Main navigation | Main content

HOME » PROGRAMS/ACTIVITIES » Annual Thematic Program

PROGRAMS/ACTIVITIES

Annual Thematic Program »Postdoctoral Fellowships »Hot Topics and Special »Public Lectures »New Directions »PI Programs »Industrial Programs »Seminars »Be an Organizer »Annual »Hot Topics »PI Summer »PI Conference »Applying to Participate »

Talk Abstract

Method of singular characteristics for Hamilton-Jacobi equations that develop shock structures

Method of singular characteristics for Hamilton-Jacobi equations that develop shock structures

For a quasi-linear hyperbolic system, the method of vanishing viscosity is used to construct solutions with strong discontinuity (shock). The solution consists of two regular regions separated by a free boundary (shock). A system of differential equations that governs the free boundary and its boundary values is derived by Melnikov's method. If the system is a conservation law, the differential equation is the well know Rankine-Hugoniot condition. If the system is non-conservation, the differential equation is in a form of Melnikov type integral that generalizes the Rankin-Hugoniot condition. Solutions in the regular regions are then obtained by the method of characteristics.