Graphical Optimal Transport

Monday, November 9, 2020 - 12:30pm - 1:15pm
Yongxin Chen (Georgia Institute of Technology)
Multi-marginal optimal transport (MOT) is a generalization of optimal transport theory to settings with possibly more than two marginals. The computation of the solutions to MOT problems has been a longstanding challenge. In this talk, we introduce graphical optimal transport, a special class of MOT problems. We consider MOT problems from a probabilistic graphical model perspective and point out an elegant connection between the two when the underlying cost for optimal transport allows a graph structure. In particular, an entropy regularized MOT is equivalent to a Bayesian marginal inference problem for probabilistic graphical models with the additional requirement that some of the marginal distributions are specified. This relation on the one hand extends the optimal transport as well as the probabilistic graphical model theories, and on the other hand leads to fast algorithms for MOT by leveraging the well-developed algorithms in Bayesian inference. We will cover recent developments of graphical optimal transport in theory, algorithms, and applications.