Factors of i.i.d. processes on graphs and groups

Karen Ball
IMA Postdoc
November 25, 2003
Let X be a set with a (discrete) group G acting on it. We will be concerned in particular with the cases when

- $X = G$, so G acts on itself by multiplication, and
- X is an infinite graph and G is a group of automorphisms of X.
I.i.d. processes on groups and graphs

Let X be a set with a (discrete) group G acting on it. We will be concerned in particular with the cases when

- $X = G$, so G acts on itself by multiplication, and
- X is an infinite graph and G is a group of automorphisms of X.

We consider i.i.d. processes on X.

- $\xi_m = (\xi_m(x))_{x \in X}$ is the full m-shift on (X, G) if it is i.i.d. and each $\xi_m(x)$ takes values uniformly in $\{0, \ldots, m - 1\}$.

- $\xi_{[0,1]} = (\xi_{[0,1]}(x))_{x \in X}$ is the full $[0, 1]$-shift on (X, G) if it is i.i.d. and $\xi_{[0,1]}(x)$ takes values uniformly in $[0, 1]$.
Groups act on processes

Let ξ be an i.i.d. process on (X, G). Then G acts on configurations of ξ:

$$g \cdot (\xi(x))_{x \in X} = (\xi(g \cdot x))_{x \in X}, \quad g \in G$$
Groups act on processes

Let ξ be an i.i.d. process on (X, G). Then G acts on configurations of ξ:

$$g \cdot (\xi(x))_{x \in X} = (\xi(g \cdot x))_{x \in X}, \quad g \in G$$

Examples:

- $X = G = \mathbb{Z}$. Then ξ_2 is the 2-sided i.i.d. Bernoulli-(1/2) process. \mathbb{Z} acts on this process by shifting sequences.

 → 0 → 0 → 1 → 0 →
Groups act on processes

Let ξ be an i.i.d. process on (X, G). Then G acts on configurations of ξ:

$$g \cdot (\xi(x))_{x \in X} = (\xi(g \cdot x))_{x \in X}, \quad g \in G$$

Examples:

- $X = G = \mathbb{Z}$. Then ξ_2 is the 2-sided i.i.d. Bernoulli-(1/2) process. \mathbb{Z} acts on this process by shifting sequences.

- $X = G = F_2 = \text{the free group on 2 generators}$:

 ![Diagram of the free group on 2 generators](image)
Question

Under what conditions on \((X, G)\) do there exist \(m < n\) such that there is a \(G\)-factor from \(\xi_m\) to \(\xi_n\) on \((X, G)\)?

Definition of a \(G\)-factor:

- Let \(\xi, \zeta\) be processes on a set \(X\) with \(G\) acting.
- A map \(F : \xi \to \zeta\) is a \(G\)-factor if \(F\) commutes with the \(G\)-action on \(\xi\) and \(F(\xi) = \zeta\):

\[
g \cdot F(\xi) = F(g \cdot \xi).
\]
Question

Under what conditions on \((X, G)\) do there exist \(m < n\) such that there is a \(G\)-factor from \(\xi_m\) to \(\xi_n\) on \((X, G)\)?

Definition of a \(G\)-factor:

- Let \(\xi, \zeta\) be processes on a set \(X\) with \(G\) acting.
- A map \(F : \xi \rightarrow \zeta\) is a \(G\)-factor if \(F\) commutes with the \(G\)-action on \(\xi\) and \(F(\xi) = \zeta\):

\[
g \cdot F(\xi) = F(g \cdot \xi).
\]

\[
(\xi(x))_{x \in X} \overset{g \in G}{\longrightarrow} (\xi(g \cdot x))_{x \in X}
\]
Question

Under what conditions on \((X, G)\) do there exist \(m < n\) such that there is a \(G\)-factor from \(\xi_m\) to \(\xi_n\) on \((X, G)\)?

Definition of a \(G\)-factor:

- Let \(\xi, \zeta\) be processes on a set \(X\) with \(G\) acting.
- A map \(F : \xi \to \zeta\) is a \(G\)-factor if \(F\) commutes with the \(G\)-action on \(\xi\) and \(F(\xi) = \zeta\):

\[
g \cdot F(\xi) = F(g \cdot \xi).
\]
Motivation

Consider case where $X = G = \mathbb{Z}$ and \mathbb{Z} acts on a process ξ by shifting:

$$n \cdot (\ldots, \xi(-1), \xi(0), \xi(1) \ldots) \mapsto (\ldots, \xi(n - 1), \xi(n), \xi(n + 1) \ldots)$$

Theorem. There is a \mathbb{Z}-factor from ξ_m to ξ_n on \mathbb{Z} $\iff m \geq n$.

- In particular, the full 4-shift is not a \mathbb{Z}-factor of the full 2-shift.
- This is a baby version of Sinai’s Factor Theorem, which can be considered part of Ornstein’s Isomorphism Theory. It is a fundamental result in ergodic theory.
Motivation

Now consider the case where $X = G = \mathbb{F}_2$, the free group on two generators, a and b.

Proposition. (Ornstein-Weiss, 1987) There is an \mathbb{F}_2-factor from ξ_2 to ξ_4 on \mathbb{F}_2.

Proof. Define the factor map F on the full 2-shift ξ_2 by:

$$F(\xi_2)(x) = (\xi_2(a \cdot x) \oplus \xi_2(x), \xi_2(b \cdot x) \oplus \xi_2(x))$$
Observation (Adam Timar):
If there exists a G-factor from ξ_2 to ξ_4 on (X, G), then there exists a G-factor from ξ_2 to $\xi_{[0,1]}$ on (X, G).

Proof. We will code a number in $[0, 1]$ in binary.
Let F be a G-factor taking ξ_2 to ξ_4 on (X, G). We use it to build a G factor F' from ξ_2 to $\xi_{[0,1]}$.

- Apply F to ξ_2 to get ξ_4.
- Code the coordinates of $\xi_4 = F(\xi_2)$ as bits: 00, 01, 10, 11.
- Let the first bit of $F'(\xi_2)(x)$ be the first bit of $F(\xi_2)(x)$.
- Apply F again to the second bits of $F(\xi_2)$.
- Repeat the previous 2 steps (infinitely many times).
Amenability

Definition. A discrete group G is *amenable* if for every finite set $C \subset G$ and $\epsilon > 0$, there exists a finite $K \subset G$ such that

$$|CK \triangle K| < \epsilon |K|.$$

Definition. A graph G is *amenable* if for every $\epsilon > 0$, there exists a finite set of vertices $K \neq \emptyset$ such that

$$\frac{\text{# edges in } G \text{ w/ exactly 1 endpt in } K}{\text{# vertices in } K} < \epsilon.$$
Amenability

Definition. A discrete group G is *amenable* if for every finite set $C \subset G$ and $\epsilon > 0$, there exists a finite $K \subset G$ such that

$$|CK \Delta K| < \epsilon |K|.$$

Definition. A graph G is *amenable* if for every $\epsilon > 0$, there exists a finite set of vertices $K \neq \emptyset$ such that

$$\frac{\text{# edges in } G \text{ w/ exactly 1 endpt in } K}{\text{# vertices in } K} < \epsilon.$$

Example. \mathbb{Z}^2 is amenable: take K a large square.
Amenability

Definition. A discrete group G is *amenable* if for every finite set $C \subset G$ and $\epsilon > 0$, there exists a finite $K \subset G$ such that

$$|CK \triangle K| < \epsilon |K|.$$

Definition. A graph G is *amenable* if for every $\epsilon > 0$, there exists a finite set of vertices $K \neq \emptyset$ such that

$$\frac{\text{# edges in } G \text{ w/ exactly 1 endpt in } K}{\text{# vertices in } K} < \epsilon.$$

Example. \mathbb{Z}^2 is amenable: take K a large square.

Example. \mathbb{F}_2 is not amenable: easy to see balls don’t work.
Existence of factors

Take \(X = G \).

Theorem. (B.) A finitely-generated group \(G \) is nonamenable if and only if there exists \(m > 0 \) such that a \(G \)-factor taking \(\xi_{2m} \) on \(G \) to \(\xi_{2m+1} \) on \(G \).

Notes:

- (\(\Leftarrow \)) follows easily from entropy considerations for amenable group actions.

- If \(G \) is nonamenable and has a subgroup isomorphic to \(F_2 \), then (\(\Rightarrow \)) can be proved using the Ornstein-Weiss factor.

- There are nonamenable groups which do not have an \(F_2 \)-subgroup, as proved by Ol’shanskii. These are mysterious objects.
Recall the Ornstein-Weiss factor:

\[F(\xi_2)(x) = (\xi_2(a \cdot x) \oplus \xi_2(x), \xi_2(b \cdot x) \oplus \xi_2(x)) \]

The independence of the random variables depends on the fact that the Cayley graph of \(\mathbb{F}_2 \) above is a many-ended tree.
Strategy

For a general finitely generated nonamenable graph \(G \), our goal will be to split the information in \(\xi_{2m} = (\xi_{2m-1}, \xi_2) \) and

Step 1. Let \(X \) be a Cayley graph of \(G \) and choose at least one tree \(T \subseteq X \) as a \(G \)-factor of \(\xi_{2m-1} \).

We want to choose trees which

- have no leaves (vertices of degree one) and
- have at least three ends (paths to infinity).
Step 2.

- Modify the O-W factor above to give an $\text{Aut}(T)$-factor $F : \xi_2 \rightarrow \xi_4$ on a tree T with bounded degree, no leaves, and ≥ 3 ends.

- Use Adam’s observation to get infinitely many indep. bits at each $x \in T$.
Step 3. Distribute the bits to the rest of the $x \in X$.

Factors of processes on Graphs – p.13/23
Step 1. Trees as factors

Goal: To choose a percolation of G containing a tree with at least three ends as a G-factor of $\xi_{2^{m-1}}$.

We appeal to some results from percolation theory. Let X be a graph. Then define

- $p_c(X) = \inf\{p : \text{Bernoulli}(p) \text{ has an infinite comp.}\}$
- $p_u(X) = \inf\{p : \text{Bernoulli}(p) \text{ has a unique } \infty\text{-comp.}\}$

Theorem. (Pak, Smirnova-Nagnibeda 2000) If G is a nonamenable, f.g. group, then there exists a Cayley graph X of G such that $p_c(X) < p_u(X)$.

Theorem. (Benjamini, Schramm 1996) Consider $\text{Bernoulli}(p)$ percolation with $p_c(X) < p < p_u(X)$. For every n there is an infinite component with more than n ends.
Step 1. Trees as factors

Let X be a Cayley graph of G with $p_c(X) < p_u(X)$.

Choose m large enough that there is a value of k such that

$$p_c(X) < k/2^{m-1} < p_u(X).$$

Use $\xi_{2^{m-1}}$ to generate a Bernoulli($k/2^{m-1}$) percolation on X which has a component C with at least three ends!

C has ≥ 3 ends:

\exists a finite set $K \subset C$ s.t. $C \setminus K$ has at least 3 components.
Step 1. Trees as factors

Have: A component with at least 3 ends.
Want: A tree with at least 3 ends.

Use minimal spanning forests:
- Let X be a graph with distinct labels $L(e)$ at each edge e.
- Remove an edge e from X if $L(e)$ is the largest label along some cycle of X.
Step 1. Trees as factors

Have: A component with at least 3 ends.
Want: A tree with at least 3 ends.

Use minimal spanning forests:

Let X be a graph with distinct labels $L(e)$ at each edge e.

Remove an edge e from X \iff $L(e)$ is the largest label along some cycle of X.
Step 1. Trees as factors

Label the edges of X. Generate a continuous r.v. $U(e)$ at each edge e in X as a G-factor of $\xi_{2^{m-1}}$:

- order the elements of G, $g_1 < g_2 < \ldots$,
- form $U(x, y)$ ($x \sim y$) by concatenating $\xi(x \cdot g_1) \oplus \xi(y \cdot g_1)$, $\xi(x \cdot g_2) \oplus \xi(y \cdot g_2)$, \ldots,
- the $U(e)$ are dependent, but a.s. distinct.

[Diagram of a tree structure with nodes labeled x and y.]
Step 1. Trees as factors

- Use the $U(e)$ and minimal spanning forest to trim to a tree:
 - form the minimal spanning tree inside the red circles
 - identify the red circles points and generate the minimal spanning forest on the resulting graph

This ensures that one of the resulting trees has at least three ends.
Consider X a nonamenable transitive graph, $G = \text{Aut}(X)$.
(X is transitive if for $x, y \in X$, $\exists \gamma \in G$ with $\gamma(x) = y$.)

Question. Does there always exist $m \leq n$ such that there is a G factor from ξ_m to ξ_n on X?

Answer. No. (Though often there is.)

Potential problems with proof outlined above for groups:

- Is $p_c(X) < p_u(X)$?
 (To get a component with at least 3 ends.)
 This is conjectured to be true by Benjamini and Schramm.

- Can we generate distinct edge labels as a G-factor of ξ_m for some m? (To use MSF to trim component trees.)
A counterexample

Let S_3 be the graph formed by taking the regular tree T_3 of degree 3 and:

- replacing each vertex $x \in T_3$ be two vertices x_1, x_2
- replacing each edge $(x, y) \in T_3$ by four edges $(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2)$.

S_3 is transitive, has ∞ many ends, and is unimodular.

Note: there is an automorphism γ_x of S_3 which interchanges x_1 and x_2 but fixes the rest of the vertices.
A counterexample

Let G_3 be the full automorphism group of S_3. Fix m, n and let $F : \xi_m \to \xi_n$ be a G_3-factor. Then:

- If $\xi_m(x_1) = \xi_m(x_2)$, then $(F(\xi_m))(x_1) = (F(\xi_m))(x_2)$

\[1 = m \quad \text{and} \quad 1 = n \]

Therefore, $1 = m \quad \text{and} \quad 1 = n$.

Factors of processes on Graphs – p.21/23
A counterexample

Let G_3 be the full automorphism group of S_3. Fix m, n and let $F : \xi_m \rightarrow \xi_n$ be a G_3-factor. Then:

- If $\xi_m(x_1) = \xi_m(x_2)$, then $(F(\xi_m))(x_1) = (F(\xi_m))(x_2)$
- $P(\xi_m(x_1) = \xi_m(x_2)) = 1/m$ and $P(\xi_n(x_1) = \xi_n(x_2)) = 1/n$
A counterexample

Let G_3 be the full automorphism group of S_3. Fix m, n and let $F : \xi_m \to \xi_n$ be a G_3-factor. Then:

- If $\xi_m(x_1) = \xi_m(x_2)$, then $(F(\xi_m))(x_1) = (F(\xi_m))(x_2)$
- $P(\xi_m(x_1) = \xi_m(x_2)) = 1/m$ and $P(\xi_n(x_1) = \xi_n(x_2)) = 1/n$
- Therefore, $1/m \leq 1/n \Rightarrow m \geq n.$
How to generate distinct edge labels?

"Theorem". Let X be a nonamenable graph with transitive automorphism group G. If

- X has at least 3 ends or $p_c(X) < p_u(X)$, and
- for j large enough, there is a G-factor of ξ_j which puts distinct labels on each edge of X,

then for m sufficiently large, there is a G-factor: $\xi_{2m} \rightarrow \xi_{2m+1}$.

Sufficient condition for the second bullet:
There do not exist $x_1, x_2 \in X$ and $\gamma : x_1 \rightarrow x_2$ such that for all but finitely many y,

$$\text{Stab}_G(x_1) \cdot y = \text{Stab}_G(x_2) \cdot \gamma y.$$
Open questions

Question 1. Is there a pair \((X, G)\) and \(m \neq n\) such that there is an invertible \(G\) factor from \(\xi_m\) to \(\xi_n\) on \((X, G)\)?

Question 2. (R. Lyons) \(T_4\) is the regular tree of degree 4.

- We have seen that \(\mathbb{F}_2\) acts on \(T_4\).
 (By giving \(T_4\) the structure of the Cayley graph of \(\mathbb{F}_2\).)

- \(\text{Aut}(T_4)\) is larger than \(\mathbb{F}_2\) since it allows \(a\) and \(b\) edges to be interchanged.

Is there an \(\text{Aut}(T_4)\)-factor of \(\hat{\xi}_{[0,1]}\) on \(T_4\) which gives \(T_4\) the structure of the Cayley graph of \(\mathbb{F}_2\)?