A Critique of Local Invariant Features for Object Recognition

Daniel Huttenlocher
IMA Workshop
May, 2006

The Return of Local Features

- Long history of using sparse local features and geometric constraints for recognition
 - Roberts in 1960’s
 - LFF, Interpretation Tree, Alignment, ... in 1980’s
- 1990’s saw more global approaches
 - Appearance methods such as Turk&Pentland, Murase&Nayar, ...
 - Geometric invariants, Rothwell et al, ...
 - Hausdorff matching
- 2000’s have seen a return to local features
 - Now often using invariant descriptors
Historical Context

- Roberts’ work based on corners and edges
 - Motivated by ease of humans recognizing line drawings, extracting less variable information
- In 1980’s Marr generalized such feature-based approaches
 - Primal sketch, 2½D sketch similarly based on detecting intermediate structures
 - Neurophysiologic and psychophysical evidence
 - But not clearly support for detection over filtering
- A feature dominated world ever since ...

Good and Bad of Local Features

Good
- Less sensitive to clutter and occlusion than global measures
- Can measure both appearance and geometric information

Bad
- Requires error-prone detection decisions
- Often very sparse description
- Difficult to combine into global model
 - Combinatorial explosion for correspondence
 - Bag models can over-count evidence
Good and Bad of Invariant Features

- **Good**
 - More reliably detectable under wider range of image conditions

- **Bad**
 - Feature geometry should be consistent
 - E.g., orientation and scale should match across features of a given object
 - Larger areas of support for more transformation parameters (e.g., affine)
 - Possibly more sensitive to clutter and occlusion, sparser, or overlapping

Are Features Actually Helping?

- **Filtering (operators or transforms)**
 - Map from images to “images”
 - Not necessarily in same coordinate system

- **Feature detection**
 - Map from images to sets of discrete locations
 - Again not necessarily in same coordinates

- Filtering enhances what is important without making decisions
 - E.g., likelihood function or cost map rather than set of locations
Pictorial Structures

- Fischler and Elschlager took fundamentally different view in 1970’s; became a sideline
 - Feature operators or cost maps rather than detection
 - Related Chamfer matching school of thought, e.g. Barrow&Tenenbaum, 1977
 - Combine feature maps in single overall optimization problem
 - Not computationally tractable at the time
 - Still challenging, but so is feature matching

Single Optimization Problem

- Degree to which each “location” is like a given part or feature – no detection
 - Can express in Bayesian framework as likelihood of image given parts at particular locations
- Degree to which particular part locations fit the spatial configuration
 - Prior spatial model
- No error-prone local decisions about features
Contrasting the Approaches

- Feature based
 - Local feature detection
 - Explicitly handle missing data and outliers

- Single optimization
 - Determine feature responses (likelihood)
 - Dynamic programming (e.g., distance transform) techniques to combine with spatial model (prior)

Computational Issues

- Feature detection analogous to computing likelihood function and then thresholding

- In principle feature detection can focus attention and reduce computation
 - In practice combinatorial problem
 - Often exponential, subsets for missing features
 - Limitation to objects with small number of parts

- While exhaustive nature of single optimization appears prohibitive
 - Dynamic programming and branch-and-bound, huge literature on optimization
Better Living Without Features

- Single optimization can be more accurate and faster than feature detection
 - Optimization approach for star model vs. feature detection for full joint Gaussian [CFH05,FPZ05]
 - 6 parts under translation, Caltech-4
 - Single class, fixed scale, equal ROC error

<table>
<thead>
<tr>
<th></th>
<th>Airplane</th>
<th>Motorbike</th>
<th>Faces</th>
<th>Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features [FPZ03]</td>
<td>90.2%</td>
<td>92.5%</td>
<td>96.4%</td>
<td>90.3%</td>
</tr>
<tr>
<td>Optim. [FPZ05]</td>
<td>93.6%</td>
<td>97.3%</td>
<td>90.3%</td>
<td>87.7%</td>
</tr>
<tr>
<td>Optim. [CFH05]</td>
<td>93.3%</td>
<td>97.0%</td>
<td>98.2%</td>
<td>92.2%</td>
</tr>
</tbody>
</table>

Learning Without Features

- Weakly supervised learning – just specifying positive vs. negative exemplars
 - [FPZ05] used feature detector for weakly supervised learning
 - [CHF05] required extensive supervision, specifying location of each “part”

- At ECCV, weakly supervised learning without feature detection [CH06]
 - E.g., 6 part car model
 - Edge strengths
Detection Results

- Weak supervision often beats strong, no features beats features
- More parts/feature operators ("denser model") is better
 - Still not as good as bag of feature models

<table>
<thead>
<tr>
<th></th>
<th>Airplane</th>
<th>Motorbike</th>
<th>Faces</th>
<th>Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features, 6 [FPZ05]</td>
<td>93.6%</td>
<td>97.3%</td>
<td>90.3%</td>
<td>87.7%</td>
</tr>
<tr>
<td>Strong, 6 [CFH05]</td>
<td>93.3%</td>
<td>97.0%</td>
<td>98.2%</td>
<td>92.2%</td>
</tr>
<tr>
<td>Weak, 6 [CH06]</td>
<td>93.6%</td>
<td>98.1%</td>
<td>95.6%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Weak, 25 [CH06]</td>
<td>95.2%</td>
<td>99.0%</td>
<td>98.0%</td>
<td>95.0%</td>
</tr>
</tbody>
</table>

Discussion

- Doing away with features
 - Higher dimensional transformation spaces still pose challenge to feature map approaches
 - Better branch and bound search, as in Hausdorff matching under affine transformation
- Combining multiple parts/features
 - Bag models do better than anything else
 - Why?
 - Mixtures
 - Simple datasets where spatial relations not important (single feature gets 75-85% correct)