Tuesday, June 25, 2019 - 9:00am - 10:00am
Soeren Bartels (Albert-Ludwigs-Universität Freiburg)
We discuss a semi-implicit numerical scheme that allows for minimizing the bending energy of curves within certain isotopy classes. To this end we consider a weighted sum of a bending energy and a so-called tangent-point functional. We define evolutions via the gradient flow for the total energy within a class of arclength parametrized curves, i.e., given an initial curve we look for a family of inextensible curves that solves the nonlinear evolution equation.
Subscribe to RSS - self-avoidance