Mapping of Temperatures from Coarser to Finer Grid using Temporal Derivatives

Ravindra Akarapu, Manivannan Ravichandran (Ravi)
Corning Incorporated
Corning

- High-tech materials company (www.corning.com)

- Display Technologies
 - Glass substrates for liquid crystal displays

- Environmental Technologies
 - Catalytic substrates and filters for emission controls

- Speciality Materials
 - Gorilla glass as cover glass for handheld devices

- Life Sciences
 - Scientific laboratory products (e.g. Pyrex®)

- Telecommunications
 - Optical fiber, cable (backbone of internet)

- In news “Diamond-turned mirrors by Corning are part of the imaging system of NASA’s New Horizons mission that recently made its historic pass by Pluto”
Outline

• Background
 – Ceramic Manufacturing Process

• Problem
 – Improving the spatial resolution of thermocouple data

• Objectives

• Tentative timelines
Background

Ceramic Manufacturing process

- This problem broadly falls in the realm of Environmental technologies
- Ceramics parts subject to prescribed temperature cycle in kilns
- Thermocouples are installed in parts to observe temperature evolution inside the part
- Temperature further post-processed to estimate internal stresses experienced in the parts
- Stress estimation used for estimating probability of upset for the process

Ceramic Substrates

Ceramic Particulate Filters

40 years of Corning Environmental Technologies
Problem Statement

• Industrial manufacturing process
 • incomplete knowledge of material properties, boundary conditions, and sources for a given material/manufacturing process.
 • Making it difficult for direct prediction of process parameters such as temperature

• Process monitors such as thermocouples are commonly used

• Thermocouples are deployed on coarse spatial grid. Measurements usually have very high temporal resolution

• Internal stresses \rightarrow spatial temperature gradients \rightarrow temperatures on a finer spatial grid

• Mapping temperatures from coarser grid to finer grid
 • Interpolation techniques
 • Error prone when exotherms and endotherms are present during the process

Mapping temperatures from coarser grid to finer grid
Objectives

1. Figure of Merit

Temperatures are measured at the locations specified by

Interested in knowing temperature at

We could use bilinear interpolation
 • How incorrect is it to use interpolations for a given set of temperature measurements

Objective 1

Establish a figure of merit to make an assessment on invalidity of using interpolation techniques for a given temperature data set
Objectives

2. Develop Algorithm and goodness of fit

- Temperatures are measured on a coarse grid (m x n)
- Need temperatures on a finer spatial grid (p x q)
- Measurements are done with a high temporal resolution

Objective 2

Develop an algorithm to map temperatures from a coarse spatial grid to finer spatial grid. Also formulate a goodness of fit estimation

Sample test data will be provided for procedure development
Objectives

3. Test the Algorithm on different data sets

Objective 3

Test the developed algorithm on different data sets

Data sets (measured data and synthetic data) with different degrees of heat source/sink strengths will be provided to test figure of merit, mapping algorithm and goodness of fit
Objectives

4. Extend the approach to 2D axi-symmetric problems

• Problem at hand is a 3D problem
 – 2d axi-symmetry could be a reasonable approximation
• If you as a team feel that it is easier
 – Start developing the figure of merit, mapping algorithm, goodness of fit using 1D data
 – Quickly transition to 2D axisymmetric
Approach

• Generate synthetic data with various degrees of source/sink strengths
 – I have setup a direct problem that is very close to real case
• Use this data to develop mapping algorithm and test it
Tentative Timelines

• Aug 5th – Go over problem statements once. Supply you with some test data. Team members would discuss the problems and come up with potential solutions approaches
 – I will be available for any clarifying questions
• Aug 10th – Try to completes objectives 1 and 2
• Aug 13th – Try out algorithm for different data sets and check how well your procedure works
• Writing and preparing presentation should be an ongoing task