SHARED INFORMATION

Prakash Narayan

with

Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe
Acknowledgement

Praneeth Boda

Himanshu Tyagi ♦ Shun Watanabe
Outline

Two-terminal model: Mutual information
 Operational meaning in:
 ▶ Channel coding: channel capacity
 ▶ Lossy source coding: rate distortion function
 ▶ Binary hypothesis testing: Stein’s lemma

Interactive communication and common randomness
 ▶ Two-terminal model: Mutual information
 ▶ Multiterminal model: Shared information

Applications
Outline

Two-terminal model: Mutual information

Operational meaning in:

- Channel coding: channel capacity
- Lossy source coding: rate distortion function
- Binary hypothesis testing: Stein’s lemma

Interactive communication and common randomness

Applications
Mutual Information

Mutual information is a measure of mutual dependence between two rvs.
Mutual Information

Mutual information is a measure of mutual dependence between two rvs.

Let X_1 and X_2 be \mathbb{R}-valued rvs with joint probability distribution $P_{X_1 X_2}$.

The **mutual information** between X_1 and X_2 is

\[
I(X_1 \wedge X_2) = \begin{cases}
\mathbb{E}_{P_{X_1 X_2}} \left[\log \frac{dP_{X_1 X_2}}{dP_{X_1} \times P_{X_2}} (X_1, X_2) \right], & \text{if } P_{X_1 X_2} \prec P_{X_1} \times P_{X_2} \\
\infty, & \text{if } P_{X_1 X_2} \nprec P_{X_1} \times P_{X_2}
\end{cases}
\]

\[
= D \left(P_{X_1 X_2} \mid\mid P_{X_1} \times P_{X_2} \right). \quad (\text{Kullback–Leibler divergence})
\]

When X_1 and X_2 are **finite-valued**,

\[
I(X_1 \wedge X_2) = H(X_1) + H(X_2) - H(X_1, X_2)
\]

\[
= H(X_1) - H(X_1 \mid X_2) = H(X_2) - H(X_2 \mid X_1)
\]

\[
= H(X_1, X_2) - \left[H(X_1 \mid X_2) + H(X_2 \mid X_1) \right].
\]
Let \mathcal{X}_1 and \mathcal{X}_2 be finite alphabets, and $W : \mathcal{X}_1 \to \mathcal{X}_2$ be a stochastic matrix.

Discrete memoryless channel (DMC):

$$W^{(n)}(x_{21}, \ldots, x_{2n} \mid x_{11}, \ldots, x_{1n}) = \prod_{i=1}^{n} W(x_{2i} \mid x_{1i}).$$
Channel Capacity

Goal: Make code rate $\frac{1}{n} \log M$ as large as possible while keeping
\[
\max_m P(\phi(X_{21}, \ldots, X_{2n}) \neq m \mid f(m))
\]
to be small, in the asymptotic sense as $n \to \infty$.

[C.E. Shannon, 1948]

Channel capacity $C = \max_{P_{X_1}:P_{X_2 \mid X_1 = W}} I(X_1 \land X_2)$.
Let $\{X_1^t\}_{t=1}^{\infty}$ be an \mathcal{X}_1-valued i.i.d. source.

$$d((x_{11}, \ldots, x_{1n}), (x_{21}, \ldots, x_{2n})) = \frac{1}{n} \sum_{i=1}^{n} d(x_{1i}, x_{2i}).$$
Rate Distortion Function

\[\text{Goal: Make (compression) code rate } \frac{1}{n} \log J \text{ as small as possible while keeping} \]

\[P \left(\frac{1}{n} \sum_{i=1}^{n} d(X_{1i}, X_{2i}) \leq \Delta \right) \]

to be large, in the asymptotic sense as \(n \to \infty \).

[Shannon, 1948, 1959]

Rate distortion function \(R(\Delta) = \min_{P_{X_2|X_1}: \mathbb{E}[d(X_1,X_2)] \leq \Delta} I(X_1 \wedge X_2) \).
Simple Binary Hypothesis Testing

Let \(\{(X_{1t}, X_{2t})\}_{t=1}^\infty \) be an \(X_1 \times X_2 \)-valued i.i.d. process generated according to

\[
H_0 : P_{X_1 X_2} \quad \text{or} \quad H_1 : P_{X_1} \times P_{X_2}.
\]

Test:

Decides \(H_0 \) w.p. \(T(0 \mid x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}) \),

\(H_1 \) w.p. \(T(1 \mid x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}) = 1 - T(0 \mid \ldots) \).

Stein’s lemma [H. Chernoff, 1956]: For every \(0 < \epsilon < 1 \),

\[
\lim_{n \to \infty} \frac{-1}{n} \log \inf_{T: P_{H_0}(T \text{ says } H_0) \geq 1 - \epsilon} P_{H_1}(T \text{ says } H_0)
\]

\[
= D(P_{X_1 X_2} \parallel P_{X_1} \times P_{X_2}) = I(X_1 \land X_2).
\]
Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

- Two-terminal model: Mutual information
- Multiterminal model: Shared information

Applications
Set of terminals $\mathcal{M} = \{1, \ldots, m\}$.

X_1, \ldots, X_m are finite-valued rvs with known joint distribution $P_{X_1 \ldots X_m}$ on $\mathcal{X}_1 \times \cdots \times \mathcal{X}_m$.

Terminal $i \in \mathcal{M}$ observes data X_i.

Multiple rounds of interactive communication on a noiseless channel of unlimited capacity; all terminals hear all communication.
Interactive Communication

Interactive communication

- Assume: Communication occurs in consecutive time slots in \(r \) rounds.

- Communication is described in terms of the mappings

\[
f_{11}, \ldots, f_{1m}, f_{21}, \ldots, f_{2m}, \ldots, f_{r1}, \ldots, f_{rm}
\]

 - \(f_{ji} \): message in round \(j \) from terminal \(i \), \(1 \leq j \leq r, 1 \leq i \leq m \)
 - \(f_{ji} \) is any function of \(X_i \) and of all previous communication.
Interactive Communication

Interactive communication

- Assume: Communication occurs in consecutive time slots in r rounds.

- Communication is described in terms of the mappings

$$f_{11}, \ldots, f_{1m}, f_{21}, \ldots, f_{2m}, \ldots, f_{r1}, \ldots, f_{rm}$$

 - f_{ji}: message in round j from terminal i, $1 \leq j \leq r$, $1 \leq i \leq m$
 - f_{ji} is any function of X_i and of all previous communication.

- The corresponding rvs representing the communication are

$$F = F(X_1, \ldots, X_m) = (F_{11}, \ldots, F_{1m}, F_{21}, \ldots, F_{2m}, \ldots, F_{r1}, \ldots, F_{rm})$$

 - $F_{11} = f_{11}(X_1)$, $F_{12} = f_{12}(X_2, F_{11})$, \ldots
 - $F_{ji} = f_{ji}(X_i; \text{ all previous communication})$.

Simple communication: $F = (F_1, \ldots, F_m)$, $F_i = f_i(X_i)$, $1 \leq i \leq m$.
Applications

Data exchange: Omniscience.

Signal recovery: Data compression.

Function computation.

Cryptography: Secret key generation.

¿Applications in control?
Example: Function Computation

\[X_1 = \begin{pmatrix} X_{11} \\ X_{12} \end{pmatrix} \xrightarrow{F_1} \xleftarrow{F_2} X_2 = \begin{pmatrix} X_{21} \\ X_{22} \end{pmatrix} \]

[S. Watanabe]

- \(X_{11}, X_{12}, X_{21}, X_{22} \) are mutually independent \((0.5, 0.5)\) bits.
- Terminals 1 and 2 wish to compute:

\[G = g(X_1, X_2) = \mathbb{1}\left((X_{11}, X_{12}) = (X_{21}, X_{22})\right). \]

- Simple communication: \(F = \left(F_1 = (X_{11}, X_{12}), F_2 = (X_{21}, X_{22})\right) \).
 - Communication complexity: \(H(F) = 4 \) bits.
 - No privacy: Terminal 1 or 2, or an observer of \(F \), learns all the data \(X_1, X_2 \).
Example: Function Computation

\[
X_1 = \begin{pmatrix} X_{11} \\ X_{12} \end{pmatrix} \quad \xrightarrow{F_{11}} \quad \begin{pmatrix} F_{11} \\ F_{12} \end{pmatrix} \quad \xrightarrow{F_{21}} \quad \begin{pmatrix} F_{21} \\ F_{22} \end{pmatrix} \quad \xleftarrow{F_{21}} \quad X_2 = \begin{pmatrix} X_{21} \\ X_{22} \end{pmatrix}
\]

- **Interactive communication 1:**
 - \(F_{11} = X_{11} \oplus X_{12}, \ F_{12} = X_{21} \oplus X_{22} \).
 - If \(F_{11} \neq F_{12} \), protocol over.
 - If \(F_{11} = F_{12} \), then \(F_{21} = X_{11}, \ F_{22} = X_{21} \).
 - Complexity: \(H(\mathbf{F}) = 3 \) bits.
 - Some privacy: W.p. 0.5 both terminals, or an observer of \(\mathbf{F} \), learn that \(X_1 \neq X_2 \); and w.p. 0.5 everyone learns \(X_1, X_2 \).
Example: Function Computation

\[
X_1 = \begin{pmatrix} X_{11} \\ X_{12} \end{pmatrix} \quad F_{11} \quad X_2 = \begin{pmatrix} X_{21} \\ X_{22} \end{pmatrix}
\]

▶ Interactive communication 2:

- \(F = \left(F_{11} = (X_{11}, X_{12}), \; F_{12} = G \right) \).
- Complexity: \(H(F) = 2.81 \) bits.
- Some privacy: Terminal 2, or an observer of \(F \), learns \(X_1 \); terminal 1, or an observer of \(F \), either learns \(X_2 \) w.p. 0.25 or w.p. 0.75 that \(X_2 \) differs from \(X_1 \).
Related Work

▶ Exact function computation
- Yao '79: Communication complexity.
- Gallager '88: Algorithm for parity computation in a network.
- Giridhar-Kumar '05: Algorithms for computing functions over sensor networks.
- Orlitsky-El Gamal '84: Communication complexity with secrecy.

▶ Information theoretic function computation
- Körner-Marton '79: Minimum rate for computing parity.
- Orlitsky-Roche '01: Two terminal function computation.
- Nazer-Gastpar '07: Computation over noisy channels.
- Ma-Ishwar '08: Distributed source coding for interactive computing.
- Ma-Ishwar-Gupta '09: Multi-round function computation in colocated networks.
- Tyagi-Watanabe '13, '14 Secrecy generation, secure computing.

▶ Compressing interactive communication
- Schulman '92: Coding for interactive communication.
- Braverman-Rao '10: Information complexity of communication.
- Kol-Raz '13, Heupler '14: Interactive communication over noisy channels.
For $0 \leq \epsilon < 1$, given interactive communication \mathbf{F}, an rv $L = L(X_1, \ldots, X_m)$ is ϵ-CR for the terminals in \mathcal{M} using \mathbf{F}, if there exist local estimates

$$L_i = L_i(X_i, \mathbf{F}), \ i \in \mathcal{M},$$

of L satisfying

$$P\left(L_i = L, \ i \in \mathcal{M}\right) \geq 1 - \epsilon.$$
Common Randomness

\[
\begin{align*}
\text{COMMUNICATION NETWORK} & \quad \sim = L \\
X_1 & \quad X_2 \quad X_m \\
L_1 & \quad L_2 \quad L_m \quad \simeq L
\end{align*}
\]

Examples:

- **Omniscience:** \(L = (X_1, \ldots, X_m) \).
- **Single signal:** \(L = X_{i^*} \), for some fixed \(i^* \in \mathcal{M} \).
- **Function computation:** \(L = g(X_1, \ldots, X_m) \) for a given \(g \).
- **Secret CR, i.e., secret key:** \(L \) with \(I(L \land F) \simeq 0 \).
¿What is the maximal CR, as measured by $H(L|F)$, that can be generated by a given interactive communication F for a distributed processing task?
A Basic Question

What is the maximal CR, as measured by \(H(L|F) \), that can be generated by a given interactive communication \(F \) for a distributed processing task?

Answer in two steps:

- Fundamental property of interactive communication
- Upper bound on amount of CR achievable with interactive communication.

Shall start with the case of \(m = 2 \) terminals.
Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]

For interactive communication F of the terminals $i \in \mathcal{M} = \{1, 2\}$, with terminal i possessing “initial” data X_i,

$$I(X_1 \wedge X_2 | F) \leq I(X_1 \wedge X_2).$$

In particular, independent rvs X_1, X_2 remain so upon conditioning on an interactive communication.
Fundamental Property of Interactive Communication

Lemma: [U. Maurer], [R. Ahlswede - I. Csiszár]

For interactive communication F of the terminals $i \in \mathcal{M} = \{1, 2\}$, with terminal i possessing "initial" data X_i,

$$I(X_1 \land X_2|F) \leq I(X_1 \land X_2).$$

In particular, independent rvs X_1, X_2 remain so upon conditioning on an interactive communication.

Proof: For interactive communication $F = (F_{11}, F_{12}, \ldots, F_{r1}, F_{r2})$,

$$I(X_1 \land X_2) = I(X_1, F_{11} \land X_2)$$
$$\geq I(X_1 \land X_2|F_{11})$$
$$= I(X_1 \land X_2, F_{12}|F_{11})$$
$$\geq I(X_1 \land X_2|F_{11}, F_{12}),$$

followed by iteration. □
An Equivalent Form

For interactive communication F of terminals 1 and 2:

$$I(X_1 \land X_2|F) \leq I(X_1 \land X_2)$$

\Updownarrow

$$H(F) \geq H(F|X_1) + H(F|X_2).$$
Upper Bound on CR for Two Terminals

Using
- L is ϵ-CR for $\mathcal{M} = \{1, 2\}$ with interactive F; and
- $H(F) \geq H(F|X_1) + H(F|X_2)$,

we get

$$H(L|F) \leq H(X_1, X_2) - \left[H(X_1|X_2) + H(X_2|X_1) \right] + 2\nu(\epsilon),$$

where $\lim_{\epsilon \to 0} \nu(\epsilon) = 0$.
Lemma: [I. Csiszár - P. Narayan] Let L be any ϵ-CR for the terminals $i \in \mathcal{M} = \{1, 2\}$ with terminal i possessing “initial” data X_i, achievable with interactive communication F. Then

$$H(L|F) \leq I(X_1 \wedge X_2) + 2\nu, \quad \lim_{\epsilon \to 0} \nu(\epsilon) = 0.$$

Remark: When $\{(X_{1t}, X_{2t})\}_{t=1}^{\infty}$ is an $\mathcal{X}_1 \times \mathcal{X}_2$-valued i.i.d. process, the upper bound is attained.
Interactive Communication for $m \geq 2$ Terminals

Theorem 1: [I. Csiszár-P. Narayan]
For interactive communication F of the terminals $i \in \mathcal{M} = \{1, \ldots, m\}$, with terminal i possessing “initial” data X_i,

$$H(F) \geq \sum_{B \in \mathcal{B}} \lambda_B H(F|X_{B^c})$$

for every family $\mathcal{B} = \{B \subsetneq \mathcal{M}, B \neq \emptyset\}$ and set of weights ("fractional partition")

$$\lambda \triangleq \left\{ 0 \leq \lambda_B \leq 1, B \in \mathcal{B}, \text{satisfying } \sum_{B \in \mathcal{B}: B \ni i} \lambda_B = 1 \forall i \in \mathcal{M} \right\}.$$

Equality holds if X_1, \ldots, X_m are mutually independent.

Special case of:
CR for \(m \geq 2 \) Terminals: A Suggestive Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication \(F \) of the terminals \(i \in M = \{1, \ldots, m\} \), with terminal \(i \) possessing "initial" data \(X_i \),

\[
\begin{align*}
\left(m = 2 : H(F) & \geq H(F|X_1) + H(F|X_2) \iff I(X_1 \wedge X_2|F) \leq I(X_1 \wedge X_2) \right)
\end{align*}
\]

\[
H(F) \geq \sum_{B \in B} \lambda_B H(F|X_{B^c})
\]

\[
\uparrow
\]

\[
H(X_1, \ldots, X_m|F) - \sum_{B \in B} \lambda_B H(X_B|X_{B^c}, F)
\]

\[
\leq H(X_1, \ldots, X_m) - \sum_{B \in B} \lambda_B H(X_B|X_{B^c}).
\]
An Analogy

[S. Nitinawarat-P. Narayan]

For interactive communication F of the terminals $i \in M = \{1, \ldots, m\}$, with terminal i possessing “initial” data X_i,

$$H(F) \geq \sum_{B \in \mathcal{B}} \lambda_B H(F|X_{B^c})$$

$$\Downarrow$$

$$H(X_1, \ldots, X_m|F) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B|X_{B^c}, F) \leq H(X_1, \ldots, X_m) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B|X_{B^c}).$$

Does the RHS suggest a measure of mutual dependence among the rvs X_1, \ldots, X_m?
CR for $m \geq 2$ Terminals

Theorem 2: [I. Csiszár-P. Narayan]

Given $0 \leq \epsilon < 1$, for an ϵ-CR L for \mathcal{M} achieved with interactive communication \mathbf{F},

$$H(L|\mathbf{F}) \leq H(X_1, \ldots, X_m) - \sum_{B \in \mathcal{B}} \lambda_B H(X_B|X_B^c) + m\nu$$

for every fractional partition λ of \mathcal{M}, with $\nu = \nu(\epsilon) = \epsilon \log|\mathcal{L}| + h(\epsilon)$.

Remarks:

- The proof of Theorem 2 relies on Theorem 1.
- When $\{(X_{1t}, \ldots, X_{mt})\}_{t=1}^{\infty}$ is an i.i.d. process, the upper bound is attained.
Theorem 2: [I. Csiszár-P. Narayan]

\[H(L|F) \leq H(X_1, \ldots, X_m) - \max_{\lambda} \sum_{B \in B} \lambda_B H(X_B|X_{B^c}) + m \nu \]

\[\Delta \triangleq SI(X_1, \ldots, X_m) + m \nu \]
Extensions

Theorems 1 and 2 extend to:

- random variables with densities [S. Nitinawarat-P. Narayan]
- a larger class of probability measures [H. Tyagi-P. Narayan].
Shared Information and Kullback-Leibler Divergence

\[
SI(X_1, \ldots, X_m) = H(X_1, \ldots, X_m) - \max_\lambda \sum_{B \in B} \lambda_B H(X_B | X_{B^c})
\]

\[
(m = 2) = H(X_1, X_2) - \left[H(X_1 | X_2) + H(X_2 | X_1) \right] = I(X_1 \land X_2)
\]

\[
(m = 2) = D(P_{X_1X_2} \| P_{X_1} \times P_{X_2})
\]
Shared Information and Kullback-Leibler Divergence

\[SI(X_1, \ldots, X_m) = H(X_1, \ldots, X_m) - \max_{B \in \mathcal{B}} \lambda B H(X_B | X_{B^c}) \]

\[(m = 2) = H(X_1, X_2) - \left[H(X_1|X_2) + H(X_2|X_1) \right] = I(X_1 \land X_2) \]

\[(m = 2) = D(P_{X_1X_2}||P_{X_1 \times X_2}) \]

\[(m \geq 2) = \min_{2 \leq k \leq m} \min_{A_k = (A_1, \ldots, A_k)} \frac{1}{k - 1} D\left(P_{X_1 \ldots X_m}|| \prod_{i=1}^{k} P_{X_{A_i}} \right) \]

and equals 0 iff \(P_{X_1 \ldots X_m} = P_{X_A} P_{X_{Ac}} \) for some \(A \subset M \).

Does shared information have an operational significance as a measure of the mutual dependence among the rvs \(X_1, \ldots, X_m \)?
Outline

Two-terminal model: Mutual information

Interactive communication and common randomness

Applications
For $L = (X_1, \ldots, X_m)$, Theorem 2 gives

$$H(F) \geq H(X_1, \ldots, X_m) - SI(X_1, \ldots, X_m) - m\nu,$$

which, for $m = 2$, is

$$H(F) \geq H(X_1|X_2) + H(X_2|X_1) - 2\nu.$$

[Slepian – Wolf]
Recovery of a Single Signal

\[L \]

\[X_1 \]
\[X_2 \]
\[X_m \]
\[L_1 \]
\[L_2 \]
\[L_m \approx L \]

[COMMUNICATION NETWORK]
\sim \ = \ L
\[F \]

[S. Nitinawat-P. Narayan]

With \(L = X_1 \), by Theorem 2

\[H(F) \geq H(X_1) - SI(X_1, \ldots, X_m) - m\nu, \]

which, for \(m = 2 \), gives

\[H(F) \geq I(X_1 \wedge F) \geq H(X_1|X_2) - 2\nu. \]

[Slepian-Wolf]
Terminals \(1, \ldots, m\) generate CR \(L\) satisfying the *secrecy condition*

\[I(L \land F) \approx 0. \]

By Theorem 2,

\[H(L) \approx H(L|F) \leq SI(X_1, \ldots, X_m) + m\nu. \]

- Secret key generation [I. Csiszár-P. Narayan]
- Secure function computation [H. Tyagi-P. Narayan]
Shared information and a Hypothesis Testing Problem

\[SI(X_1, \ldots, X_m) = \min_{2 \leq k \leq m} \min_{A_k=(A_1,\ldots,A_k)} \frac{1}{k-1} D\left(P_{X_1\ldots X_m} \parallel \prod_{i=1}^{k} P_{X_{A_i}} \right) \]

- Related to exponent of "\(P_e \)-second kind" for an appropriate binary composite hypothesis testing problem, involving restricted CR \(L \) and communication \(F \).

In Closing ...

¿ How useful is the concept of *shared information* ?

A: Operational meaning in specific cases of distributed processing ...
In Closing ...

¿ How useful is the concept of *shared information*?

A: Operational meaning in specific cases of distributed processing ...

For instance

- Consider n i.i.d. repetitions (say, in time) of the rvs X_1, \ldots, X_m.
- Data at time instant t is X_{1t}, \ldots, X_{mt}, $t = 1, \ldots, n$.
- Terminal i observes the i.i.d. data (X_{1i}, \ldots, X_{ni}), $i \in \mathcal{M}$.
- Shared information-based results are asymptotically tight (in n):
 - *Minimum rate* of communication for omniscience.
 - *Maximum rate* of a secret key.
 - *Necessary condition* for secure function computation.
 - Several problems in information theoretic cryptography.
Shared Information: Many Many Open Questions ...

- Significance in network source and channel coding?
- Interactive communication over noisy channels?
- Communication links described by (an undirected) graph?
- Continuous-time models?

...