative of the exact solution along the approximate characteristics, which is much smaller than the interpolation error along the time direction due to the Lagrangian nature of this problem. With this treatment, we still have a tridiagonal coefficient matrix, avoiding the violations of sparsity discussed above. Thus, we use the following scheme for the inflow Neumann boundary condition instead of (3.5). For \(i = 0, 1, \ldots, IC + 1 \), we have
\[
\int_{[\tilde{x}_{i-1}, \tilde{x}_{i+1}] \cap \{x \geq \tilde{x}_0\}} U(x, t^{n+1})w_i(x, t^{n+1})dx \\
+ \int_{\tilde{x}_{i-1}}^{\tilde{x}_{i+1}} D\Theta(\Delta t(x))U_x(x, t^{n+1})w_{ix}(x, t^{n+1})dx \\
= e^{-K\Delta t} \int_{[\tilde{x}_{i-1}, \tilde{x}_{i+1}] \cap \{x \geq \tilde{x}_0\}} U(x^*, t^n)w_i(x, t^{n+1})dx \\
+ \int_{\tilde{x}_{i-1}}^{\tilde{x}_{i+1}} \Theta(\Delta t(x))f(x, t^{n+1})w_i(x, t^{n+1})dx + \int_{t^{i+1}_{n+1}}^{t^{i+1}_{n+1}} g_2(t)w_i(x_0, t)dt.
\]

(3.6)

Now, we consider ELLAM schemes related to the inflow Dirichlet boundary condition. If we repeat the derivation for the flux condition, we get an unknown diffusive boundary flux in the ELLAM scheme related to the inflow boundary. If we simply discretize the unknown diffusive flux along the time direction, the algebraic system derived contains the inflow boundary diffusive flux as an unknown. This term may introduce strong time truncation error. The numerical solutions deteriorate and give some oscillations near the inflow boundary. In order to avoid this problem, we approximate the term \(-\int_0^T \int_\alpha (Du_x) u dxdt\) by backward-Euler time integration along the characteristics before integrating by parts in space. This way, we obtain ELLAM scheme at \(i = 1, 2, \ldots, IC + 1\) as follows [28]:

\[
\int_{\tilde{x}_{i-1}}^{\tilde{x}_{i+1}} U(x, t^{n+1})w_i(x, t^{n+1})dx + \int_{\tilde{x}_{i-1}}^{\tilde{x}_{i+1}} D\Theta(\Delta t(x))U_x(x, t^{n+1})w_{ix}(x, t^{n+1})dx \\
+ \int_{[\tilde{x}_{i-1}, \tilde{x}_{i+1}] \cap \{x \leq \tilde{x}_0\}} \Psi(\Delta t(x))U_x(x, t^{n+1})w_i(x, t^{n+1})dx \\
= e^{-K\Delta t} \int_{[\tilde{x}_{i-1}, \tilde{x}_{i+1}] \cap \{x \geq \tilde{x}_0\}} U(x^*, t^n)w_i(x, t^{n+1})dx \\
+ \int_{\tilde{x}_{i-1}}^{\tilde{x}_{i+1}} \Theta(\Delta t(x))f(x, t^{n+1})w_i(x, t^{n+1})dx + \int_{t^{i+1}_{n+1}}^{t^{i+1}_{n+1}} Vg_1(t)w_i(x_0, t)dt,
\]

(3.7)

where

\[
\Psi(x) = \frac{D e^{-Kx}}{V}, \quad x > 0.
\]

(3.8)

Remark 3.2. In order to conserve mass, all test functions should sum to exactly one [7]. Russell [28] chose the test function to be 1 on \([x_0, x_1]\), i.e., replacing \(w_1\) by \(w_0 + w_1\) on \([x_0, x_1]\). However, our numerical experiments discussed in next section and our theoretical analysis presented in a subsequent paper show that the ELLAM schemes derived this way only have an asymptotic convergence rate of \(O((\Delta x)^{3/2} + \Delta t)\) instead of \(O((\Delta x)^2 + \Delta t)\) when Courant number \(Cu = V\Delta t/\Delta x\) is very small \((Cu \ll 1)\). This is significant if \(Cu \ll 1\). Thus, we modify (3.7) in the following way: (1) When \(Cu \geq 1\), we choose the test function to be \(\tilde{w}_1 = w_0 + w_1 = 1\) on \([x_0, x_1]\) as in [28]. In (3.7), we replace \(w_i\) with \(\tilde{w}_i\), where \(\tilde{w}_1 = w_0 + w_1\) if \(i = 1\), \(w_i\) if \(2 \leq i \leq E\). Thus, we do not need any extra equation at \(i = 0\). (2) When \(Cu < 1\), in order to
maintain second-order convergence in space, we take the test function for \(i = 1 \) in (3.7) to be \(w_1 \), and we introduce the following ELLAM scheme at \(i = 0 \) [7]. Noting that \(t^*_1 = t^n \) in this case:

\[
\int_{x_0}^{x_1} U(x, t^{n+1})w_0(x, t^{n+1})dx + \int_{x_0}^{x_1} D\Theta(\Delta t(x))U_x(x, t^{n+1})w_0(x, t^{n+1})dx \\
+ \int_{t^*_1}^{t^{n+1}} DU_x(x_0, t)w_0(x_0, t)dt \\
= e^{-K\Delta t} \int_{x_0, x_1 \cap (x \geq x_0)} U(x^*, t^n)w_0(x, t^{n+1})dx \\
+ \int_{x_0}^{x_1} \Theta(\Delta t(x))f(x, t^{n+1})w_0(x, t^{n+1})dx + \int_{t^*_1}^{t^{n+1}} Vg_1(t)w_0(x_0, t)dt.
\]

(3.9)

Remark 3.3. This equation solves for the unknown \(U_x(x_0, t^*_i) \) at the inflow boundary, where we regard \(U_x(x_0, t) \) as constant on \([t^*_i, t^{n+1}] = [t^n, t^{n+1}]\) with \(t^*_{i/2} = (t^*_i + t^{n+1})/2 = (t^n + t^{n+1})/2 \) (recall that we only introduce (3.9) when \(Cu < 1 \), in which case \(t^*_1 = t^n \)). Equation (3.9) also involves \(U(x_1, t^{n+1}) \). Since \(U(x_1, t^{n+1}) \) is obtained by solving the equations for \(i \geq 1 \), which form a closed system, the \(i = 0 \) equation immediately yields \(U_x(x_0, t^*_{i/2}) \) by back substitution. When \(Cu \geq 1 \), the ELLAM schemes (3.7) derived here are same as those in [28]. When \(Cu < 1 \), the ELLAM schemes here differ from those in [28] in that \(U_x(x_0, t^{n+1}) \) is an unknown in (3.9), whereas it was set to \([U(x_1, t^{n+1}) - U(x_0, t^{n+1})]/\Delta x \) in [28]. By doing this, we successfully recover the optimal-order convergence rate \(O((\Delta x)^2 + \Delta t) \) when \(Cu < 1 \). Meanwhile, potential numerical difficulties with the third term on the left-hand side of (3.9), which involves integration of a large function over a small interval if \(Cu \ll 1 \), are avoided in this way. The equation (3.9) is only needed for the purpose of mass conservation.

3.4. Numerical scheme for the outflow boundary. In this subsection, we develop ELLAM schemes related to the outflow boundary. For outflow Neumann or flux boundary conditions, since the unknowns are \(U(x_E, t) \) themselves for various \(t \), we use piecewise-linear trial functions. For the outflow Dirichlet boundary condition, \(U(x_E, t) \) is known but \(U_x(x_E, t) \) is unknown. We use a piecewise-constant trial function to approximate \(U_x(x_E, t) \) [28]. Using the test functions defined in (2.13) and the formulation (2.17), we can obtain the ELLAM schemes at the outflow boundary. For the outflow flux boundary condition, the ELLAM scheme at \(i = E+1, \ldots, E+IC-1 \) is

\[
(3.10) \\
\int_{t_{i+1}}^{t_{i+1}} \Theta(t - t^n)U(x_E, t)[\hat{w}_{it}(x_E, t) - K\hat{w}_i(x_E, t)]Vdt = \\
\int_{t_{i+1}}^{t_{i+1}} e^{-K(t - t^n)}U(x^*_E(t), t^n)\hat{w}_i(x_E, t)Vdt + \int_{t_{i+1}}^{t_{i+1}} \Theta(t - t^n)f(x_E, t)\hat{w}_i(x_E, t)Vdt \\
- \int_{t_{i+1}}^{t_{i+1}} h_3(t)\hat{w}_i(x_E, t)dt - \int_{t_{i+1}}^{t_{i+1}} \Theta(t - t^n)h_3(t)[\hat{w}_{it}(x_E, t) - K\hat{w}_i(x_E, t)]dt,
\]
where $\dot{w}_i = w_i$ if $E + 1 \leq i \leq E + IC - 2$, $\dot{w}_{E+IC-1} = w_{E+IC-1} + w_{E+IC}$. The scheme at $i = E$ is a combination of both types from (3.3) and (3.10).

Remark 3.4. It is easy to see that (3.10) is indefinite, and this raises questions about the solvability, stability, and convergence properties of these ELLAM schemes. In the subsequent paper, we conclude that this scheme is solvable, and have an optimal-order asymptotic convergence rate. We will discuss and observe the scheme numerically in next section.

For the outflow Neumann boundary condition, the ELLAM scheme at $i = E + 1, \ldots, E + IC - 1$ is

\begin{equation}
\int_{t_{i+1}}^{t_i-1} U(x_E,t)\dot{w}_i(x_E,t)Vdt \nonumber
\end{equation}

\begin{equation}
= \int_{t_{i+1}}^{t_i-1} e^{-K(t-t^n)}U(x_E^*,t^n)\dot{w}_i(x_E,t)Vdt + \int_{t_{i+1}}^{t_i-1} \Theta(t-t^n)f(x_E,t)\dot{w}_i(x_E,t)Vdt \nonumber
\end{equation}

\begin{equation}
- \int_{t_{i+1}}^{t_i-1} h_2(t)\dot{w}_i(x_E,t)dt - \int_{t_{i+1}}^{t_i-1} \Theta(t-t^n)h_2(t)\left[\dot{w}_{it}(x_E,t) - K\dot{w}_{it}(x_E,t)\right]dt. \nonumber
\end{equation}

The scheme at $i = E$ is a combination of both types from (3.3) and (3.11).

Remark 3.5. (3.11) is positive definite, so the questions raised in Remark 3.4 for the flux condition do not arise in this case. We will present some numerical experiments for this in next section. We will compare the numerical solutions for the outflow Neumann and flux conditions in the next section.

For the outflow Dirichlet boundary condition, the ELLAM scheme at $i = E + 1, \ldots, E + IC - 1$ are as follows:

\begin{equation}
- \int_{t_{i+1}}^{t_i-1} D\Theta(t-t^n)U_x(x_E,t)\left[\dot{w}_{it}(x_E,t) - K\dot{w}_{it}(x_E,t)\right]dt \nonumber
\end{equation}

\begin{equation}
- \int_{t_{i+1}}^{t_i-1} DU_x(x_E,t)\dot{w}_i(x_E,t)dt \nonumber
\end{equation}

\begin{equation}
= \int_{t_{i+1}}^{t_i-1} e^{-K(t-t^n)}U(x_E^*,t^n)\dot{w}_i(x_E,t)Vdt + \int_{t_{i+1}}^{t_i-1} \Theta(t-t^n)f(x_E,t)\dot{w}_i(x_E,t)Vdt \nonumber
\end{equation}

\begin{equation}
- \int_{t_{i+1}}^{t_i-1} Vh_1(t)\dot{w}_i(x_E,t)dt. \nonumber
\end{equation}

Remark 3.6. The equations in (3.12) correspond to the unknowns describing $U_x(x_E,t)$ at the outflow boundary. Because $U(x_E,t^{n+1})$ is known with Dirichlet outflow, the equations for $i \leq E - 1$ decouple and can be solved for the unknowns through $U(x_{E-1},t^{n+1})$. The equation at $i = E$ relates $U(x_{E-1},t^{n+1})$ and $U(x_E,t^{n+1}) = U(x_E,t_E)$, so can be solved for $U_x(x_E,t_E)$ by forward substitution; the remaining unknowns are obtained similarly. The equations for $i \geq E$ are needed only for the purpose of mass conservation. The analysis for this case uses a lower bound on $(t_{E+IC-1} - t^n)/(t_{E+IC-2} - t_{E+IC-1})$, verifying theoretically the numerical results in [28] that showed the interval $[t^n, t_{E+IC-1}]$ should not be further subdivided.

Remark 3.7. It is easy to see that whether K is positive, zero, or negative, we all
have

\[\Theta(\Delta t(x)) \geq 0, \quad \Theta(t - t^n) \geq 0; \]

thus, the ELLAM schemes derived apply to all the cases \(K = 0, K \geq 0 \) and \(K < 0 \).

Remark 3.8. When \(|K|\) is very small, \(\Theta(\Delta t(x)), \Theta(\Delta t), \) and \(\Theta(t - t^n) \) may not be easy to handle numerically. Since in this case \(|K|\Delta t\) is small too, we can compute these terms by using their Taylor expansions instead of using their expressions directly: for any \(m > 0 \),

\[\Theta(\Delta t(x)) = \Delta t(x) \left[\sum_{i=0}^{m} \frac{(-1)^i (K \Delta t(x))^i}{i!} + O\left((K \Delta t(x))^{m+1} \right) \right] \rightarrow \Delta t(x), \]

\[\Theta(t - t^n) = (t - t^n) \left[\sum_{i=0}^{m} \frac{(-1)^i (K(t - t^n))^{m+1}}{i!} + O\left((K(t - t^n))^{m+1} \right) \right] \rightarrow (t - t^n). \]

Remark 3.9. From (3.14) and the schemes derived above, we see that these ELLAM schemes for convection-diffusion-reaction problems naturally reduces to the ELLAM schemes for convection-diffusion problems when reaction term vanishes. Conversely, the ELLAM scheme for convection-diffusion problems can be considered as the first-order approximation to the ELLAM schemes for convection-diffusion-reaction problems when \(|K|\) is very small.

Remark 3.10. In contrast to the convection-diffusion cases, where the interior ELLAM scheme with backward Euler in time is the same as modified methods of characteristics (MMOC) for the same problem. In the case of convection-diffusion-reaction problem, ELLAM schemes developed in this paper uses the splitting (2.7), while MMOC tend to lump the reaction term at time \(t^{n+1} \) and so corresponds to the splitting (2.6). Recalling that the exact solution \(u \) of problem (1.1) varies exponentially with rate \(K \) along the characteristics, the ELLAM schemes derived in this paper reflect the inherent physics more naturally.

§4. **Computational Results.**

In this section, we perform some numerical experiments. We solve the convection-diffusion-reaction equation (1.10) using the ELLAM schemes developed in this paper.

Example 1. In this example, we solve (1.10) with a known solution. Thus, we can compare the numerical solution with the exact one and observe the convergence rate. It is easy to see that

\[u(x, t) = \frac{\exp(-Kt) \exp(-\pi(x - Vt)^2/(0.1 + 4\pi Dt))}{\sqrt{10\sqrt{0.1 + 4\pi Dt}}}. \]

is a solution of problem (1.10) with \(f \equiv 0 \).

In this example, we choose the parameters in (1.10) as follows: \((a, b) = (0, 1), T = 0.5, V = 1, D = 0.01, K = 0.1 \) and \(f = 0 \). We compute various boundary conditions in (1.11) and (1.12) by using the solution \(u(x, t) \). We use \(u(x, 0) \) as the initial condition. We then use ELLAM schemes in this paper to solve the problems.
with the computed conditions. For each combination of boundary conditions, we perform two kinds of computations. One is to test the convergence rate with respect to Δx, where we pick up small Δt and observe the power α of Δx; the other is to test the convergence rate with respect to Δt, where we choose small Δx and observe the power β of Δt. We use linear regression to compute α and β from the data. The errors are computed in L^2 norm.

We list the numerical results in the tables at the end of this paper. Tables 1 and 2 are associated with the inflow Dirichlet boundary condition. Table 1 tests factor α, and Table 2 tests β. In each table, we use I, II, III to represent outflow Dirichlet, Neumann, and flux boundary conditions, respectively. Tables 3 and 4 are associated with the inflow flux boundary condition. As above, Table 3 is for α and Table 4 is for β. Cases I, II, III are as defined above. Tables 5 and 6 are associated with the inflow Neumann boundary condition in an analogous manner.

From the numerical results, we see that for all combinations of inflow and outflow boundary conditions, we have second-order convergence in space and first-order convergence in time. We will prove this convergence rate theoretically in the subsequent paper.

From the numerical experiments, we see that the numerical solutions with the inflow Neumann boundary condition are much worse than those with other two inflow boundary conditions. These phenomena are also observed when we use other methods to solve a convection-dominated problem. We discuss this more after Example 5.

Example 2. In Remark 3.1, we discussed the effects of different treatments in the ELLAM schemes for the inflow Neumann boundary condition. In this example, we run some numerical experiments to confirm our expectations. We use (3.5) at $i = 0, 1, \cdots, IC + 1$ with a constant interpolation along the time direction to compute the numerical solution. We use the same solution and data as in Example 1. Thus, we can compare these numerical results with those in Example 1. We put the numerical results in Table 7 at the end of this paper. From the numerical results, we can clearly see the strong influence of the time truncation error that makes the numerical solution useless in practice.

Example 3. In Remarks 3.2 and 3.3, we pointed out the treatment for the inflow Dirichlet boundary condition in [28] yields an ELLAM scheme with a convergence rate of $\left((\Delta x)^{3/2} + \Delta t \right)$. In this example, we run some numerical experiments to confirm our expectations. We use the scheme in [28] and the schemes (3.7) and (3.9) in this paper to solve problem (1.10). We use the same data as in Example 1 except that the reaction $K = 0$, the solution $u(x,t)$ and the initial condition $u_0(x)$, given in (4.2) below, are translated half units leftward to reflect the effects of the inflow Dirichlet boundary condition more clearly.

$$u(x,t) = \frac{\exp (-\pi(x - Vt + 0.5)^2/(0.1 + 4\pi D t))}{\sqrt{10}\sqrt{0.1 + 4\pi D t}}, \quad (4.2)$$

For conciseness, we only present the numerical results with the outflow Dirichlet condition since the results with other two outflow boundary conditions are similar. We
put the numerical results in Table 8. The numerical results confirm our statements. We will theoretically analyse this in the subsequent paper.

We have also performed numerical experiments to observe the effects of inflow or outflow boundary conditions on the numerical solutions. From these experiments, we have the following observations:

1. At the inflow boundary, Dirichlet and flux conditions are “good” conditions. Neumann condition is a “bad” condition. With the same mesh and the analytical solution, the numerical solutions with Dirichlet or flux conditions have negligible approximation errors, and have no phase errors present. The numerical solution with the inflow Neumann boundary has both approximation error and phase error.

2. Physically, inflow Dirichlet or flux conditions specify the concentration or total flux at the inflow boundary, these types of boundary conditions are physically reasonable. Neumann condition specifies only the amount of diffusive flux at the inflow boundary. It is not physically reasonable for a convection-dominated problem. Intuitively, for a convection-dominated problem, the diffusive flux only accounts for a small portion of the total flux. It is not reasonable to prescribe its value at the inflow boundary.

3. We now turn to the outflow boundary. At the outflow boundary, the numerical solution with the flux condition presents a little oscillation. While the numerical solution with the Neumann condition is good. The numerical solutions are not affected when Courant number increases. In fact, they are represented more smoothly since we use more spatial points for larger Courant numbers.

4. We point out that the oscillation of the numerical solution with the outflow flux condition is intrinsic in the boundary condition itself, not because of the use of ELLAM scheme. These observations coincide with the fact that the system for Neumann condition is symmetric and coercive at the outflow boundary while the system for the flux condition is indefinite.

5. For the outflow Dirichlet condition, when the “right” value is given at the outflow boundary, the numerical solution is good. Since generally we don’t know the “right” value in advance, a “wrong” value is usually prescribed. It is well-known that the outflow Dirichlet condition usually produces a boundary layer.

6. We now consider the outflow boundary conditions from a physical point of view. A homogeneous Neumann condition means that we just require the fluid flows out of the domain with the same concentration as from the domain. It is physically reasonable. Dirichlet or flux conditions requires that the fluid flows out of the domain with either a prescribed concentration or a prescribed total flux. It is physically unreasonable. This is part of the reason why the solution for this problem usually exhibits some bizarre behavior.

7. At last, we want to point out the following observations. In the case that we given the “right” for the boundary conditions, the interior numerical solutions are almost independent of whether outflow Neumann or flux boundary conditions are given at the outflow boundary. This corresponds to the facts that in the convection-dominated case, the effects of the outflow boundary conditions on the solution over the interior domain comes from the diffusion, which is very small and negligible.
ACKNOWLEDGMENTS

The authors express their most sincere thanks to Professor Michael Celia at University of Princeton for beneficial discussions with him.

REFERENCES

Table 1. Inflow Dirichlet boundary condition, test for factor α.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>1/10</td>
<td>$1.49424E-2$</td>
<td>$1.49292E-2$</td>
<td>$1.51909E-2$</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/20</td>
<td>$3.27526E-3$</td>
<td>$3.27448E-3$</td>
<td>$3.30362E-3$</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/40</td>
<td>$7.88156E-4$</td>
<td>$7.88133E-4$</td>
<td>$7.91951E-4$</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/80</td>
<td>$1.75615E-4$</td>
<td>$1.75614E-4$</td>
<td>$2.14234E-4$</td>
</tr>
</tbody>
</table>

$\alpha = 2.13 \quad \alpha = 2.13 \quad \alpha = 2.05$

Table 2. Inflow Dirichlet boundary condition, test for factor β.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>1/100</td>
<td>$1.59283E-3$</td>
<td>$1.59493E-3$</td>
<td>$1.61248E-3$</td>
</tr>
<tr>
<td>1/40</td>
<td>1/100</td>
<td>$7.77086E-4$</td>
<td>$7.77863E-4$</td>
<td>$7.87889E-4$</td>
</tr>
<tr>
<td>1/80</td>
<td>1/100</td>
<td>$3.31847E-4$</td>
<td>$3.32139E-4$</td>
<td>$3.38001E-4$</td>
</tr>
<tr>
<td>1/160</td>
<td>1/100</td>
<td>$1.22176E-4$</td>
<td>$1.22315E-4$</td>
<td>$1.25394E-4$</td>
</tr>
</tbody>
</table>

$\beta = 1.23 \quad \beta = 1.23 \quad \beta = 1.23$

Table 3. Inflow flux boundary condition, test for factor α.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>1/10</td>
<td>$9.43173E-3$</td>
<td>$9.41098E-3$</td>
<td>$9.81385E-3$</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/20</td>
<td>$1.91666E-3$</td>
<td>$1.91534E-3$</td>
<td>$1.96473E-3$</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/40</td>
<td>$4.50972E-4$</td>
<td>$4.50931E-4$</td>
<td>$4.57572E-4$</td>
</tr>
</tbody>
</table>

$\alpha = 2.19 \quad \alpha = 2.19 \quad \alpha = 2.21$

Table 4. Inflow flux boundary condition, test for factor β.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>1/100</td>
<td>$1.52266E-3$</td>
<td>$1.53486E-3$</td>
<td>$1.54321E-3$</td>
</tr>
<tr>
<td>1/40</td>
<td>1/100</td>
<td>$7.50763E-4$</td>
<td>$7.51567E-4$</td>
<td>$7.61940E-4$</td>
</tr>
<tr>
<td>1/80</td>
<td>1/100</td>
<td>$3.54362E-4$</td>
<td>$3.54636E-4$</td>
<td>$3.60133E-4$</td>
</tr>
<tr>
<td>1/160</td>
<td>1/100</td>
<td>$1.55049E-4$</td>
<td>$1.55159E-4$</td>
<td>$1.57598E-4$</td>
</tr>
</tbody>
</table>

$\beta = 1.10 \quad \beta = 1.10 \quad \beta = 1.10$
Table 5. Inflow Neumann boundary condition, test for factor α.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>1/10</td>
<td>1.92754E-1</td>
<td>1.92753E-1</td>
<td>1.92772E-1</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/40</td>
<td>9.44468E-3</td>
<td>9.44468E-3</td>
<td>9.44500E-3</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/80</td>
<td>1.54254E-3</td>
<td>1.54254E-3</td>
<td>1.54259E-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 2.31$</td>
<td>$\alpha = 2.31$</td>
<td>$\alpha = 2.31$</td>
</tr>
</tbody>
</table>

Table 6. Inflow Neumann boundary condition, test for factor β.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20</td>
<td>1/100</td>
<td>4.09166E-2</td>
<td>4.09170E-2</td>
<td>4.09177E-2</td>
</tr>
<tr>
<td>1/40</td>
<td>1/100</td>
<td>2.13992E-2</td>
<td>2.13993E-2</td>
<td>2.13996E-2</td>
</tr>
<tr>
<td>1/80</td>
<td>1/100</td>
<td>1.06259E-2</td>
<td>1.06260E-2</td>
<td>1.06261E-2</td>
</tr>
<tr>
<td>1/160</td>
<td>1/100</td>
<td>4.92285E-3</td>
<td>4.92285E-3</td>
<td>4.92293E-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\beta = 1.02$</td>
<td>$\beta = 1.02$</td>
<td>$\beta = 1.02$</td>
</tr>
</tbody>
</table>

Table 7. Inflow Neumann boundary condition, test for factor α.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error (I)</th>
<th>L^2 error (II)</th>
<th>L^2 error (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>1/10</td>
<td>2.07236E-1</td>
<td>2.07235E-1</td>
<td>2.07253E-1</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/40</td>
<td>3.33366E-2</td>
<td>3.33366E-2</td>
<td>3.33367E-2</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/80</td>
<td>2.63765E-2</td>
<td>2.63765E-2</td>
<td>2.63765E-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 0.99$</td>
<td>$\alpha = 0.99$</td>
<td>$\alpha = 0.99$</td>
</tr>
</tbody>
</table>

Table 8. Comparison of different treatments of inflow
Dirichlet boundary condition, test for factor α.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δx</th>
<th>L^2 error of scheme in [29]</th>
<th>L^2 error of our scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>1/50</td>
<td>4.879038E-4</td>
<td>3.820066E-4</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/60</td>
<td>3.774253E-4</td>
<td>2.641193E-4</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/70</td>
<td>3.019386E-4</td>
<td>1.931335E-4</td>
</tr>
<tr>
<td>1/1000</td>
<td>1/80</td>
<td>2.475183E-4</td>
<td>1.471224E-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 1.4888$</td>
<td>$\alpha = 2.0957$</td>
</tr>
<tr>
<td>#</td>
<td>Author/s</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>931</td>
<td>Bryan L. Shader</td>
<td>Convertible, Nearly Decomposable and Nearly Reducible Matrices</td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>Dianne P. O'Leary</td>
<td>Iterative Methods for Finding the Stationary Vector for Markov Chains</td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>Nicholas J. Higham</td>
<td>Perturbation theory and backward error for $AX - XB = C$</td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>Z. Strakos and A. Greenbaum</td>
<td>Open questions in the convergence analysis of the lanczos process for</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the real symmetric eigenvalue problem</td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>Zhaojun Bai</td>
<td>Error analysis of the lanczos algorithm for the nonsymmetric eigenvalue problem</td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>Pierre-Alain Gremaud</td>
<td>On an elliptic-parabolic problem related to phase transitions in shape memory alloys</td>
<td></td>
</tr>
<tr>
<td>937</td>
<td>Bojan Mohar and Neil Robertson</td>
<td>Disjoint essential circuits in toroidal maps</td>
<td></td>
</tr>
<tr>
<td>938</td>
<td>Bojan Mohar</td>
<td>Convex representations of maps on the torus and other flat surfaces</td>
<td></td>
</tr>
<tr>
<td>939</td>
<td>Bojan Mohar and Svatopluk Poljak</td>
<td>Eigenvalues in combinatorial optimization</td>
<td></td>
</tr>
<tr>
<td>940</td>
<td>Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader</td>
<td>Conditional sign-solvability</td>
<td></td>
</tr>
<tr>
<td>941</td>
<td>Roger Fosdick and Ying Zhang</td>
<td>The torsion problem for a nonconvex stored energy function</td>
<td></td>
</tr>
<tr>
<td>942</td>
<td>René Ferland and Gaston Giroux</td>
<td>An unbounded mean-field intensity model:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propagation of the convergence of the empirical laws and compactness of the fluctuations</td>
<td></td>
</tr>
<tr>
<td>943</td>
<td>Wei-Ming Ni and Izumi Takagi</td>
<td>Spike-layers in semilinear elliptic singular Perturbation Problems</td>
<td></td>
</tr>
<tr>
<td>944</td>
<td>Henk A. Van der Vorst and Gerard G.L. Sleijpen</td>
<td>The effect of incomplete decomposition preconditioning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>on the convergence of conjugate gradients</td>
<td></td>
</tr>
<tr>
<td>945</td>
<td>S.P. Hastings and L.A. Peletier</td>
<td>On the decay of turbulent bursts</td>
<td></td>
</tr>
<tr>
<td>946</td>
<td>Apostolos Hadjidimos and Robert J. Plemons</td>
<td>Analysis of p-cyclic iterations for Markov chains</td>
<td></td>
</tr>
<tr>
<td>947</td>
<td>ÅBjörck, H. Park and L. Eldén</td>
<td>Accurate downdating of least squares solutions</td>
<td></td>
</tr>
<tr>
<td>948</td>
<td>E.G. Kalnins, Willard Miller, Jr. and G.C. Williams</td>
<td>Recent advances in the use of separation of variables methods in general relativity</td>
<td></td>
</tr>
<tr>
<td>949</td>
<td>G.W. Stewart</td>
<td>On the perturbation of LU, Cholesky and QR factorizations</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>G.W. Stewart</td>
<td>Gaussian elimination, perturbation theory and Markov chains</td>
<td></td>
</tr>
<tr>
<td>951</td>
<td>G.W. Stewart</td>
<td>On a new way of solving the linear equations that arise in the method of least squares</td>
<td></td>
</tr>
<tr>
<td>952</td>
<td>G.W. Stewart</td>
<td>On the early history of the singular value decomposition</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>G.W. Stewart</td>
<td>On the perturbation of Markov chains with nearly transient states</td>
<td></td>
</tr>
<tr>
<td>954</td>
<td>Umberto Mosco</td>
<td>Composite media and asymptotic dirichlet forms</td>
<td></td>
</tr>
<tr>
<td>955</td>
<td>Walter F. Mascarenhas</td>
<td>The structure of the eigenvectors of sparse matrices</td>
<td></td>
</tr>
<tr>
<td>956</td>
<td>Walter F. Mascarenhas</td>
<td>A note on Jacobi being more accurate than QR</td>
<td></td>
</tr>
<tr>
<td>957</td>
<td>Raymond H. Chan, James G. Nagy and Robert J. Plemons</td>
<td>FFT-based preconditioners for Toeplitz-Block least squares problems</td>
<td></td>
</tr>
<tr>
<td>958</td>
<td>Zhaojun Bai</td>
<td>The CSD, GSVD, their applications and computations</td>
<td></td>
</tr>
<tr>
<td>959</td>
<td>D.A. Gregory, S.J. Kirkland and N.J. Pullman</td>
<td>A bound on the exponent of a primitive matrix using Boolean rank</td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>Richard A. Brualdi, Shmuel Friedland and Alex Pothen</td>
<td>Sparse bases, elementary vectors and nonzero minors of compound matrices</td>
<td></td>
</tr>
<tr>
<td>961</td>
<td>J.W. Demmel</td>
<td>Open problems in numerical linear algebra</td>
<td></td>
</tr>
<tr>
<td>962</td>
<td>James W. Demmel and William Gragg</td>
<td>On computing accurate singular values and eigenvalues of acyclic matrices</td>
<td></td>
</tr>
<tr>
<td>963</td>
<td>James W. Demmel</td>
<td>The inherent inaccuracy of implicit tridiagonal QR</td>
<td></td>
</tr>
<tr>
<td>964</td>
<td>J.J.L. Velázquez</td>
<td>Estimates on the $(N - 1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation</td>
<td></td>
</tr>
<tr>
<td>965</td>
<td>David C. Dobson</td>
<td>Optimal design of periodic antireflective structures for the Helmholtz equation</td>
<td></td>
</tr>
<tr>
<td>966</td>
<td>C.J. van Duin and Joseph D. Fehrubaeh</td>
<td>Analysis of planar model for the molten carbonate fuel cell</td>
<td></td>
</tr>
<tr>
<td>967</td>
<td>Yongzhi Xu, T. Craig Poling and Trent Brundage</td>
<td>Source localization in a waveguide with unknown large inclusions</td>
<td></td>
</tr>
<tr>
<td>968</td>
<td>J.J.L. Velázquez</td>
<td>Higher dimensional blow up for semilinear parabolic equations</td>
<td></td>
</tr>
<tr>
<td>969</td>
<td>E.G. Kalnins and Willard Miller, Jr.</td>
<td>Separable coordinates, integrability and the Niven equations</td>
<td></td>
</tr>
<tr>
<td>970</td>
<td>John M. Chadam and Hong-Ming Yin</td>
<td>A diffusion equation with localized chemical reactions</td>
<td></td>
</tr>
<tr>
<td>971</td>
<td>A. Greenbaum and L. Gurvits</td>
<td>Max-min properties of matrix factor norms</td>
<td></td>
</tr>
<tr>
<td>972</td>
<td>Bei Hu</td>
<td>A free boundary problem arising in smoulder combustion</td>
<td></td>
</tr>
<tr>
<td>973</td>
<td>C.M. Elliott and A.M. Stuart</td>
<td>The global dynamics of discrete semilinear parabolic equations</td>
<td></td>
</tr>
<tr>
<td>974</td>
<td>Avner Friedman and Jianhua Zhang</td>
<td>Swelling of a rubber ball in the presence of good solvent</td>
<td></td>
</tr>
<tr>
<td>975</td>
<td>Avner Friedman and Juan J.L. Velázquez</td>
<td>A time-dependence free boundary problem modeling the visual image in electrophotography</td>
<td></td>
</tr>
<tr>
<td>976</td>
<td>Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr.</td>
<td>On the poset of all posets on n elements</td>
<td></td>
</tr>
<tr>
<td>977</td>
<td>Ricardo D. Fierro and James R. Bunch</td>
<td>Multicollinearity and total least squares</td>
<td></td>
</tr>
</tbody>
</table>
| 978| Adam W. Bojaneczky, James G. Nagy and Robert J. Plemons | Row householder transformations for }
rank-k Cholesky inverse modifications

Chaocheng Huang, An age-dependent population model with nonlinear diffusion in \mathbb{R}^n

Emad Fatemi and Farouk Odeh, Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices

Esmond G. Ng and Barry W. Peyton, A tight and explicit representation of Q in sparse QR factorization

Robert J. Plemmons, A proposal for FFT-based fast recursive least-squares

Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces

Alan Edelman and G.W. Stewart, Scaling for orthogonality

G.W. Stewart, Note on a generalized Sylvester equation

G.W. Stewart, Updating URV decompositions in parallel

Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols, Numerical methods for the regularization of descriptor systems by output feedback

Ralph Byers and N.K. Nichols, On the stability radius of generalized state-space systems

David C. Dobson, Designing periodic structures with specified low frequency scattered in far-field data

C.-T. Pan and Kermit Sigmon, A bottom-up inductive proof of the singular value decomposition

Ricardo D. Fierro and James R. Bunch, Orthogonal projection and total least squares

Chiou-Ming Huang and Dianne P. O'Leary, A Krylov multisplitting algorithm for solving linear systems of equations

A.C.M. Ran and L. Rodman, Factorization of matrix polynomials with symmetries

Mike Boyle, Symbolic dynamics and matrices

A. Novick-Cohen and L.A. Peletier, Steady states of the one-dimensional Cahn-Hilliard spaces

Zhangxin Chen, Large-scale averaging analysis of single phase flow in fractured reservoirs

Boris Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis

Yongzhi Xu, CW mode structure and constraint beamforming in a waveguide with unknown large inclusions

R.P. Gilbert and Yongzhi Xu, Acoustic waves and far-field patterns in two dimensional oceans with porous-elastic seaboards

M.A. Herrero and J.J.L. Velázquez, Some results on blow up for semilinear parabolic problems

Pierre-Alain Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions

Izchak Lewkowicz, Stability robustness of state space systems inter-relations between the continuous and discrete time cases

Kenneth R. Driessel and Wasin So, Linear operators on matrices: Preserving spectrum and displacement structure

Carolyn Eschenbach, Idempotence for sign pattern matrices

Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson, Self-inverse sign patterns

Marc Moonen, Paul Van Dooren and Filipe Vanpoucke, On the QR algorithm and updating the SVD and URV decomposition in parallel

Paul Van Dooren, Upcoming numerical linear algebra issues in systems and control theory

Avner Friedman and Juan J.L. Velázquez, The analysis of coating flows near the contact line

Stephen J. Kirkland and Michael Neumann, Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model

Stephen J. Kirkland and Bryan L. Shader, Tournament matrices with extremal spectral properties

E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: Matrix Elements of $U_q(su_2)$

Zhangxin Chen and Bernardo Cockburn, Error estimates for a finite element method for the drift-diffusion semiconductor device equations

Chaocheng Huang, Drying of gelatin asymptotically in photographic film

Richard E. Ewing and Hong Wang, Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater

Bing-Yu Zhang, Taylor series expansion for solutions of the Korteweg-De Vries equation with respect to their initial values

Kenneth R. Driessel, Some remarks on the geometry of some surfaces of matrices associated with Toeplitz eigenproblems

C.J. Van Duijn and Peter Knabner, Flow and reactive transport in porous media induced by well injection: Similarity solution

Wasin So, Rank one perturbation and its application to the Laplacian spectrum of a graph

G. Baccarani, F. Odeh, A. Gnudi and D. Venturina, A critical review of the fundamental semiconductor equations

T.R. Hoffend Jr., Magnetostatic interactions for certain types of stacked, cylindrically symmetric magnetic particles