Main navigation | Main content

HOME » PROGRAMS/ACTIVITIES » Annual Thematic Program

PROGRAMS/ACTIVITIES

Annual Thematic Program »Postdoctoral Fellowships »Hot Topics and Special »Public Lectures »New Directions »PI Programs »Industrial Programs »Seminars »Be an Organizer »Annual »Hot Topics »PI Summer »PI Conference »Applying to Participate »

Talk Abstract

Superlattice Turing Patterns: Why Not?

Superlattice Turing Patterns: Why Not?

Institute for Mathematics and Its Applications

**Mary Silber**, Northwestern University

``Superlattice patterns'' are characterized as having spatial structure on two disparate length scales; they are spatially-periodic on the large scale, and have beautiful intricate structure on the smaller scale. Such patterns were recently observed in experiments on parametrically-excited surface waves by Kudrolli, Pier and Gollub. I will review results of equivariant bifurcation theory that show that patterns similar to those seen in the experiments arise in a generic symmetry-breaking bifurcation of a spatially-uniform state. These bifurcation results will then be applied to a general two-component reaction-diffusion system in the vicinity of a Turing instability. By considering a particular degenerate bifurcation problem we are able to show that the transitions observed in the hydrodynamic problem cannot be reproduced in the chemical reaction-diffusion system.