Main navigation | Main content

HOME » PROGRAMS/ACTIVITIES » Annual Thematic Program

PROGRAMS/ACTIVITIES

Annual Thematic Program »Postdoctoral Fellowships »Hot Topics and Special »Public Lectures »New Directions »PI Programs »Industrial Programs »Seminars »Be an Organizer »Annual »Hot Topics »PI Summer »PI Conference »Applying to Participate »

Talk Abstract

The Geometry of Mixed-mode Oscillations in a Chemical Oscillator

The Geometry of Mixed-mode Oscillations in a Chemical Oscillator

We present a geometric explanation of a basic mechanism generating mixed-mode oscillations in a prototypical simple model of a chemical oscillator. Our approach is based on geometric singular perturbation theory and canard solutions. We explain how the small oscillations are generated near a special point, which is classified as a folded saddle-node for the reduced problem. The canard solution passing through this point separates small oscillations from large relaxation type oscillations. This allows to define a one-dimensional return map in a natural way. This bimodal map is capable of explaining the observed bifurcation sequence convincingly.

This is joint work with Peter Szmolyan.