NUMERICAL OPTIMIZATION AND QUASICONVEXITY

By

Pierre-Alain Gremaud

IMA Preprint Series # 1133
April 1993
NUMERICAL OPTIMIZATION AND QUASICONVEXITY*

PIERRE-ALAIN GREMAUD†

Abstract. We present a numerical study of quasiconvexity for some functions of the type $f(\xi) = g(\|\xi\|^2, \det \xi)$, where ξ is a 2×2-matrix. The corresponding global optimization problems are solved using a simulated annealing-like algorithm. The computations strongly indicate that the considered functions are quasiconvex if and only if they are rank-one convex. Relation to Morrey's conjecture, various applications and implementation problems are discussed.

Key words. global optimization, simulated annealing, quasiconvexity, rank-one convexity

AMS(MOS) subject classifications (1985 revision). 65K10, 49M10

1. Introduction
The goal of this paper is twofold, namely

- introduction and study of a global minimization algorithm,
- (numerical) determination of quasiconvexity and application of the method to examples related to Morrey's conjecture (see below).

The first point will lead to the development, test and use of a general algorithm of global minimization based on ideas ranging from quantum mechanics and stochastic differential equations (see [chs], [gi] or [gm]) to more traditional descent methods (gradient or conjugate gradient algorithms). The second point has been a major open problem in the Calculus of Variations for forty years. Recently, Šverák [sv] verified Morrey's conjecture in the three dimensional case; we will thus focus the application of our algorithm on the two dimensional case which is still open.

Let us be more specific. Consider the following minimization problem

(1.1) \[\min\{I(u), u \in W^{1,\infty}_0(\Omega; \mathbb{R}^2)\} \quad \text{with} \quad I(u) = \int_{\Omega} f(\nabla u(x)) \, dx, \]

where $\Omega \subset \mathbb{R}^2$ is an open bounded set and $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ is a continuous function; $W^{1,\infty}_0(\Omega; \mathbb{R}^2)$ denotes the space of \mathbb{R}^2-valued Lipschitz functions vanishing on the boundary $\partial \Omega$. For a very large class of problems (for instance, nonlinear elasticity), the classical

*This research was supported in part by the Fonds National Suisse pour la Recherche Scientifique, and by a grant from the Minnesota Supercomputer Institute.
†School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
method which consists in solving the Euler equation $I'(u) = 0$ fails, essentially because of the complexity of the involved calculations. The only available tool consists then in establishing the weak lower semicontinuity of I. This latter property is known to be equivalent to the quasiconvexity of f (see e.g. [da]). For the sake of completeness, let us recall the two following definitions

f is said to be quasiconvex if

$$f(\xi) \leq \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla \phi(x))dx, \quad \forall \xi \in \mathbb{R}^{2 \times 2}, \forall \phi \in W^{1,\infty}_0(\Omega; \mathbb{R}^2);$$

f is said to be rank-one convex if

$$f(\lambda \xi + (1-\lambda)\eta) \leq \lambda f(\xi) + (1-\lambda)f(\eta),$$

$$\forall \lambda \in [0,1], \forall \xi, \eta \in \mathbb{R}^{2 \times 2}, \det(\xi - \eta) = 0.$$

It turns out that it is usually extremely difficult to establish the quasiconvexity of a function. The notion of rank-one convexity is known to be slightly weaker (i.e. "quasiconvexity \Rightarrow rank-one convexity", see e.g. [da]). It was conjectured by Morrey (see [mo]), that f rank-one convex $\not\Rightarrow f$ quasiconvex. This problem is still open in the two dimensional case. Numerous attempts have been made to construct examples of functions which are rank-one convex but not quasiconvex (see [ad], [ddgr]). The complexity of the involved calculations have not yet permitted their complete analytical study (the example of Šverák seems to be purely three-dimensional and not "translatable" to a two dimensional setting). As will be seen from the computations, the numerical analysis is quite an efficient tool with which to study this problem.

From a numerical point of view, a quasiconvexity test will consist in the global minimization of a functional in some space \mathbb{R}^p. The algorithm we consider here is, in essence, not new and can be related to some kind of Monte Carlo method. The idea is based on the annealing process in which one goes from one configuration of a system to a more "stable" one by heating and then cooling down very slowly. In this frame, the unknown function in the optimization problem is viewed as the state of an imaginary physical system whose energy has to be minimized. Results of convergence towards global minimima have been established, and the optimal annealing schedule (i.e. the way to change the "temperature" in order to reach equilibrium as fast as possible) is known. We refer the reader to [gi] (see also [chs] and [gm]).

Algorithms based on these ideas are referred to as simulated annealing methods (SA), and can be applied to a huge class of minimization problems. However, to our knowledge and much to our surprise, closely related methods have only been used for solving much more simple problems than the one we are interested in here (see e.g. [apz] for some low
dimensional applications; see also [lm] where a crude version of SA, namely the Metropolis algorithm, has been successfully used for a “real life” problem). On the other hand, there exists in the literature several computational and numerical studies of quite complicated variational problems (see e.g. [cck], [cl], [gr]) but the emphasis is on the use and convergence of the finite element method (i.e., in the case of problem (1.1), the construction of finite dimensional spaces approximating functions in $W_0^{1,\infty}$) rather than on the much more involved issue of the actual global minimization of the functional.

The outline of the paper is as follows. In section 2, we introduce and analyze the spatial discretization using the Finite Element method. The simulated annealing method is discussed in section 3. We present the examples considered in this paper in section 4. Some theoretical results are recalled. In section 5, the detailed numerical test of quasiconvexity is introduced. The method is evaluated and the numerical results presented and discussed. Section 6 is devoted to concluding remarks. Finally, in the appendix, a PDE approach to the simulated annealing method is considered.

2. Discretization

In this section, we analyze the discretization of the problem (1.1) by the finite element method.

Let $\{T_h\}$ be a family of regular triangulations of Ω, h being the size of the mesh. For the sake of simplicity, we assume that Ω is polygonal and $\tilde{\Omega} = \cup_{K \in T_h} K$. We set

$$V_h = \{ \phi : \Omega \to \mathbb{R}, \phi \in C^0(\tilde{\Omega}), \phi|_K \in \mathcal{P}_1(K), \phi = 0 \text{ on } \partial \Omega \},$$

$$W_h = V_h^2,$$

$$\text{Aff}_0(\Omega; \mathbb{R}^2) = \{ \phi \in W_0^{1,\infty}(\Omega; \mathbb{R}^2), \phi \text{ piecewise affine} \},$$

\mathcal{P}_1 being the space of polynomials of degree 1. For any $\xi \in \mathbb{R}^{2 \times 2}$, we introduce the notations

$$Q_f(\xi) = \inf \left\{ \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla u(x)) dx, u \in W_0^{1,\infty}(\Omega; \mathbb{R}^2) \right\},$$

$$Q'_f(\xi) = \inf \left\{ \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla u(x)) dx, u \in \text{Aff}_0(\Omega; \mathbb{R}^2) \right\},$$

$$Q_h f(\xi) = \inf \left\{ \frac{1}{|\Omega|} \int_{\Omega} f(\xi + \nabla u(x)) dx, u \in W_h \right\}.$$

We have the following result.

Lemma 2.1.

\begin{align*}
\text{(2.1)} & \quad Q_f(\xi) = Q'_f(\xi) \quad \forall \xi \in \mathbb{R}^{2 \times 2}, \\
\text{(2.2)} & \quad \lim_{h \to 0} Q_h f(\xi) = Q_f(\xi) \quad \forall \xi \in \mathbb{R}^{2 \times 2}.
\end{align*}
Proof. The relation (2.1) is proved in [da], p.207–212. It is then not difficult to establish (2.2) (see [bc]). \]

\textbf{Remark 2.1.} Let us point out that in the scalar case (i.e., } u \in W^{1,\infty}_0(\Omega; \mathbb{R}) \text{ and } f : \mathbb{R}^2 \to \mathbb{R}, \text{ it is possible to prove that } Q_h f(\xi) \text{ tends to } Q f(\xi) \text{ as } h^{1/2}, \text{ provided that } \frac{f(\xi)}{\|\xi\|} \underset{|\xi| \to \infty}{\longrightarrow} +\infty \text{ (see [bc]). To our knowledge, there is no such result in the present vectorial case. Finally, we recall that } Q f \text{ does not depend on } \Omega \text{ (see [da]).} \]

We now turn to the elaboration of a numerical test of quasiconvexity. We will restrict ourself to homogeneous functions } f, \text{ i.e., such that there exists a real number } p \text{ with}

\begin{equation}
(2.3) \quad f(\lambda \xi) = \lambda^p f(\xi) \quad \forall \lambda > 0.
\end{equation}

We set

\[J(\xi, \phi) = \int_{\Omega} (f(\xi + \nabla \phi(x)) - f(\xi)) dx. \]

The quasiconvexity of } f \text{ is then equivalent to}

\begin{equation}
(2.4) \quad \inf_{\xi \in \mathbb{R}^{2 \times 2}} \inf_{\phi \in W^{1,\infty}_0(\Omega; \mathbb{R}^2)} J(\xi, \phi) = 0.
\end{equation}

Let us remark that by (2.3), the left member of the previous relation is either 0 or \(-\infty\).

We say that } f \text{ is } h\text{-quasiconvex if}

\begin{equation}
(2.5) \quad \inf_{\xi \in \mathbb{R}^{2 \times 2}} \inf_{\phi \in W_h} J(\xi, \phi) = 0.
\end{equation}

The lemma 2.1 justifies such a denomination.

By allowing a slight stretch in the notation, a function } \phi \text{ in } W_h \text{ is identified with the } 2 \times N\text{-matrix of its values at the nodes of } T_h, \text{ } N \text{ being the number of the nodes. The } 2 \times (N + 2)\text{-matrix corresponding to } (\xi, \phi) \text{ is then denoted } \Phi \text{ and (2.5) becomes}

\begin{equation}
(2.6) \quad \inf_{\Phi \in \mathbb{R}^{2 \times (N+2)}} J(\Phi) = 0.
\end{equation}

\textbf{3. Numerical optimization}

In this section, the algorithm of minimization is introduced and studied.

We are interested in the numerical resolution of the following problem

\begin{equation}
(3.1) \quad \inf_{\Phi \in \mathbb{R}^p} J(\Phi),
\end{equation}

4
for a family of functions J as large as possible (see e.g. (2.6)).

The traditional algorithms of descent (gradient or conjugate gradient methods) are essentially based first, on the observation that solutions to the following time dependent equation

$$\frac{d\Phi}{dt}(t) = -\nabla J(\Phi(t)), \quad t > 0,$$

(3.2)

(where ∇ denotes the derivative with respect to Φ) tend to local minima of J as t tends to infinity, and secondly on the discretization of this equation by a single Euler forward scheme, i.e.,

$$\Phi^{k+1} = \Phi^k - \tau^k \nabla J(\Phi^k),$$

(3.3)

where the time steps, τ^k, may or may not be "optimized." A major drawback suffered by this approach is that it is obviously local; the missing part in (3.2), i.e., the choice of the initial condition, plays a central role.

Remark 3.1. Such methods may, nevertheless, be used for general problems, but with the two possible major restrictions:

- to repeat the computations for a large number of initial conditions (the hope being that one will eventually choose a starting point in the "basin of attraction" of a global minimizer);

- to have an a priori knowledge of the solution (!) or other closely related informations (e.g. Young measures associated to minimizing sequences, see e.g. [cl2]).

If one aims at finding global minimizers, starting with "arbitrary" initial conditions, one obviously has to be able to overcome potential barriers (i.e., "to climb hills"). In order to do this, we introduce a perturbation in the relation (3.2) in the form of a stochastic fluctuation

$$d\Phi(t) = -\nabla J(\Phi(t))dt + \sqrt{2\theta(t)}dw(t),$$

(3.4)

where the "temperature" $\theta(t)$ is a given annealing rate and $w(t)$ is a standard Brownian motion in \mathbb{R}^p. We refer the reader to [sc], chap. 8, for various comments on the physical significance of (3.4).

Using stochastic analysis techniques, it is possible to prove, for suitable functions J and θ, that Φ, solution of (3.4), tends to a global minimizer "in some probabilistic sense" (see e.g. [chs], [gi] or [gm]). These results are beyond the scope of this paper, and we refer the reader to the abovementioned papers for more details (see also the naive approach
presented in the appendix). Let us however remark that, central in these papers, is the fact that the annealing rate \(\vartheta(t) \) has to be very slowly decreasing in order to ensure convergence. We accordingly choose

\[
(3.5) \quad \vartheta(t) = \frac{c}{\log(2 + t)}, \quad c \geq 0.
\]

The minimizing algorithm is then:

\[
(3.6) \quad \begin{cases}
\Phi^{k+1} = \Phi^k - \tau^k g^k + \sqrt{2\vartheta(t^k)}\tilde{w}^k, \\
\Phi^0 = \Phi_0,
\end{cases}
\]

where \(\vartheta \) is given by (3.5) and \(g^k \) is given by

\[
g^k = \nabla J(\Phi^k) \quad \text{or} \quad g^k = \nabla J(\Phi^k) + \beta^k g^{k-1},
\]

where \(\beta^k = \frac{\nabla J(\Phi^k) - \nabla J(\Phi^{k-1})}{\|\nabla J(\Phi^{k-1})\|^2} \), i.e., using respectively the gradient or conjugate gradient algorithm. Moreover, we have set in (3.6) \(t^k = \sum_{i=0}^{n-1} \tau^i \), where the time steps \(\tau^k \) are experimentally determined; \(\tilde{w}^k = w(t^{k+1}) - w(t^k) \) is a randomly generated vector in \(\mathbb{R}^p \) such that \(\tilde{w}^k \in [-1, 1]^p \) and \(\Phi_0 \in \mathbb{R}^p \) is an initial condition.

4. The examples of Dacorogna & Marcellini

In this section, we consider functionals of the type (1.1) where \(f : \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R} \) is as follows

\[
(4.1) \quad f(\xi) = g(|\xi|^2, \det \xi),
\]

form some function \(g : \mathbb{R}^2 \rightarrow \mathbb{R} \) and where \(| \cdot | \) denotes the euclidean norm. Such functions are important in elasticity or in optimal design (see [da], appendix, or [ks]).

Our first and principal example will be functions of the type

\[
(4.2) \quad f(\xi) = |\xi|^{2\alpha}(|\xi|^2 - 2\gamma \det \xi) \quad \alpha \geq 1/2, \gamma \in \mathbb{R}.
\]

Let us recall the following result.

Theorem 4.1. Let \(f \) be given as in (4.2), with \(\alpha = 1 \). Then

- \(f \) convex \(\iff |\gamma| \leq \frac{2}{3} \sqrt{2} \),
- \(\exists \varepsilon > 0 \) such that \(f \) quasiconvex \(\iff |\gamma| \leq 1 + \varepsilon \),
- \(f \) rank-one convex \(\iff |\gamma| \leq \frac{2}{\sqrt{3}} \).

6
Proof. See [ad], theorem 1. □

The most difficult point in the above result is obviously the quasiconvexity. We give in the next section an estimation of the parameter ε.

The general case (4.2) is treated in [ddgr], theorem 1.8, where necessary and sufficient conditions for rank-one convexity are established. Optimal quasiconvexity conditions are unknown and will be numerically determined in the next section.

In a second example, the following kind of functions is studied

\begin{equation}
(4.3) \quad f(\xi) = |\xi|^{2\alpha} - 2^{\alpha-1} \gamma |\det \xi|^{\alpha}.
\end{equation}

Rank-one convexity conditions for the above functions f are established in [ddgr], theorem 1.6. Here also, no quasiconvexity condition is known.

5. Numerical results

In this section, we first briefly evaluate the simulated annealing method (SA) with respect to other more traditional descent methods. The examples of the previous section are used as a bench-mark. In a second part, we discuss computational results showing that those functions are "h-quasiconvex" if and only if they are rank-one convex.

Throughout this section, we set $\Omega = (0,1)^2$ and $T_h = \{K_{l,m,p}, 1 \leq l,m \leq N, p = 1,2\}$ where $K_{l,m,1}$ (resp. $K_{l,m,2}$) is the triangle with vertices $(lh,(m-1)h)$, $((l-1)h,mh)$ and $((l-1)h,(m-1)h)$ (resp. (lh,mh)) and where $h = 1/N$.

As pointed out in [gi], the optimal annealing schedule is determined by the competition between the two following effects

- if the temperature is lowered too abruptly, the solution may get stuck in some local minimum ("adiabatic" effect);
- if the temperature is lowered too slowly, the convergence (if any) towards a global minimum might be too slow to be of any practical use ("supercooling" effect).

In our case, the speed of cooling is measured by the coefficient c in (3.5). The value $c = 0$ corresponds to the traditional descent algorithms.

We now illustrate the previous remark by considering the algorithm (3.5), (3.6) applied to the example (4.2) with $\alpha = 1, \gamma = 1.4$. The functional is defined according to (2.6) and we use $\tau = 10^{-4}$ and $N = 20$. According to theorem 4.1, the continuous corresponding functional is not quasiconvex and thus we should find

\begin{equation}
(5.1) \quad \inf_{\Phi \in \mathbb{R}^{2N+2}} J(\Phi) = -\infty.
\end{equation}

In view of figure 1, the traditional method does not "converge" after the 1000 displayed iterations (in this example, J becomes negative after ≈ 1400 iterations). On the other hand, SA gives very satisfactory answers after only a few hundred iterations.
Figure 1. Simulated annealing with $c = 0, 10^{-6}, 10^{-4}, 10^{-3}$ (example 4.2 $\alpha = 1, \gamma = 1.4$).

If the annealing coefficient c is further increased, then oscillations appear and rapidly lead to an overflow.

Remark 5.1. The algorithm is actually very sensitive to the way random numbers are generated. This could somehow render the algorithm quite "machine dependent" (at least if one uses a built-in random number generator). For instance, we use in this paper a generator of the type GFSR (generalized feedback shift register) with period $2^{521} - 1$, see [ri], appendix; this leads to a substantial improvement with respect to the algorithm obtained in conjunction with the built-in random number generator RANF provided by CRAY (which has a period of $2^{48} - 1$). The computations presented below have been obtained on a CRAY-2/4-512. [1]

Let us conclude this brief evaluation by the following remarks. The advantages and disadvantages of SA versus the classical descent methods have to be analyzed and weighed from case to case. For instance, for convex optimization problems, there is no point in adding some fluctuation terms in the algorithm. On the other hand, the more "nonconvex" the functional is, the more needed those terms will be. We doubt that any much more precise, definite and serious statement can be offered in the general case.

The applications presented hereafter are indeed a perfect example of a "mixed" approach, where traditional and stochastic algorithms are both used to solve a same problem.
We now consider the application of SA to the examples of Dacorogna & Marcellini (see section 4). As recalled in the previous section, necessary and sufficient conditions for rank-one convexity are known if f is given by (4.2) (or (4.3)). Our goal is to find if there exists a rank-one convex function which is not quasiconvex.

Roughly speaking, the strategy is as follows: if γ is “large” (see e.g. theorem 4.1), then the function is not rank-one convex and thus not quasiconvex; consequently, for “large” γ, the relation (5.1) has to be found. Therefore, for various fixed values of α, we are looking for the smallest γ, denoted γ_h^* such that (5.1) is satisfied. The theoretical critical value for rank-one convexity is denoted γ_r. Three cases are then possible.

- γ_h^* is much larger than γ_r: the numerical test is not precise enough (since, neglecting numerical errors, γ_h^* has to satisfy $\gamma_h^* \leq \gamma_r$, see also remark 5.2);
- γ_h^* is reasonably close to γ_r: this would tend to imply that the function is quasiconvex if and only if it is rank-one convex;
- γ_h^* is smaller than γ_r.

Remark 5.2. Even if the continuous function was such that $\gamma^* = \gamma_r$ (where γ^* is the largest number such that f is quasiconvex), we should have $\gamma_h^* \approx \gamma^*$ because of the “convexifying” effect of the discretization itself.

For a given fixed value of α in (4.2) or (4.3), the numerical test of quasiconvexity is as follows:

0. Choose h and γ ($\gamma \geq \gamma_r$)
1. Initialize $\Phi^0, k = 0$
2. Compute $\nabla J(\Phi^k)$
3. Compute Φ^{k+1} according to (3.5), (3.6)
4. If $J(\Phi^{k+1}) \ll 0$ (non quasiconvexity) then
 set $\gamma \leftarrow \gamma - \delta \gamma, \Phi^0 \leftarrow \Phi^{k+1}, k = 0$
 go to 2
else
 set $k \leftarrow k + 1$
 go to 2 (till # iterations = max)
endif .

Some comments are in order. First, SA is most useful for going from the initial condition to a well where a global minimum lies. This means that after a first successful
computation with a value γ, one can, if the decrement $\delta \gamma$ is small, switch off the noise term afterwards (the hope being that the structure of J does not change too much if γ is slightly changed). Secondly, the use of SA is here more than a mere numerical gadget. Indeed, for small h and large α, for instance, the functional is so steep that an arbitrary choice of an initial condition leads to unsolvable numerical problems (the energy being simply too large to be efficiently numerically handled). A natural choice for the initial condition is then $\Phi^0 = (\xi^0, 0)$, where ξ^0 is any 2×2 matrix. It is easy to check that Φ^0 is a local minimum of J and satisfies $J(\Phi^0) = 0$. Contrary to traditional methods, SA allows us to start from such a local minimum without getting stuck there (see figure 2).

![Graph showing the function J with different values of c.](image)

Figure 2. SA started at a local minimum (example 4.2).

The results of the quasiconvexity test are shown in the following table.

<table>
<thead>
<tr>
<th>α</th>
<th>$h=1/20$</th>
<th>$h=1/30$</th>
<th>$h=1/40$</th>
<th>γ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>1.1571</td>
<td>1.1553</td>
<td>1.1550</td>
<td>1.1547</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>0.9906</td>
<td>0.9896</td>
<td>0.9894</td>
<td>0.9889</td>
</tr>
<tr>
<td>$\alpha = 6$</td>
<td>0.9759</td>
<td>0.9754</td>
<td>0.9753</td>
<td>0.9751</td>
</tr>
</tbody>
</table>

Example 4.2 : values of γ_h^*.

10
The above results have been obtained by starting with values of γ such that the corresponding function is "seriously non quasiconvex". Typically, 10 to 15 decreasing values of γ are used and for each of these values several thousand iterations are needed.

The values of γ_h^* in the above table are such that : for the value itself, non quasiconvexity has been observed, moreover if the last digit is diminished by one unit, $J(\Phi^k)$ is still positive for $k = 10000$. The agreement between the computed values and the theoretical values for rank-one convexity (see section 4) is very good. The considered functions seem thus to be quasiconvex if and only if they are rank-one convex, i.e., $\lim_{h \to 0} \gamma_h^* = \gamma_r$.

In figure 3, level curves of one of the two components of the unknown ϕ are represented for various values of h. The picture shows that, as the mesh is refined, new modes appear that were not allowed with coarser meshes.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{Level curves of the first component of ϕ for $h = 1/20, 1/24, 1/30, 1/40$ (example 4.2 $\alpha = 1, \gamma = 1.158$).}
\end{figure}

In all the above cases, the solution is obviously affected by various "mesh effects." The following question naturally arises : have we really found a "minimizer" when we claim that the function is quasiconvex (or more precisely "h-quasiconvex")? Would we still observe quasiconvexity if the number of iterations is further increased or the mesh refined? We strongly believe it is the case, and the agreement between the theoretical values for rank-one convexity and the experimental values for quasiconvexity observed in
the above table is more than a mere coincidence.

The figure 4 backs this belief. The time at which \(J \) becomes negative goes to infinity as \(\gamma \) decreases. We should however point out that the curves in figure 4 have been obtained by taking the same initial condition for each value of \(\gamma \) (which is not consistent with our algorithm).

In the case of the example 4.3, the numerical results are of the same nature, although more delicate to obtain (the "tricky" determinant term is here more dominant). The results for a mesh size \(h = 1/20 \) are given in the following table.

<table>
<thead>
<tr>
<th>(\alpha = 3)</th>
<th>(\gamma_r = 1.2946)</th>
<th>(\gamma_r = 1.2926)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 4)</td>
<td>(\gamma_r = 1.4237)</td>
<td>(\gamma_r = 1.4169)</td>
</tr>
</tbody>
</table>

Example 4.3: values of \(\gamma_h^* \).

Here also, the numerical results suggest that the considered functions are quasiconvex if and only if they are rank-one convex.
6. Conclusions
We have successfully used the simulated annealing method (SA) in the framework of a numerical test of quasiconvexity. The algorithm has been tested for functions which were considered in relation to Morrey's conjecture (i.e., possible candidates for non quasiconvex functions which are rank-one convex).

The computations strongly suggest that those functions are quasiconvex if and only if they are rank-one convex, leaving thus Morrey's conjecture unanswered in dimension 2, but ruling out a family of possible candidates. The generality of this "result" is difficult to evaluate and the general case \(f(\xi) = g(|\xi|^2, \det \xi) \) undoubtedly deserves further studies, despite the theoretical and numerical difficulties.

As far as the numerical method is concerned, the following remarks are worth considering. First, SA allows a lot of freedom in the choice of a starting point without getting stuck in some local minimum (even local minima are possible as initial conditions). In the case of "nasty" functionals, we have shown that, properly tuned, it works far better than the classical descent methods: SA allows the iteration to follow "the short way". The second point is that SA may turn out to be quite tricky to tune. This, in our view, constitutes its main disadvantage, but it should not prevent its broader use in the framework of global optimization.

Finally, we have focused here on an application of numerical analysis to mathematics. However, and not surprisingly, the problems encountered (global optimization, mesh effects,...) are by no means limited to this theoretical frame.

Acknowledgments

I would like to thank Bernard Dacorogna for having brought this problem to my attention, as well as for useful comments. I am also grateful to Mitchell Luskin for several remarks which led to a better presentation of this paper.

References

Appendix: a naive PDE approach to Simulated Annealing

To fix the ideas and for the sake of completeness, we briefly present a sketch proof of convergence of the simulated annealing method. The following approach has been suggested in [gi] to which we refer for further details. We give here only formal arguments.

Let us consider once again the stochastic differential equation

\[(a.1)\quad d\Phi(t) = -\nabla J(\Phi(t))dt + \sqrt{2\theta(t)}dw(t), \quad \Phi(0) = \Phi_0 \in \mathbb{R}^p.\]

We refer the reader to [fr] or [sc] for existence and uniqueness results of a Markov process solution to (a.1).

For any Borel set \(A \subset \mathbb{R}^p\), we define

\[P(0, \Phi_0, t, A) = P\{\Phi(t) \in A\},\]

where \(P\{\cdot\}\) is the probability of \(\cdot\) and \(P(0, \Phi_0, t, A)\) is the transition probability of \(\Phi(t)\).

Lemma. If \(\theta : \mathbb{R} \to \mathbb{R}^+\) and \(\nabla J : \mathbb{R}^p \to \mathbb{R}^p\) are bounded, continuous, uniformly Lipschitz continuous on compact subsets of \(\mathbb{R}\) and \(\mathbb{R}^p\) respectively, then

\[P(0, \Phi_0, t, A) = \int_A \rho(x, t)dx,\]

where the transition probability density \(\rho = \rho(x, t)\) satisfies the Fokker-Planck equation

\[(a.2)\quad \frac{\partial \rho}{\partial t} - \theta(t)\Delta \rho - \nabla \cdot (\nabla J \rho) = 0,\]

\[\lim_{t \to 0} \rho(\cdot, t) = \delta_{\Phi_0},\]

where \(\delta_{\Phi_0}\) is the Dirac mass at \(\Phi_0\).

Proof. See e.g. [fr], chap. 6. \(\square\)
Let us now for the sake of the argument, assume \(\vartheta(t) = \vartheta = \text{constant} \). We also consider the linear operator \(\mathcal{L}_\vartheta = -\vartheta \Delta - \nabla \cdot (\nabla J \cdot \cdot) \). If \(\int_{\mathbb{R}^p} \exp(-J(z)/\vartheta) dz = m_\vartheta < \infty \), then \(\rho_0(z) = \frac{1}{m_\vartheta} \exp(-J(z)/\vartheta) \) is a density that satisfies \(\mathcal{L}_\vartheta \rho_0 = 0 \).

We next (formally) write \(\rho \) as an eigenfunction expansion

\[
(a.3) \quad \rho(x, t) = \rho_0(x) + \sum_{n=1}^{\infty} \rho_n(x) \rho_n(\Phi_0) \exp(-J(x)/\vartheta) e^{-\lambda_n t},
\]

where \(\lambda_n \) and \(\rho_n \) denote the \(n \)-th eigenvalue and eigenvector of \(\mathcal{L}_\vartheta \), i.e.

\[
(a.4) \quad -\vartheta \Delta \rho_n - \nabla \cdot (\nabla J \rho_n) = \lambda_n \rho_n, \quad \int_{\mathbb{R}^p} \rho_n(x) dx = 1.
\]

In (a.3), the function \(\rho_0 \) is the eigenfunction corresponding to the first eigenvalue \(\lambda_0 = 0 \). Under reasonable assumptions upon \(J \) (see e.g. [gi]), we have \(0 < \lambda_1 \leq \lambda_2 \leq \ldots \). Consequently, we get

\[
\rho(x, t) \xrightarrow{t \to \infty} \rho_0(x).
\]

It remains to study the behavior of \(\rho_0 \) as \(\vartheta \to 0 \). Using the Taylor formula, it is possible to prove, in the case of a suitable multiple well function \(J \) for instance, that \(\rho_0 \) tends in the distribution sense to a sum of Dirac masses, each of which is concentrated on a global minimizer of \(J \), with a weight proportional to the "width" of the corresponding well (see e.g. [apz]).

The general case \(\vartheta = \vartheta(t) \) requires more technicalities and we refer the reader to [gi] and the references quoted therein, where convergence results are obtained for functions \(\vartheta \) satisfying (3.5).
1050 J.E. Dunn & Roger Fosdick, The Weierstrass condition for a special class of elastic materials
1051 Bei Hu & Jianhua Zhang, A free boundary problem arising in the modeling of internal oxidation of binary alloys
1052 Eduard Feireisl & Enrique Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent
1053 I-Heng McComb & Chjan C. Lim, Stability of equilibria for a class of time-reversible, $D_{2\theta}xO(2)$-symmetric homogeneous vector fields
1054 Ruben D. Spies, A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials
1055 H.S. Dumas, F. Golse, and P. Lochak, Multiphase averaging for generalized flows on manifolds
1056 Bei Hu & Hong-Ming Yin, Global solutions and quenching to a class of quasilinear parabolic equations
1057 Zhangxin Chen, Projection finite element methods for semiconductor device equations
1058 Peter Guttorp, Statistical analysis of biological monitoring data
1059 Wensheng Liu & Héctor J. Sussmann, Abnormal sub-Riemannian minimizers
1060 Chjan C. Lim, A combinatorial perturbation method and Arnold's whiskered Tori in vortex dynamics
1061 Yong Liu, Axially symmetric jet flows arising from high speed fiber coating
1062 Li Qiu & Tongwen Chen, \mathcal{H}_2 and \mathcal{H}_∞ designs of multirate sampled-data systems
1063 Eduardo Casas & Jiongmin Yong, Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations
1064 Suzanne M. Lenhart & Jiongmin Yong, Optimal control for degenerate parabolic equations with logistic growth
1065 Suzanne Lenhart, Optimal control of a convective-diffusive fluid problem
1066 Enrique Zuazua, Weakly nonlinear large time behavior in scalar convection-diffusion equations
1067 Caroline Fabre, Jean-Pierre Puel & Enrike Zuazua, Approximate controllability of the semilinear heat equation
1068 M. Escobedo, J.L. Vazquez & Enrike Zuazua, Entropy solutions for diffusion-convection equations with partial diffusivity
1069 M. Escobedo, J.L. Vazquez & Enrike Zuazua, A diffusion-convection equation in several space dimensions
1070 F. Fagnani & J.C. Willems, Symmetries of differential systems
1071 Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu, Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation
1072 M.E. Bradley & Suzanne Lenhart, Bilinear optimal control of a Kirchhoff plate
1073 Héctor J. Sussmann, A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case
1074 Marek Rakowski, Transfer function approach to disturbance decoupling problem
1075 Yuncheng You, Optimal control of Ginzburg-Landau equation for superconductivity
1076 Yuncheng You, Global dynamics of dissipative modified Korteweg-de Vries equations
1077 Mario Taboada & Yuncheng You, Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping
1078 Michael Böhm & Mario Taboada, Global existence and regularity of solutions of the nonlinear string equation
1079 Zhangxin Chen, BMD mixed methods for a nonlinear elliptic problem
1080 J.J.L. Velázquez, On the dynamics of a closed thermosyphon
1081 Frédéric Bonnans & Eduardo Casas, Some stability concepts and their applications in optimal control problems
1082 Hong-Ming Yin, $L^{2,\mu}(Q)$-estimates for parabolic equations and applications
1083 David L. Russell & Bing-Yu Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation
1084 J.E. Dunn & K.R. Rajagopal, Fluids of differential type: Critical review and thermodynamic analysis
1085 Mary Elizabeth Bradley & Mary Ann Horn, Global stabilization of the von Kármán plate with boundary feedback acting via bending moments only
1086 Mary Ann Horn & Irena Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback
1087 Vilmos Komornik, Decay estimates for a petrovski system with a nonlinear distributed feedback
1088 Jesse L. Barlow, Perturbation results for nearly uncoupled Markov chains with applications to iterative methods
1089 Jong-Shenq Guo, Large time behavior of solutions of a fast diffusion equation with source
1090 Tongwen Chen & Li Qiu, \mathcal{H}_∞ design of general multirate sampled-data control systems
1091 Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, I
1092 Nahum Shimkin, Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies
1093 Caroline Fabre, Jean-Pierre Puel & Enrike Zuazua, On the density of the range of the semigroup for semilinear heat equations
Robert F. Stengel, Laura R. Ray & Christopher I. Marrison, Probabilistic evaluation of control system robustness

H.O. Fattorini & S.S. Sritharan, Optimal chattering controls for viscous flow

Kathryn E. Lenz, Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs

Gang Bao & David C. Dobson, Second harmonic generation in nonlinear optical films

Avner Friedman & Chaocheng Huang, Diffusion in network

Xinflu Chen, Avner Friedman & Tsuyoshi Kimura, Nonstationary filtration in partially saturated porous media

Walter Littman & Baisheng Yan, Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II

Nahum Shimkin, Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing

A. Narain, Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation

Andrew Teel & Laurent Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback

Karen Rudy & Jan C. Willems, The computational complexity of decentralized discrete-event control problems

John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stoianovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffractive optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems

Yung-Jen Guo & Walter Littman, The null boundary controllability for semilinear heat equations

Q. Zhang & G. Yin, Turnpike sets in stochastic manufacturing systems with finite time horizon

I. Győri, F. Hartung & J. Turi, Stability in delay equations with perturbed time lags

F. Hartung & J. Turi, On the asymptotic behavior of the solutions of a state-dependent delay equation

Pierre-Alain Gremaud, Numerical optimization and quasiconvexity

Jie Tai Yu, Resultants and inversion formula for N polynomials in N variables

Avner Friedman & J.L. Velázquez, The analysis of coating flows in a strip

Eduardo D. Sontag, Control of systems without drift via generic loops

Yuan Wang & Eduardo D. Sontag, Orders of input/output differential equations and state space dimensions

Scott W. Hansen, Boundary control of a one-dimensional, lienar, thermoelastic rod