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Aggregator’s Eco-System and Optimization Objectives

Aggregator

Real-time power allocation 

Global Cost Minimization

Households/Commercial Buildings/...

locally learned parameters
 of flexible load: thermal coefficients, 

availability, etc.

power allocations

Information-Based Business:
- Households/Businesses: seek lower electricity
   costs subject to improved comfort levels;
- Utility: controls the aggregate demand;
- Aggregator: reduces discomfort and dollar cost. 

Utility

demand bidding/program selection/etc.

guaranteed
supply and

pricing
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Aggregator as a “Portfolio Manager”

• Manage aggregated demand in a profitable way:

• Consider diverse revenue streams                                         
(capacity market, regulation market, DR market, etc.)

• Model loads’ flexibility, while meeting QoS guarantees

• Aggregate flexible load, local generation, local storage

• Online, adaptive learning of load/user properties

• Model diverse sources of uncertainty                                          
(users, weather, market, etc.)

• Piece together different time-scales:                                           
long-term planning and shorter time scale load control that meets 
the long-term plan
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Our Focus

• Cost-effective Demand Side Management (DSM) for an aggregator

• Incorporate existing uncertainties (temperature forecasts, load parameters, 
environmental conditions, etc.) in demand planning

• Risk-aware program selection with utilities (tariff, Demand Response, etc.)

• Ensure control of after-the-fact utility charges

• Mainly day-ahead and month-ahead considerations (naturally extends to 
shorter time scales)

• Quantify the impact of uncertainty in a computationally feasible and accurate 
way
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Modeling Assumptions

• Large collection of flexible loads, HVACs and EVs on a large commercial 
campus

• Discrete time linear system model to describe state evolution:

• HVACs:  internal temp.          , thermal coefficient     , efficiency      , 
outside temp.  

• EVs:  state of charge        , charging efficiency     , charging availability                                                                                                                                                        

• Power allocations,        ,  are made in advance (day-ahead target plan):

•     ,          and          are random variables         

X i [k + 1] = (1 ! ! i )X i [k] ! " i ui [k] + ! i Z [k]

X i [k + 1] = X i [k] + ! i Ai [k]ui [k]

X i [k] ✓i ⌘i
Zi[k]

X i [k] ! i Ai [k]

ui [k]

Zi [k] Ai [k] X i [k]
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Cost Terms - Discomfort Penalty

• User discomfort cost (ensures QoS guarantees):

• Penalty for EV not being charged at the disconnection time

• Penalty for deviating from the target internal temperature

• Same cost structure in both cases.

E(Ai[k]�Ai[k + 1])(Xi[k]� x̄i[k])
2

Probability of 
disconnecting in kth

time interval 

Oi[k](Xi[k]� x̄i[k])
2

Building 
occupancy
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Cost Terms - Utility Charges

• Tariff selection determines:

• Time of use pricing (real time)

• Demand charges (peak charging - monthly, daily)

• Demand Response payments (bids are placed a month in advance)

• We model total cost using a convex function

• Program selection is equivalent to choosing the cost function.

c(u
total

[k], k,Pj)

total consumed
 power

program j
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Related Work

• Aggregator models:                                                                                                     
Vaya et. al. (2013), Gan et. al. (2013)

• Integration of renewables:                                                                       
Masters (2013), Whitaker et. al. (2008)

• Demand Response programs and their performance assessments:                                    
Balijepalli et. al. (2011), FERC & LBNL reports, John (2013), Albadi et. al. (2008)

• Optimal demand side management:

• Model Predictive Control (MPC):                                                                                                     
Kraning et. al. (2014), Kennel et. al. (2013), Halvgaard et. al. (2012), Chen et. al. (2013)

• Monte-Carlo simulation methods to cope with uncertainty:                                                              
Chen et. al. (2013)

• Dynamic pricing for demand management:                                                                          
Chiu et. al. (2012)
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Optimal Demand Management Under Uncertainty

• Compute target day-ahead power allocation, that minimizes the total 
expected cost:

• Deviations from expected values affect the expected cost and optimal 
selection of programs with utilities

min
u2U

E[R(u;Z,R,A)] + �
K�1X

k=0

c

 
X

i

ui[k], k,Pj

!

s.t. 0  ui[k]  ūi

uncertain day ahead 
temperature, occupancy, 

charging availability

takes care of 
differences in units

 and scales

Xi[k + 1] = (1� ✓i)Xi[k]� ⌘iAi[k]ui[k] + ✓iZ[k]

state evolution is a random discrete process

�
z

[k] ⌘ Z[k]�EZ[k],�
ri [k] ⌘ R

i

[k]�ER
i

[k],�
ai [k] ⌘ A

i

[k]�EA
i

[k],�
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[k]�EX
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[k]
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Inaccuracy of the Model Predictive Control 

• Discomfort penalty (regret) cost terms:

• Overall cost objective - different from the conventional MPC

E


Ri [k]

2
(Xi [k] ! x̄i [k])

2

�
=

ri [k]

2
(xi [k] ! x̄i [k])

2 +
ri [k]

2
E[! x i [k ]]

2

EX i [k]

E[! x i [k]]2 =
k ! 1X

l =0

k ! 1X

l 0=0

(1 � ✓i )2k ! l ! l 0⌘2
i Cov(Ai [l ], Ai [l "])ui [l ]ui [l "] + ...

Qi (ui )[k]

min
u ! U

!

R(u; z, r , a) + !
K " 1"

k=1

c

#
N"

i =1

ui [k], k, Pj

$

+
1
2

N"

i =1

K " 1"

k=0

r i [k]Qi (ui )[k]

%
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Why New Solution Approach?

• Common:

• Model Predictive Control (MPC) - computationally cheap, but no 
guarantees for the variability of the resulting charges paid to utilities

• Monte-Carlo simulation method - computationally expensive since we 
need to solve the optimization problem for each sample path

• Our contribution - computationally inexpensive, exploiting the 
aggregation assumption:

1. Approximation for the distribution of the optimal schedule

2. Use approximation in 1. to perform the risk-aware assessment of 
selected programs with utilities 
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Approximation for the Distribution of the Optimal 
Power Allocation

• Optimality condition:

• Aggregation assumption to propose multivariate normal distribution:

! u L (U;B) = 0, B " (Z,R,A)

Lagrangian

E [U ] ⇡ uc �H�1
uuruL(uc; b)

Cov[U] ! H ! 1
uu HubCov[B]H T

ubH ! 1
uu

u!

V !

U ! ! N (u!
total

, V !
total

)

(U
total

= SU, u⇤
total

= Su⇤, V⇤
total

= SV⇤ST )
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Risk-Aware Program Selection with Utilities

• Goal - control the variation in estimated charges to utilities while keeping 
them small:

• Simple check: use the derive approximation to select feasible program with 
the smallest expected utility cost

s.t.

vuutVar

"
K�1X

k=0

c (U
total

[k], k,Pj)

#
 ⇠

K�1X

k=0

c (u⇤
total

[k], k,Pj)

min
P1,...,Pnc

K�1X

k=0

c (u⇤
total

[k], k,P
j

)

aggregator’s proneness to risk 
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Implementation Simplicity

• Required knowledge of             ,  which is learned                                        
(day ahead uncertainty in temperature, occupancy, and drivers’ availability)

• Tariff options and DR programs shape utility cost functions:

• Time of use - linear function in total power

• Demand charges - can be modeled using convex function that penalizes 
exceeding certain demand targets

• DR payments - hinge-like convex functions

• Approximations derived and coded up once (all algorithmic) 

Cov(B )
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Numerical Example - Commercial Campus

• 10 large, 10 medium and 10 small buildings
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Looking for the optimal power planning of the aggregated HVAC demand 
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Validation of the Proposed Approximation

• Cost function: 

• Impact of the selected cost curve on the optimal total power allocation:

•

c(u, k,Pj ) = cT OU [k]u+ ! j u
2
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Cost Variation as a Function of Program Parameter ! j
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Concluding Remarks

• A proper treatment of uncertainty provides:

• More control over actual utility costs

• Provides guidance in optimal program selection with utilities

• Computationally expensive and timely Monte-Carlo methods can be avoided

• A still missing component: effect of uncertainty in device parameters on 
cost-effective DSM
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