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 Ill-posed problem

 Underdetermined problem: fat measurement matrix 

 Need regularizer/prior to find a unique  solution

The Image Recovery Problem 
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Challenges for the Imaging Community
in DL for IPs

 A principled way to derive good architectures?

 Use of domain expertise?

 Link to existing inverse problem and signal 
processing wisdom?

 Rigorous analysis?

 Theoretical guarantees?
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Structures
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Desirata

● Decouple the learning of an image prior from the 
forward problem

● Fast operation (in the inference stage)

● Theoretical analysis/guarantees
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Neural-Network Based Priors for IP

[1]Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg. Plug-and-play priors for model based reconstruction. 2013 
IEEE Global Conf. Signal Inf. Processing
[2]R. Chang, J. H., Li, C. L., Poczos, B., V. Kumar, B. V. K., & Sankaranarayanan, A. C. One Network to Solve Them All-
-Solving Linear Inverse Problems Using Deep Projection Models ICCV 2017.
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● Plug-and-play Priors for Image Reconstruction

○ Image prior expressed by a denoiser in the ADMM set-up

○ Not guaranteed to learn the distribution (prior) of the images 

● One Network to Solve Them All

○ Train end-to-end proximal map onto the data set in an adversarial 
way

○ Training - highly sensitive to parameters 

○ Set of images for the proximal map is not well-defined 

○ No theoretical guarantee on convergence



● Successful in modeling data distribution 

● Learn to generate samples from  

● State-of-the-art : Generative Adversarial Networks (GANs)

 Traditional priors replaced by the GAN-based prior

 Recovery with measurements than sparsity-based methods

● Typical generative model:

● Problem formulation:

Generative Models as a Prior?
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Compressed Sensing using Generative Models (Bora et al. 2017)

● Solve for the latent-space, z, using iterative algorithm

● Generative models: VAEs for MNIST and GANs for CelebA
● Requires multiple initializations and chooses the best
● Computation-heavy

Related Works - CSGM

Bora, A., Jalal, A., Price, E., & Dimakis, A. G. Compressed sensing using generative models. JLMR 2017.
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● Solve directly for the signal x

● Projected Gradient Descent (PGD)
● Idea: project gradient update onto generative model manifold
● Inner+outer iterations
● Computation heavy: computes network Jacobian every inner 

iteration

Related Works - PGDGAN

Shah, V., & Hegde, C. Solving linear inverse problems using GAN priors: An algorithm with provable guarantees.  
ICASSP 2018
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Issues with These Methods

● CSGM: no convergence guarantee

○ Requires several random initializations in z

○ Computation of Jacobian of the network: 

● PGDGAN: non-convex optimization problem in the inner-loop

○ Computation of Jacobian of the network: 

○ Extremely slow because of inner-loop

○ Conditions required for convergence stringent and cannot 

be achieved with a moderate number of measurements
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● Learn a network-based projector onto R(G) 

 Eliminates inner-loop

 Eliminates expensive computation of Jacobian of G

 Recovery guarantee if A satisfies conditions. 

 Learned A provides recovery with fewer measurements than random A

 NPGD solves different linear inverse problems, e.g.,  compressed 

sensing, inpainting, super-resolution

Proposed Method: NPGD
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Network-Based Projector 

● Goal: learn a projector onto the set of natural images (onto Range(G))

● Assumption: the trained generator G* defines this set

● approximates a non-linear least squares pseudo-inverse of G*

● G*(z) is perturbed by noise to train on points outside R(G*)

● is trained to project outside points onto R(G*)

● G* remains fixed while training the projector
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● Maximum likelihood estimate of x using GAN prior:

○ Solve via PGD with a trained projector 
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Network-based Projected Gradient Descent (NPGD)



Network Architectures

● MNIST: 28x28 grayscale images
○ Generator and discriminator adapted from DCGAN. 

○ G: 4 transposed convolution layers, D: 4 convolution layers, 

○ similar to D except last layer produces latent vector

● CelebA: 64x64 color images of celebrities’ faces
○ DCGAN’s 5 layer structure

● LSUN-Church: 64x64 color image of church outdoor architecture
○ Self-attention GAN (SAGAN) - G: 4 transpose convolution layers, D: 4 conv layers 

with the self-attention mechanism in 3rd and 4th layers

○ Attention mechanism learns which part of the image to be emphasized

○ Better for capturing high-resolution details using information from different feature 

locations
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Training Details

● Images scaled between [-1, 1]

● Latent variable is 

● Vanilla GAN loss for the DCGAN network

● Wasserstein loss with spectral normalization for the SAGAN

● Adam optimizer

● Mini-batch size: 128 for MNIST and 64 for CelebA and LSUN
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Restricted eigenvalue condition(REC): 
Let                  . Matrix                            satisfies the restricted eigenvalue 
condition if the following holds for all                              :

If                    then matrix      is a near-isometry on      .  

Convergence Analysis
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