Web: http://www.ima.umn.edu | Email: ima-staff@ima.umn.edu | Telephone: (612) 624-6066 | Fax: (612) 626-7370
Additional newsletters available at http://www.ima.umn.edu/newsletters

IMA Newsletter #401

March 2010

2009-2010 Program

See http://www.ima.umn.edu/2009-2010/ for a full description of the 2009-2010 program on Complex Fluids and Complex Flows.

News and Notes

IMA Events

IMA Workshop

Career Options for Underrepresented Groups in Mathematical Sciences

March 25-27, 2010

Organizers: Jamylle Laurice Carter (Diablo Valley College), Nathaniel Dean (Texas State University-San Marcos), Sara Del Valle (Los Alamos National Laboratory), Chehrzad Shakiban (University of Minnesota Twin Cities)
Schedule

Monday, March 1

10:45am-11:15amCoffee breakLind Hall 400

Tuesday, March 2

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmAnalyticity of extremals to the Airy Strichartz inequalityShuanglin Shao (University of Minnesota)Lind Hall 305 PS

Wednesday, March 3

10:45am-11:15amCoffee breakLind Hall 400
2:00pm-3:00pmTag Team Tutorials: Transport & Mixing in Incompressible Fluid FlowJean-Luc Thiffeault (University of Wisconsin)Lind Hall 305

Thursday, March 4

10:45am-11:15amCoffee breakLind Hall 400
3:30pm-4:30pmTag Team Tutorials: Transport & Mixing in Incompressible Fluid FlowsCharles R. Doering (University of Michigan)Lind Hall 305

Friday, March 5

10:45am-11:15amCoffee breakLind Hall 400

Monday, March 8

10:45am-11:15amCoffee breakLind Hall 400

Tuesday, March 9

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmAsymptotic problems for stochastic processes and related differential equationsHyejin Kim (University of Minnesota)Lind Hall 305 PS

Wednesday, March 10

10:45am-11:15amCoffee breakLind Hall 400
3:30pm-4:30pmPDE seminar: Vanishing viscosity limits and singular perturbation problems Anna L. Mazzucato (Pennsylvania State University)207 Vincent Hall

Thursday, March 11

10:30am-12:30pmInformal seminar on Analysis/PDE of fluids for IMA long term visitorsChi Hin Chan (University of Minnesota)Lind Hall 305
10:45am-11:15amCoffee breakLind Hall 400
3:30pm-4:30pmTag Team Tutorials: Transport & Mixing in Incompressible Fluid FlowsCharles R. Doering (University of Michigan)
Jean-Luc Thiffeault (University of Wisconsin)
Lind Hall 305

Friday, March 12

10:45am-11:15amCoffee breakLind Hall 400

Monday, March 15

10:45am-11:15amCoffee breakLind Hall 400

Tuesday, March 16

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmPostdoc seminar: A finite element method for interface problems with locally modified triangulationsHui Xie (University of Minnesota)Lind Hall 305 PS

Wednesday, March 17

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmSpecial seminar: Recent progress in the area of elliptic boundary value problems on rough domains Irina Mitrea (Worcester Polytechnic Institute)Lind Hall 305

Thursday, March 18

10:45am-11:15amCoffee breakLind Hall 400
3:30pm-4:30pmTag team tutorials: Transport & mixing in incompressible fluid flowsCharles R. Doering (University of Michigan)
Jean-Luc Thiffeault (University of Wisconsin)
Lind Hall 305

Friday, March 19

All DayUofM Floating holiday. At 11:15am Karen Rudie (Department of Electrical and Computer Engineering, Queen's University) will have a special lecture at 305 Lind Hall.
11:15am-12:15pmSpecial lecture: Knowledge and control in decentralized discrete-event systems Karen Rudie (Queen's University)Lind Hall 305

Monday, March 22

10:45am-11:15amCoffee breakLind Hall 400

Tuesday, March 23

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmPostdoc seminar: Global existence and long time behavior of the general Ericksen-Leslie systemXiang Xu (Pennsylvania State University)Lind Hall 305 PS
3:30pm-4:30pmTerence Tao, UCLA
School of Math colloquium and Ordway lecture: Arithmetic progressions in the primes
Vincent Hall 16

Wednesday, March 24

10:45am-11:15amCoffee breakLind Hall 400
3:35pm-4:35pmTerence Tao, UCLA
PDE seminar and Ordway lecture: Wave maps
Vincent Hall 16

Thursday, March 25

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmInformal seminar on analysis/PDE of fluid equation: Introduction of boundary layer problems of Naiver-Stokes equationsXiaoming Wang (Florida State University)Lind Hall 305
3:30pm-4:30pmTag team tutorials: Transport & mixing in incompressible fluid flows Charles R. Doering (University of Michigan)
Jean-Luc Thiffeault (University of Wisconsin)
Lind Hall 305
6:00pm-9:00pmDinner Ice breaker – Networking in the Academics, Government and IndustryChehrzad Shakiban (University of Minnesota)Taylor Room, Lind Hall SW3.25-3.27.10

Friday, March 26

8:15am-8:45amRegistration and coffeeEE/CS 3-176 SW3.25-3.27.10
8:45am-9:00amWelcome and introductionFadil Santosa (University of Minnesota)EE/CS 3-180 SW3.25-3.27.10
9:00am-9:35amIntegrals of characteristic polynomials of unitary matrices, and applications to the Riemann zeta function Donald Richards (Pennsylvania State University)EE/CS 3-180 SW3.25-3.27.10
9:40am-10:20amPlanning AheadEE/CS 3-180 SW3.25-3.27.10
Planning for work in mathematical sciences at a national laboratory Natalia Alexandrov (NASA Langley Research Center)
Planning to work in the academiaPeh H. Ng (University of Minnesota)
10:20am-10:50amCoffeeEE/CS 3-176 SW3.25-3.27.10
10:50am-11:20amOn the spatio-temporal disease dynamics in populations with discrete-time epidemics in one and two spatial dimensionsKaren Raquel Ríos-Soto (University of Puerto Rico)EE/CS 3-180 SW3.25-3.27.10
11:25am-12:15pmPanel Discussion (Interviewing Skills)EE/CS 3-180 SW3.25-3.27.10
A mathematician looks at paint, Hollywood and DNAFern Y. Hunt (National Institute of Standards and Technology)
A jack of all tradesPamela Williams (LMI)
12:15pm-1:30pmLunch, socializing and networking (Lunch boxes will be provided) SW3.25-3.27.10
1:25pm-2:25pmToward optimal transport systemsNatalia Alexandrov (NASA Langley Research Center)Vincent Hall 570 IPS
1:30pm-1:45pmIdentification methods for vortical structures in turbulent boundary layers Cecilia Ortiz-Duenas (University of Minnesota)EE/CS 3-180 SW3.25-3.27.10
1:50pm-2:05pmDeveloping geometric integrators for Hamiltonizable nonholonomic systemsOscar E. Fernandez (University of Michigan)EE/CS 3-180 SW3.25-3.27.10
2:10pm-3:00pmPanel discussion (Topic: Many career paths)EE/CS 3-180 SW3.25-3.27.10
Math careers at the National Security AgencyMarian Barry (National Security Agency)
Great careers in the mathematical sciencesSara Del Valle (Los Alamos National Laboratory)
3:00pm-3:30pmCoffeeEE/CS 3-176 SW3.25-3.27.10
3:30pm-4:20pmLightening poster presentations (2 minutes per poster, slides are assembled in advance, presentations are timed by kitchen timer)Cecilia Ortiz-Duenas (University of Minnesota)EE/CS 3-180 SW3.25-3.27.10
3:35pm-4:35pmTerence Tao, UCLA
Probability seminar and Ordway lecture: Universality for Wigner random matrices
Vincent Hall 16
4:30pm-4:40pmGroup picture SW3.25-3.27.10
4:40pm-6:10pmReception and Poster Session
Poster submissions welcome from all participants
Instructions
Lind Hall 400 SW3.25-3.27.10
The Oakland Math Circle, 2007–2008 Jamylle Laurice Carter (Diablo Valley College)
Iterative methods for solving the dual formulation arising from image restorationJamylle Laurice Carter (Diablo Valley College)
Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1)Sara Del Valle (Los Alamos National Laboratory)
Acute inflammatory response to Gram-negative bacteria: A reduced model development and parameter estimationDennis Onyeka Frank (North Carolina State University)
Robust and reliable Bayesian statistical analysis of clinical trialsJairo A. Fuquene (University of Puerto Rico)
Thin Hessenberg pair Ali Godjali (University of Wisconsin)
Using parallel computing to search for high rank elliptic curvesEdray Herber Goins (Purdue University)
Some limit theorems for the last common ancestor problem in branching processesJyy Joy Hong (Iowa State University)
Thermo-acoustic tomography and time reversalYulia Hristova (Texas A & M University)
Boundary integral method for shallow water and formation of singularities Jeong-sook Im (Ohio State University)
Pricing of debt and loan guarantees using stochastic differential equations Elisabeth Teudjeu Kemajou (Southern Illinois University)
Tips for prospective junior faculty entering the academy of higher educationKimberly D. Kendricks (Central State University)
High performance computing techniques for attacking Baby RijindaelElizabeth Kleiman (Iowa State University)
New criteria for the existence of positive equilibrium in reaction networksNamyong Lee (Minnesota State University)
Incan mathematics and numbers of conquest Molly Leonard (University of Minnesota)
A new fourth order diffusion PDE for image processingKate Longo (University of California, Irvine)
Mathematical modeling and analysis of a continuum model for three-zone swarming behavior Jennifer Miller (University of Delaware)
Fast low rank approximationsMechie Nkengla (University of Illinois)
Stochastic models with memory in mathematical financeFlavia Sancier-Barbosa (Southern Illinois University)
Application of Bayesian predictive inference under benchmarking to body mass index and bone mineral density for small domainsMaria Criselda Santos Toto (Worcester Polytechnic Institute)
A Bayesian analysis on how the salary is related to major and SAT scores Ying Wang (Ohio State University)
African American women in mathematicsEyerusalem Kesete Woldegebreal (University of St. Thomas)
A cluster expansion approach to renormalization group transformations Mei Yin (University of Arizona)
Delayed ODE model on regular pattern formation in ecological systemsNa Zhang (Arizona State University)
6:45pm-9:00pmBanquet and keynote speaker - Abrupt climate change and climate variability: When data fail usJuan Mario Restrepo (University of Arizona)Weisman Art Museum
Riverview Gallery
333 East River Road
Minneapolis, MN 55455
(612) 625-9494
SW3.25-3.27.10

Saturday, March 27

8:15am-8:45amCoffeeEE/CS 3-176 SW3.25-3.27.10
8:45am-9:15amVisually intractable problemsNathaniel Dean (Texas State University-San Marcos)EE/CS 3-180 SW3.25-3.27.10
9:15am-9:45amBuilding diversity Omayra Ortega (Arizona State University)EE/CS 3-180 SW3.25-3.27.10
9:45am-10:15amHow important are "other skills" in determining career success? Insights on the importance of networking, interviewing, negotiation and leadership skillsFrank W. Snowden (University of Minnesota)EE/CS 3-180 SW3.25-3.27.10
10:15am-10:25amWorkshop evaluationEE/CS 3-180 SW3.25-3.27.10
10:25am-10:50amCoffeeEE/CS 3-176 SW3.25-3.27.10
10:50am-12:00pmGroup Discussion (Topic: Tips for Success) EE/CS 3-180 SW3.25-3.27.10
A windy road to a happy heartJamylle Laurice Carter (Diablo Valley College)
Tips for prospective junior faculty entering the academy of higher educationKimberly D. Kendricks (Central State University)
12:00pm-1:00pmInformal Lunch SW3.25-3.27.10

Monday, March 29

10:45am-11:15amCoffee breakLind Hall 400

Tuesday, March 30

10:45am-11:15amCoffee breakLind Hall 400
11:15am-12:15pmMultiscale simulations for flows in heterogeneous porous mediaLijian Jiang (University of Minnesota)Lind Hall 305 PS

Wednesday, March 31

10:45am-11:15amCoffee breakLind Hall 400

Event Legend:

IPSIndustrial Problems Seminar
PSIMA Postdoc Seminar
SW3.25-3.27.10Career Options for Underrepresented Groups in Mathematical Sciences
Abstracts
Terence Tao, UCLA
Probability seminar and Ordway lecture: Universality for Wigner random matrices
Abstract: Wigner random matrices are a basic example of a Hermitian random matrix model, in which the upper-triangular entries are jointly independent. The most famous example of a Wigner random matrix is the Gaussian Unitary Ensemble (GUE), which is particularly amenable to study due to its rich algebraic structure. In particular, the fine-scale distribution of the eigenvalues is completely understood. There has been much recent progress on extending these distribution laws to more general Wigner matrices, a phenomenon sometimes referred to as _universality_. In this talk we will discuss recent work of Van Vu and myself on establishing several cases of this universality phenomenon, as well as parallel work of Erdos, Schlein, and Yau. Note: Terry Tao will give two other talks during the week.
Natalia Alexandrov (NASA Langley Research Center) Toward optimal transport systems
Abstract: Strictly reactive, evolutionary approaches to improving the air transport system no longer suffice in the face of the predicted growth in demand and must be supplemented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependencies among the controllable variables of the system and objective and constraint functions for optimization. We investigate functional relationships that govern the performance of transport systems with the aim of arriving at substantiated modeling, design optimization, and control methods.
Natalia Alexandrov (NASA Langley Research Center) Planning for work in mathematical sciences at a national laboratory
Abstract: Working at a national laboratory, such as one of the NASA research centers, offers many exciting research opportunities to a mathematician. Some disciplines are traditionally mathematically intensive, such as computational fluid dynamics, structural analysis, multidisciplinary design optimization, formal methods for algorithm verification, to name a few. Other areas have traditionally relied on heuristic and evolutionary approaches, as in the development of the air transportation system. A uniting factor is the ever growing complexity of systems under consideration. In all endeavors, mathematical problems abound. This talk gives an overview of active research areas and describes a number of steps mathematicians planning to join a national laboratory can take to prepare themselves and create a productive and enjoyable working experience.
Marian Barry (National Security Agency) Math careers at the National Security Agency
Abstract: No Abstract
Jamylle Laurice Carter (Diablo Valley College) The Oakland Math Circle, 2007–2008
Abstract: The Oakland Math Circle (OMC) was an after-school mathematics enrichment program for African-American middle-school students that took place during the 2007—2008 academic year in Oakland, California. Funded mainly by an MAA Tensor-SUMMA (Strengthening Underrepresented Minority Mathematics Achievement) grant, the OMC used hands-on activities and community partnerships to make advanced mathematics accessible and enjoyable for African-American middle-school students. I will share what I learned in creating and running the OMC.
Jamylle Laurice Carter (Diablo Valley College) A windy road to a happy heart
Abstract: I held three postdoctoral fellowships before accepting a tenure-track position as an assistant professor of mathematics at Diablo Valley College, a two-year community college in the San Francisco Bay Area. I will share my experiences navigating through career choices and offer advice for following one’s heart.
Jamylle Laurice Carter (Diablo Valley College) Iterative methods for solving the dual formulation arising from image restoration
Abstract: Many variational models for image denoising restoration are formulated in primal variables that are directly linked to the solution to be restored. If the total variation related semi-norm is used in the models, one consequence is that extra regularization is needed to remedy the highly non-smooth and oscillatory coefficients for effective numerical solution. The dual formulation was often used to study theoretical properties of a primal formulation. However as a model, this formulation also offers some advantages over the primal formulation in dealing with the above mentioned oscillation and non-smoothness. This paper presents some preliminary work on speeding up the Chambolle method [J. Math. Imaging Vision, 20 (2004), pp. 89–97] for solving the dual formulation. Following a convergence rate analysis of this method, we first show why the nonlinear multigrid method encounters some difficulties in achieving convergence. Then we propose a modified smoother for the multigrid method to enable it to achieve convergence in solving a regularized Chambolle formulation. Finally, we propose a linearized primaldual iterative method as an alternative stand-alone approach to solve the dual formulation without regularization. Numerical results are presented to show that the proposed methods are much faster than the Chambolle method. This paper is joint work with Tony F. Chan and Ke Chen.
Nathaniel Dean (Texas State University-San Marcos) Visually intractable problems
Abstract: To understand the interactions between entities (for example, people, objects or groups) systems of interactions can be modeled as graphs linking nodes (entities) with edges that represent various types of connections between the entities. After data collection there are many statistical approaches to analyzing the data, but our approach is to model data as a graph and explore the graph using a variety of tools such as optimization and visualization. In this talk we discuss ways to construct graphs from data, and we show how to use the graphs to reveal patterns. The limitations of this approach are discussed explaining why some graphs cannot be visualized and hence why certain data cannot be understood.
Sara Del Valle (Los Alamos National Laboratory) Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1)
Abstract: On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1) a pandemic. With limited supplies of antivirals and lack of strain specific vaccines, countries and individuals were looking at other ways to reduce the spread of pandemic (H1N1) 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1) cases by 20%. We can conclude from our model that, if worn properly, facemasks can be an effective intervention strategy in reducing the spread of pandemic (H1N1) 2009.
Sara Del Valle (Los Alamos National Laboratory) Great careers in the mathematical sciences
Abstract: No Abstract
Oscar E. Fernandez (University of Michigan) Developing geometric integrators for Hamiltonizable nonholonomic systems
Abstract: Although it is well known that nonholonomic mechanical systems are not Hamiltonian, recent research has uncovered a variety of techniques which allow one to express the reduced, constrained dynamics of certain classes of nonholonomic systems as Hamiltonian. In this talk I will discuss the application of these methods to develop alternative geometric integrators for nonholonomic systems with perhaps more efficiency than the known nonholonomic integrators.
Dennis Onyeka Frank (North Carolina State University) Acute inflammatory response to Gram-negative bacteria: A reduced model development and parameter estimation
Abstract: In general, mathematical models of biological processes are described by highly nonlinear dynamic systems of differential equations with relatively large number of parameters. Roy et al. had previously developed an 8-state ordinary differential equation (ODE) model of acute inflammatory response to endotoxin challenge (found in Gram-negative bacteria). Endotoxin challenges were administered to rats, and experimental data for pro- and anti-inflammatory cytokines were obtained. In this work, we proposed a reduced ODE model; while preserving the underlying biology. Both models were calibrated to the experimental data. Model comparison, and validation were done by comparing curve fitting of the original 8-state model and the reduced model against experimental data, and by using Akaike's Information Criterion.
Jairo A. Fuquene (University of Puerto Rico) Robust and reliable Bayesian statistical analysis of clinical trials
Abstract: Why is it necessary to add to the practitioner kit more sophisticated Bayesian Methods for Clinical Trials? The advantages of Bayesian methods have been well and widely documented, and are gaining a wider share of the statistical practice. However these objections do not apply to Bayesian Methods in general, but only to “Conjugate Bayesian Methods” that is methods which are based on Conjugate Priors. There is a very much unexplored avenue of Bayesian Analysis in Clinical Trials which are based on Robust heavy tailed priors. The behavior of Robust Bayesian methods is qualitative different than Conjugate and short tailed Bayesian methods and arguably much more reasonable and acceptable to the practitioner and regulatory agencies. Alternatively, we assume Heavy tailed Cauchy and also Berger’s priors, with the same location and scale than the previous analysis. The Conjugate and Robust posterior densities are quite different: The Robust posterior is much more sensible since it is closer to the Likelihood (current data) because the Robust Bayes analysis “discounts” the prior when there is conflict with a previous study. Moreover, the Conjugate Bayes is too much precise leading to unduly too short posterior intervals. The Robust Bayes analysis is more cautious less dogmatic and most important it detects when previous and current data are similar or not. Robust Bayes is an improvement over Conjugate Bayes. We illustrate these improvements with a real clinical trial conducted first in and subsequently in with conflicting conclusions, because of the disparities between the two countries, for which the Robust Bayesian analyses are much more appropriate.
Ali Godjali (University of Wisconsin) Thin Hessenberg pair
Abstract: The poster is about a linear algebraic object called a thin Hessenberg pair (or TH pair). Roughly speaking, this is a pair of diagonalizable linear transformations on a nonzero finite-dimensional vector space such that each of which has eigenspaces all of dimension one and each of which acts on the eigenspaces of the other in a certain restricted way. Given a TH pair, we display several bases for the underlying vector space, with respect to which the matrices representing the pair we find attractive. We give these matrices along with the transition matrices relating the bases. We introduce an "oriented" version of a TH pair called a TH system. We classify the TH systems up to isomorphism.
Edray Herber Goins (Purdue University) Using parallel computing to search for high rank elliptic curves
Abstract: An elliptic curve is a certain type of cubic polynomial equation. The ``rank'' of such a curve is a measure of the number of rational points. This project seeks to find curves with ``large'' rank by sieving through several hundreds of millions of examples. The mathematical theory demands that, for each example, one search for points on thousands of related quartic curves. For the computing application we use a high performance computing cluster and distribute the search load. This project was done jointly with Shweta Gupte and Jamie Weigendt.
Jyy Joy Hong (Iowa State University) Some limit theorems for the last common ancestor problem in branching processes
Abstract: In a discret-time branching process, conditional on the event of non-extinction, pick two individuals at random from the n-th generation and trace their lines of descent back in time to find their last common ancestor. We investigate the limit behavior of the distribution of the generation number of the last common ancestor in supercritical, critical and subcritical cases.
Yulia Hristova (Texas A & M University) Thermo-acoustic tomography and time reversal
Abstract: Thermo-acoustic tomography is a new imaging technique developed for the purpose of improving early breast cancer detection. The images in thermo-acoustic tomography are produced by solving an inverse problem for the wave equation. In this poster presentation, I will discuss the time-reversal method as a means to approximate the solution of the above problem. Theoretical and numerical results pertaining to the quality of reconstructed images will be shown.
Fern Y. Hunt (National Institute of Standards and Technology) A mathematician looks at paint, Hollywood and DNA
Abstract: The speaker will discuss the National Institute of Standards and Technology, its mission and the role of mathematicians in supporting it. The speaker will present a couple of examples from her career that illustrate these points.
Jeong-sook Im (Ohio State University) Boundary integral method for shallow water and formation of singularities
Abstract: Consider the two-dimensional incompressible, inviscid and irrotational fluid flow of finite depth bounded above by a free interface. Ignoring viscous and surface tension effects, the fluid motion is governed by the Euler equations and suitable interface boundary conditions. A boundary integral technique(BIT) which has an an advantage of reducing the dimension by one is used to solve the Euler equations. For convenience, the bottom boundary and interface are assumed to be 2π-periodic. The complex potential is composed of two integrals, one along the free surface and the other along the rigid bottom. When evaluated at the surface, the integral along the surface becomes weakly singular and must be taken in the principal-value sense. The other integral along the boundary is not singular but has a rapidly varying integrand, especially when the depth is very shallow. This rapid variation requires high resolution in the numerical integration. By removing the nearby pole, this difficulty is removed. In situations with long wavelengths and small amplitudes, one of the approximations for the Euler equations is the KdV equation. I compare the numerical solution of Euler equation and the solution of KdV equation and calculate the error in the asymptotic approximation. For larger amplitudes, there is significant disagreement. Indeed, the waves tend to break and the boundary integral technique still works well. I will show the numerical results for the breaking waves.
Lijian Jiang (University of Minnesota) Multiscale simulations for flows in heterogeneous porous media
Abstract: Processes in heterogeneous porous media are affected by many scales ranging from pore scale to the field scales. For many simulations, it is prohibitively expensive to perform computations at the finest scales. Some type of coarsening is needed, especially for solving complex processes and large-scale inverse problems. Due to complex heterogeneities at the finest scales, simple coarse partitionings of the spatial as well as temporal regions are not possible. For example, in fractured materials, it is impossible to encompass highly conducting fracture regions into a coarse block. For this reason, subgrid models are needed to accurately represent small-scale information on a coarse grid. In this talk, I will discuss various subgrid models within the framework of mixed multiscale finite element methods. The main idea of mixed multiscale finite element methods is to incorporate small-scale information into multiscale basis functions that are used to solve flow equations on a coa rse grid. I will discuss how one can construct these basis functions so that the small-scale information is accurately captured on a coarse grid. The extnesions to stochastic flow equations and wave equations will be also mentioned. Numerical results using complex heterogeneities will be presented.
Elisabeth Teudjeu Kemajou (Southern Illinois University) Pricing of debt and loan guarantees using stochastic differential equations
Abstract: In the business world, in addition to equity, corporate bonds are the main source of funds for many companies. However, depending on the ability of the managers or other reason, it can happen that a company faces bankruptcy. When a company becomes insolvent, the stock value decreases to zero and the equity holders lose on their investment. Therefore the company goes bankrupt. Naturally, debtholders would like to make sure that their investments are secured. In order to support companies in this situation and encourage new investments, some government agencies provide loan guarantees. In this poster, we will present a picture of this scenario, and a formula for the price of an option used for the pricing of corporate defaultable bonds. The same approach can be adopt for the valuation of government loan guarantees for companies in financial distress. The next step will be the derivation of the equations mentioned above with delay.
Kimberly D. Kendricks (Central State University) Tips for prospective junior faculty entering the academy of higher education
Abstract: See poster abstract above.
Kimberly D. Kendricks (Central State University) Tips for prospective junior faculty entering the academy of higher education
Abstract: This presentation discusses useful first steps and unfortunate missteps of junior faculty entering the academy. Given the common academic measure of work through teaching, research, and service, the presentation outlines important steps to ensure a successful transition into the academy, and more importantly, provides the foundation for a successful career focused on promotion and tenure for any discipline. The presentation will highlight effective pedagogy, advising/mentoring undergraduates, supervising undergraduate research, grantsmanship, collaborative research, publications and presentations, service on university committees, as well as in the community, and the important golden rule to always put yourself first. (A poster summarizing this talk will be on display.)
Elizabeth Kleiman (Iowa State University) High performance computing techniques for attacking Baby Rijindael
Abstract: A known-plaintext attack on the Advanced Encryption Standard can be formulated as a system of quadratic multivariate polynomial equations where the unknowns represent key bits. Algorithms such as XSL and XL use properties of the cipher to build a sparse system of linear equations over the field GF(2) from those multivariate polynomial equations. A scaled down version of AES called Baby Rijndael has structure similar to AES and can be attacked using the XL and XSL techniques among others. This results in a large sparse system of linear equations over the field GF(2) with an unknown number of extraneous solutions that need to be weeded out. In order to solve this challenge parallel software was created. Gaussian Elimination, which is believed to be reasonably efficient for matrices over GF(2) and can be parallelized easily is the basic technique used. Reorder techniques were used to meet the main challenge of the Gaussian Elimination step, the rapidly increasing size of the matrix. Our research shows that XL and XSL attacks on Baby Rijndael do not give desired result when one block of message and corresponding cipher text are provided. The number of linearly dependent equations we get close to 100000 and the number of possible solutions is huge.
Namyong Lee (Minnesota State University) New criteria for the existence of positive equilibrium in reaction networks
Abstract: The behavior of a network from its structure is of interest and has been studied. In this work, we find a new condition on the nodes of a network to obtain some relation between the network structure and its ability to have a positive equilibrium. This condition replaces the concept of deficiency to be used in such a research. Moreover, it is easy to check this condition even for large networks.
Molly Leonard (University of Minnesota) Incan mathematics and numbers of conquest
Abstract: Can you imagine what it would be like trying to make calculations on a stone tablet instead of using your TI-89? Or recording numbers with knots instead of using pen and paper? Just as the “Mathematics of the Incans” is a topic so broad and convoluted, my research project is just as multi-faceted. For the past few years I have been researching the way numbers were perceived in the Incan; I have used these insights into the Incan concept of numbers to make advances in our understanding of three incan math artifacts: the abacus (yupana), the knot-tying record (quipus), and the andean cross (chakana). Furthermore, I am currently working on a comparison between Incan math knowledge and Spanish math practices of the 16th century to analyze the effect numbers had on the conquest of the Incan empire. The clash between the two number systems had great implications in the aftermath of the Spanish arrival on Incan soil.
Kate Longo (University of California, Irvine) A new fourth order diffusion PDE for image processing
Abstract: Nonlinear diffusion PDEs have been used for noise removal in image processing since a seminal paper by Perona and Malik in 1990. Perona and Malik's second order PDE model proved very effective at denoising without blurring edges, but it came with a few drawbacks: mathematical ill-posedness, and numerical artifacts such as sharpening of edges and introduction of false edges. More recently, fourth order diffusion PDEs have been proposed as a way to overcome these drawbacks. However, before now little mathematical analysis had been performed on fourth order models, and in experiments they exhibited their own artifacts, a kind of splotchiness which appears in flat areas of an image. I have shown the existence of unique solutions to a class of fourth order PDEs proposed for image denoising. Additionally, I have proposed a new fourth order model which, along with being well-posed, overcomes the splotchiness exhibited by other models.
Anna L. Mazzucato (Pennsylvania State University) PDE seminar: Vanishing viscosity limits and singular perturbation problems
Abstract: We study the vanishing viscosity limit for certain Taylor-Couette flows in pipes and channels. We establish convergence of the Navier-Stokes solution to the corresponding Euler solution as viscosity vanishes in various norms. In the process we obtain a detailed analysis of the small-diffusion limit for a heat equation with drift, using a parametrix construction. This is joint work with Michael Taylor (UNC).
Jennifer Miller (University of Delaware) Mathematical modeling and analysis of a continuum model for three-zone swarming behavior
Abstract: Swarms in nature have been modeled with individuals but a continuum model may be better suited to scaling up to larger swarms and to some types of theoretical analysis. In place of individuals, we consider the swarm's velocity field and density. Models including zones of repulsion, orientation, and attraction are popular in ecological modeling of animal groups. We model the reactions to the varying density in these three zones using integro-differential equations and then use linear stability analysis to explore first and second order models of constant density swarms.
Irina Mitrea (Worcester Polytechnic Institute) Special seminar: Recent progress in the area of elliptic boundary value problems on rough domains
Abstract: In this talk I will survey some recent developments in the area at the crossroads between Partial Differential Equations, Harmonic Analysis, and Geometric Measure Theory. This is part of an effort to understand the extent to which the classical theory can be adapted to a setting in which the underlying domain is not locally the graph of a function, but instead has properties which can be described in the geometric measure theoretic language. This includes both second order and higher order operators.
Peh H. Ng (University of Minnesota) Planning to work in the academia
Abstract: As faculty members at academic institutions, we are expected to excel in the three main areas called research, teaching, and outreach (or service), each of which with a different emphasis at different types of academic institutions. By and large, most academic institutions allow faculty the flexibility to pursue research or scholarly activities within the scope of the faculty member's expertise or research agenda. However, faculty would benefit by being willing to venture out into new areas or by seeking new research collaborations. Several suggestions on how to be proactive to succeed in academia will be discussed.
Mechie Nkengla (University of Illinois) Fast low rank approximations
Abstract: Modeling of real-world applications, result in automatic generation of very large data sets. Such data are often modeled as matrices: An m x n real-valued matrix provides a natural structure for encoding information about m objects, each of which is described by n features. However, tensors which extend the notion of matrices to higher dimensions, provide a good structure for encoding data needing more than two dimensions. Like matrices, tensors often have structural properties that present challenges and opportunities for researchers and as such, decomposing/factoring the data reveal some of these useful features. We shall consider an application to a high definition image compression.
Cecilia Ortiz-Duenas (University of Minnesota) Identification methods for vortical structures in turbulent boundary layers
Abstract: Vortical structures, which align in groups or packets, were proposed as a fundamental structure of turbulent boundary layers more than 50 years ago in the literature. Recently, planar and volumetric velocity measurements obtained by PIV provide direct information on three-dimensional spatial velocity variations which can be used to identify coherent structures. Several identification methods will be discussed.
Juan Mario Restrepo (University of Arizona) Banquet and keynote speaker - Abrupt climate change and climate variability: When data fail us
Abstract: We are familiar with the controversy regarding global warming and its social and environmental implications, much less so about why these controversies arise. I will describe the role played by mathematics in climate research and will discuss how mathematics plays a central role in answering one of the toughest technical challenges posed by the Intergovernmental Panel on Climate Change (IPCC 2007) report: How confident are we about predictions of future climate scenarios? In this university-level talk, I will describe why it is so difficult to pin down uncertainties in climate variability and will highlight some of the mathematical tools being developed by The Uncertainty Quantification Group and others, to tackle this question.
Donald Richards (Pennsylvania State University) Integrals of characteristic polynomials of unitary matrices, and applications to the Riemann zeta function
Abstract: In recent research on the Riemann zeta function and the Riemann Hypothesis, it is important to calculate certain integrals involving the characteristic functions of N × N unitary matrices and to develop asymptotic expansions of these integrals as N → ∞. In this talk, I will derive exact formulas for several of these integrals, verify that the leading coefficients in their asymptotic expansions are non-zero, and relate these results to conjectures about the distribution of the zeros of the Riemann zeta function on the critical line. I will also explain how these calculations are related to mathematical statistics and to the hypergeometric functions of Hermitian matrix argument.
Karen Rudie (Queen's University) Special lecture: Knowledge and control in decentralized discrete-event systems
Abstract: Discrete-event systems are processes whose behaviour can be characterized by sequences of events and can be represented by finite-state automata or directed graphs. Control problems arise because the systems can generate undesirable sequences. Work in this area typically addresses when it is possible to derive agents that can prohibit bad sequences. These problems are more difficult computationally if they must be solved using decentralized control, where each agent has only a partial view of overall system behaviour. We provide a brief tutorial of discrete-event systems, then show how formal reasoning about knowledge (as developed by Halpern & Moses) can be used to model decentralized discrete-event control problems. This framework (developed jointly with S.L. Ricker, Mount Allison University) is based on a modal logic and uses Kripke structures, which provide visual pictures of what each agent "knows" and "does not know" We show that problem solution amounts to determining whether for each required action, at least one agent "knows" what event to disable. The framework is also extended so that when a supervisor cannot make a definitive control decision based on its own knowledge (or direct observations) of the system, the supervisor may reason about whether other supervisors have sufficient knowledge to eventually make the correct control decision. In this way, supervisors use inference and a broader set of possible control actions to jointly solve a problem. We also give a brief summary of some applications of discrete-event systems to modeling emergency response protocols and concurrency control in software.
Karen Raquel Ríos-Soto (University of Puerto Rico) On the spatio-temporal disease dynamics in populations with discrete-time epidemics in one and two spatial dimensions
Abstract: The use of integrodifference equations in the study of the role of dispersal on populations with discrete generations has generated interesting mathematical problems and expanded our understanding of their spatio-temporal dynamics. Here, we use discrete-time epidemic models that can be reduced to a single map for the infectious class, It+1 =g(It), where g may or may not be monotone. We use new theoretical work, modeling, analysis and simulations to illustrate the role of g on disease dynamics in one and two spatial dimensions.
Flavia Sancier-Barbosa (Southern Illinois University) Stochastic models with memory in mathematical finance
Abstract: Although a real-world process often depend on its history, not many models in finance account for memory in their dynamics. In this project, we develop stock price models with memory (history dependence) and investigate option pricing formulas. Specifically, the models are to be described by stochastic functional differential equations with stochastic volatility. The classical Black-Scholes model is a particular case of these models.
Shuanglin Shao (University of Minnesota) Analyticity of extremals to the Airy Strichartz inequality
Abstract: The Airy Strichartz inequality asserts that the linear operator, e^{-t partial_x3} f, is bounded from L^2 to L^8_{t,x}. In this talk, we will first prove the existence of extremals to this inequality by using the linear profile decomposition; Moreover, we show that, if f is an extremal, then f is exponentially decaying in the Fourier space so that f can be extended to be an entire function on the complex domain. This is a joint work with Dirk Hundertmark.
Frank W. Snowden (University of Minnesota) How important are "other skills" in determining career success? Insights on the importance of networking, interviewing, negotiation and leadership skills
Abstract: This workshop will explore the science/academic enterprise and pose the question of where new Ph.D. graduates fit. Use of the basic job-seeking skills of networking, interviewing, and negotiation will be discussed in terms of how these skills can aid you in seeking what you want, and avoiding what you don’t want.
Maria Criselda Santos Toto (Worcester Polytechnic Institute) Application of Bayesian predictive inference under benchmarking to body mass index and bone mineral density for small domains
Abstract: We use Bayesian predictive inference to analyze body mass index (BMI) and bone mineral density (BMD) for the bivariate outcome of adult domains from the Third National Health and Nutrition Examination Survey (NHANES III). We consider the population of Mexican American adults (20 years and above) from the large counties of the state of New York. Due to the small samples obtained from these domains, direct estimates of the small area means are unreliable. We use a Bayesian nested-error regression model to estimate the finite population means for BMI and BMD. We include benchmarking into our Bayesian model by applying constraints that will ensure that the `total’ of the small area estimates matches the `grand total.' Benchmarking helps prevent model failure, an important issue in small area estimation, and it may also lead to an improved precision. We present results for the bivariate benchmarking Bayesian model and compare the outcomes with its univariate counterpart.
Ying Wang (Ohio State University) A Bayesian analysis on how the salary is related to major and SAT scores
Abstract: A Bayesian hierarchical linear regression model is built to analysis data from a reputable student review website. Markov chain Monte Carlo experiments are carried out using the statistical software WinBUGS. This study ranks the average salary across the disciplines of university study and shows that the average salary of each discipline is positively associated to the average entrance SAT score.
Pamela Williams (LMI) A jack of all trades
Abstract: Controlling mass transit systems, identifying proteins, and stocking shelves, what is the common thread? Mathematics is the foundation for these diverse application domains. In this talk, we will examine the different types of mathematics that are needed to tackle these problems. In addition, we will discuss ways to weave together seemingly unrelated work experience to land a job in a new research area.
Eyerusalem Kesete Woldegebreal (University of St. Thomas) African American women in mathematics
Abstract: As an African American woman studying mathematics I have noticed the lack of other African American woman in my math courses. Even though the number of African American men in these courses is very small as well, it is still significantly larger than that of woman and I am curious and excited to find out why this occurs. Since there continues to be studies that show the same trends of African American students falling behind their peers when it comes to mathematics I believe that there are answers to why this occurs and what can be implemented in the classroom to change these statistics (Ambrose, Levi, & Fennema, 1997). For these reasons I have explored my proposed questions more deeply in the African American Women in Mathematics Project. Research Questions and Methodology: Over the summer of 2008 I took the time to explore a research question which really interested me. The question of interest: What factors influence African American woman to shy away from mathematics in college? I thought that it would be very interesting to take a closer look and try to understand why these factors occur. I also had the time to look at a second question that looks at families, friends, and media and their influence on the choice of a college major for African American women. The African American Women in Mathematics Project uses qualitative methods to examine factors influencing the choice of college major by African American women and family influence of major. I created a list of interview questions that I asked several African American women involved in the REAL Program and Summer Academy. This data heavily supported the literature that I read as well as did interviewing professionals in the math and/or education field.
Hui Xie (University of Minnesota) Postdoc seminar: A finite element method for interface problems with locally modified triangulations
Abstract: A finite element method for elliptic problems with discontinuities in the coefficients and the flux across an arbitrary interface was proposed. The method is based on a Cartesian mesh with local modifications to the mesh. The total degree of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Presented numerical examples with jumps in the diffusion coefficient across the interface demonstrated the efficiency of the proposal method.
Xiang Xu (Pennsylvania State University) Postdoc seminar: Global existence and long time behavior of the general Ericksen-Leslie system
Abstract: The Ericksen-Leslie system modeling the flow of nematic liquid crystals is a coupled system consisting of Navier-Stokes equations and kinematic transport equations for molecular orientation. First, through different energetic variational approaches, we get a physical derivation of the system, and distinguish conservative and dissipative parts of the induced stress terms. Then the existence of global classical solutions is proved, under the assumption of one large viscosity coefficient. Furthermore, by a suitable type Lojaciewicz-Simon inequality, we find the convergence of the classical solutions to steady states as time tends to infinity and get the estimate on the convergence rate. Finally, we study the well-posedness of the system when the initial data is near a functional minimizer, and partly reveal the relation between Parodi's condition and certain stability property of the liquid crystal system.
Mei Yin (University of Arizona) A cluster expansion approach to renormalization group transformations
Abstract: The renormalization group (RG) approach is largely responsible for the considerable success which has been achieved in developing a quantitative theory of phase transitions. This work treats the rigorous definition of the RG map for classical Ising-type lattice systems. A cluster expansion is used to justify this definition in the infinite volume limit at high temperature.
Na Zhang (Arizona State University) Delayed ODE model on regular pattern formation in ecological systems
Abstract: In this project, we explore a set of theoretical models which are proposed to explain the regular patterning of Carex Stricta in freshwater marshland based on density dependent inhibition and facilitation. Qualitative analysis and numeric simulation are presented on these models to provide a sound mathematical foundation to explain why scale-dependent inhibition provides a tentative explanation for this phenomenon.
Visitors in Residence
Jeannine Therese Abiva University of Iowa 3/25/2010 - 3/27/2010
Kwasi Peprah Abrefa-Kodom Indiana University of Pennsylvania 3/25/2010 - 3/27/2010
Mary Sylvia Agwang University of Alabama 3/25/2010 - 3/27/2010
Natalia Alexandrov NASA Langley Research Center 3/25/2010 - 3/27/2010
James Scott Allen Purdue University 3/25/2010 - 3/27/2010
Nusret Balci University of Minnesota 9/1/2009 - 8/31/2010
Jorge Humberto Banuelos Macalester College 3/25/2010 - 3/27/2010
Claude Bardos Université de Paris VI (Pierre et Marie Curie) 2/15/2010 - 4/25/2010
Marian Barry National Security Agency 3/25/2010 - 3/27/2010
Jennifer Beichman University of Michigan 9/1/2009 - 5/31/2010
Maria-Carme T. Calderer University of Minnesota 9/1/2009 - 6/30/2010
Jamye Witherspoon Carter Alabama State University 3/25/2010 - 3/28/2010
Jamylle Laurice Carter Diablo Valley College 3/25/2010 - 3/28/2010
Minnie Catral Iowa State University 3/25/2010 - 3/27/2010
Chi Hin Chan University of Minnesota 9/1/2009 - 8/31/2010
Xianjin Chen University of Minnesota 9/1/2008 - 8/31/2010
Darin Comeau University of Arizona 3/10/2010 - 3/19/2010
Sarah Cotter University of Notre Dame 3/25/2010 - 3/27/2010
Michelle Renee Craddock United States Military Academy 3/25/2010 - 3/28/2010
Steven Benjamin Damelin Georgia Southern University 3/15/2010 - 3/19/2010
Melissa Davidson University of Notre Dame 3/25/2010 - 3/27/2010
Nathaniel Dean Texas State University-San Marcos 3/26/2010 - 3/28/2010
Rafael Del Valle Iowa State University 3/25/2010 - 3/28/2010
Sara Del Valle Los Alamos National Laboratory 3/25/2010 - 3/27/2010
Alan Diaz Georgia Institute of Technology 3/25/2010 - 3/27/2010
Charles R. Doering University of Michigan 8/15/2009 - 6/15/2010
Randy H. Ewoldt University of Minnesota 9/1/2009 - 8/31/2010
Alzaki Muhammed Fadllallah University of Alabama 3/25/2010 - 3/27/2010
Oscar E. Fernandez University of Michigan 3/25/2010 - 3/27/2010
Dennis Onyeka Frank North Carolina State University 3/25/2010 - 3/27/2010
Dashiell Fryer University of Illinois at Urbana-Champaign 3/25/2010 - 3/27/2010
Jairo A. Fuquene University of Puerto Rico 3/25/2010 - 3/27/2010
Aditi Ghosh Texas A & M University 3/25/2010 - 3/27/2010
Ali Godjali University of Wisconsin 3/25/2010 - 3/27/2010
Edray Herber Goins Purdue University 3/25/2010 - 3/28/2010
Gerardo Hernandez Worcester Polytechnic Institute 3/25/2010 - 3/27/2010
Jyy Joy Hong Iowa State University 3/25/2010 - 3/27/2010
Alanna R. Hoyer-Leitzel University of Minnesota 3/25/2010 - 3/27/2010
Yulia Hristova Texas A & M University 3/25/2010 - 3/27/2010
Lili Hu Georgia Institute of Technology 3/25/2010 - 3/27/2010
Fern Y. Hunt National Institute of Standards and Technology 3/24/2010 - 3/27/2010
Andrew Anthony Hunte University of Illinois at Urbana-Champaign 3/25/2010 - 3/27/2010
Vera Mikyoung Hur University of Illinois at Urbana-Champaign 2/18/2010 - 5/31/2010
Yunkyong Hyon University of Minnesota 9/1/2008 - 8/31/2010
Jeong-sook Im Ohio State University 3/25/2010 - 3/27/2010
Mark Iwen University of Minnesota 9/1/2008 - 8/31/2010
Srividhya Jeyaraman University of Minnesota 9/1/2008 - 8/31/2010
Lijian Jiang University of Minnesota 9/10/2008 - 8/31/2010
Mihailo Jovanovic University of Minnesota 9/11/2009 - 6/10/2010
Ning Ju Oklahoma State University 1/4/2010 - 6/30/2010
Markus Keel University of Minnesota 7/21/2008 - 6/30/2010
Elisabeth Teudjeu Kemajou Southern Illinois University 3/25/2010 - 3/28/2010
Kimberly D. Kendricks Central State University 3/25/2010 - 3/27/2010
Kevin Lawrence Keys University of Arizona 3/25/2010 - 3/28/2010
Hyejin Kim University of Minnesota 9/1/2009 - 8/31/2010
Elizabeth Kleiman Iowa State University 3/25/2010 - 3/27/2010
Pawel Konieczny University of Minnesota 9/1/2009 - 8/31/2010
Chiun-Chang Lee National Taiwan University 10/22/2009 - 6/30/2010
Namyong Lee Minnesota State University 3/25/2010 - 3/27/2010
Molly Leonard University of Minnesota 3/25/2010 - 3/27/2010
Delia Daria Letang St. Olaf College 3/25/2010 - 3/27/2010
Marta Lewicka University of Minnesota 9/1/2009 - 6/30/2010
Congming Li University of Colorado 1/11/2010 - 6/15/2010
Yongfeng Li University of Minnesota 9/1/2008 - 8/31/2010
Zhi (George) Lin University of Minnesota 9/1/2009 - 8/31/2010
Chun Liu University of Minnesota 9/1/2008 - 8/31/2010
Yuan Liu University of Notre Dame 3/25/2010 - 3/27/2010
Ellen K. Longmire University of Minnesota 9/1/2009 - 6/30/2010
Kate Longo University of California, Irvine 3/25/2010 - 3/27/2010
Sibusiso Samkele Mabuza University of Houston 3/25/2010 - 3/27/2010
Yasunori Maekawa Kobe University 9/7/2009 - 3/1/2010
Krishnan Mahesh University of Minnesota 9/1/2009 - 6/30/2010
Kara Lee Maki University of Minnesota 9/1/2009 - 8/31/2010
Vasileios Maroulas University of Minnesota 9/1/2008 - 8/31/2010
Sarah Matz University of Wisconsin 2/20/2010 - 3/3/2010
Anna L. Mazzucato Pennsylvania State University 1/12/2010 - 6/11/2010
Reginald L. McGee Purdue University 3/25/2010 - 3/27/2010
Amelia Ahlers McNamara Macalester College 3/25/2010 - 3/27/2010
Jennifer Miller University of Delaware 3/25/2010 - 3/28/2010
Irina Mitrea Worcester Polytechnic Institute 3/16/2010 - 3/18/2010
Chad-Eric Montgomery University of California, Berkeley 3/25/2010 - 3/27/2010
Pedro Fernando Morales Baylor University 3/25/2010 - 3/28/2010
Yoichiro Mori University of Minnesota 9/1/2009 - 6/30/2010
Peh H. Ng University of Minnesota 3/25/2010 - 3/27/2010
Mechie Nkengla University of Illinois 3/25/2010 - 3/26/2010
Samantha M. Oestreicher University of Minnesota 3/25/2010 - 3/27/2010
Samuel Segun Okoya Obafemi Awolowo University 2/15/2010 - 5/15/2010
Alexandra Ortan University of Minnesota 3/25/2010 - 3/27/2010
Omayra Ortega Arizona State University 3/25/2010 - 3/27/2010
Cecilia Ortiz-Duenas University of Minnesota 9/1/2009 - 8/31/2010
Hans G. Othmer University of Minnesota 9/1/2009 - 6/30/2010
Mavis Pararai Indiana University of Pennsylvania 3/25/2010 - 3/28/2010
Jose Heriberto Ponce Iowa State University 3/25/2010 - 3/27/2010
Candice Renee Price University of Iowa 3/25/2010 - 3/28/2010
Sri Pudipeddi Augsburg College 3/25/2010 - 3/26/2010
Juan Mario Restrepo University of Arizona 8/11/2009 - 6/15/2010
Donald Richards Pennsylvania State University 3/25/2010 - 3/27/2010
Alicia Richardson Morgan State University 3/25/2010 - 3/28/2010
Karen Raquel Ríos-Soto University of Puerto Rico 3/25/2010 - 3/28/2010
Aaron Michael Rodriguez University of St. Thomas 3/26/2010 - 3/27/2010
Arianne Ross Iowa State University 3/25/2010 - 3/27/2010
Jaime Roura University of Puerto Rico 3/25/2010 - 3/28/2010
Karen Rudie Queen's University 3/18/2010 - 3/21/2010
Flavia Sancier-Barbosa Southern Illinois University 3/25/2010 - 3/27/2010
Fadil Santosa University of Minnesota 7/1/2008 - 6/30/2011
Arnd Scheel University of Minnesota 9/1/2009 - 6/30/2010
George R Sell University of Minnesota 9/1/2009 - 6/30/2010
Tsvetanka Sendova University of Minnesota 9/1/2008 - 8/31/2010
Gregory Seregin Russian Academy of Sciences 3/15/2010 - 3/22/2010
Colbert L Sesanker Worcester Polytechnic Institute 3/25/2010 - 3/27/2010
Chehrzad Shakiban University of Minnesota 3/25/2010 - 3/27/2010
Shuanglin Shao University of Minnesota 9/1/2009 - 8/31/2010
Michelle B. Snider Cornell University 3/25/2010 - 3/28/2010
Frank W. Snowden University of Minnesota 3/25/2010 - 3/27/2010
Daniel Spirn University of Minnesota 9/8/2009 - 6/1/2010
Panagiotis Stinis University of Minnesota 9/1/2009 - 6/30/2010
Ashley Jacqueline Sullivan University of Nebraska 3/25/2010 - 3/27/2010
Vladimir Sverak University of Minnesota 9/1/2009 - 6/30/2010
Kubrom Hisho Teka Kansas State University 3/25/2010 - 3/28/2010
Jean-Luc Thiffeault University of Wisconsin 9/1/2009 - 6/30/2010
Becca Thomases University of California, Davis 2/9/2010 - 6/15/2010
Edriss Saleh Titi University of California 3/28/2010 - 6/18/2010
Yoshihiro Tonegawa Hokkaido University 2/20/2010 - 3/1/2010
Chad Michael Topaz Macalester College 9/1/2009 - 6/30/2010
Hector David Torres-Aponte University of Puerto Rico 3/25/2010 - 3/29/2010
David Abner Torres-Núñez University of Puerto Rico 3/25/2010 - 3/29/2010
Maria Criselda Santos Toto Worcester Polytechnic Institute 3/25/2010 - 3/28/2010
Mina Vora East Georgia College 3/25/2010 - 3/27/2010
Changyou Wang University of Kentucky 9/1/2009 - 6/15/2010
Li Wang University of Wisconsin 3/25/2010 - 3/27/2010
Xiaoming Wang Florida State University 1/5/2010 - 5/14/2010
Yi Wang University of Minnesota 3/25/2010 - 3/27/2010
Ying Wang Ohio State University 3/25/2010 - 3/28/2010
Yumin Wang Wayne State University 3/25/2010 - 3/27/2010
Ning Wei University of Minnesota 3/25/2010 - 3/27/2010
Jahmario Lemonte Williams Mississippi State University 3/25/2010 - 3/28/2010
Pamela Williams LMI 3/25/2010 - 3/28/2010
Eyerusalem Kesete Woldegebreal University of St. Thomas 3/25/2010 - 3/27/2010
Sijue Wu University of Michigan 9/1/2009 - 6/5/2010
Hui Xie University of Minnesota 3/16/2010 - 3/16/2010
Wei Xiong University of Minnesota 9/1/2008 - 8/31/2010
Jin Xu Shanghai University of Traditional Chinese Medicine 12/9/2009 - 6/9/2010
Xiang Xu Pennsylvania State University 1/13/2010 - 6/13/2010
Tianjun Ye Georgia Institute of Technology 3/25/2010 - 3/27/2010
Mei Yin University of Arizona 3/25/2010 - 3/27/2010
Tsuyoshi Yoneda University of Minnesota 9/4/2009 - 8/31/2010
Kamuela Yong University of Iowa 3/25/2010 - 3/27/2010
Na Zhang Arizona State University 3/25/2010 - 3/28/2010
Zhifei Zhang Beijing (Peking) University 2/15/2010 - 5/15/2010
Weigang Zhong University of Minnesota 9/8/2008 - 8/31/2010
Legend: Postdoc or Industrial Postdoc Long-term Visitor

IMA Affiliates:
Arizona State University, Boeing, Corning Incorporated, ExxonMobil, Ford, General Motors, Georgia Institute of Technology, Honeywell, IBM, Indiana University, Iowa State University, Kent State University, Korea Advanced Institute of Science and Technology (KAIST), Lawrence Livermore National Laboratory, Lockheed Martin, Los Alamos National Laboratory, Medtronic, Michigan State University, Michigan Technological University, Microsoft Research, Mississippi State University, Motorola, Northern Illinois University, Ohio State University, Pennsylvania State University, Portland State University, Purdue University, Rice University, Rutgers University, Sandia National Laboratories, Schlumberger Cambridge Research, Schlumberger-Doll, Seoul National University, Siemens, Telcordia, Texas A & M University, University of Central Florida, University of Chicago, University of Delaware, University of Houston, University of Illinois at Urbana-Champaign, University of Iowa, University of Kentucky, University of Maryland, University of Michigan, University of Minnesota, University of Notre Dame, University of Pennsylvania, University of Pittsburgh, University of Tennessee, University of Wisconsin, University of Wyoming, US Air Force Research Laboratory, Wayne State University, Worcester Polytechnic Institute