Models of collective inference

Laurent Massoulié (Microsoft Research-Inria Joint Centre)
Mesrob I. Ohannessian (University of California, San Diego)
Alexandre Proutière (KTH Royal Institute of Technology)
Kuang Xu (Stanford)
Outline

- Spreading news to interested users
 How to jointly achieve news
 - categorization by users, and
 - dissemination to interested users
 [LM, M. Ohanessian, A. Proutière, Sigmetrics 15]

- Information-processing systems
 Treatment of inference tasks by pool of agents with limited capacities (ex: crowdsourcing)
 [LM, K. Xu 15]
A sequential decision problem

- Unknown latent variable $\theta \in T$ (news topic)
- Nodes $u \in U$, if selected, generate feedback $Y_u \sim Ber(p_{u\theta})$ (appreciation of recommended news)
- Goal: sequentially select nodes U^1, \ldots, U^I up to stopping time I to minimize $\mathbb{E}[C_0 + C_1]$

where for $U^I = \{U^1, \ldots, U^I\}$

$$C_0 = \sum_{u \notin U^I} (2p_{u\theta} - 1)_+ \quad \text{(missed opportunities)}$$

$$C_1 = \sum_{u \in U^I} (1 - 2p_{u\theta})_+ \quad \text{(spam)}$$

Assumption: partially known preferences $g_{ut} = 1\{p_{ut} > \frac{1}{2}\}, \ t \in T, \ u \in U$
Related Work

• Multi-Armed Bandits (MAB):
 – Contextual [Li et al. 2010]
 – Infinitely many arms [Berry et al. 1997]
 – Secretary problem [Ferguson 1989]
 – Best arm identification [Kaufmann et al. 2014]

• Distinguishing features:
 – Partial information on parameters
 – Finitely many, exhaustible arms
 – Stopping time, trades off two regrets
 – Find all good arms, not the best
Pseudo-Bayesian Updates

\[g_{ut} = 1\{p_{ut} > \frac{1}{2}\} \]

- Pseudo-preferences:
 \[q_{ut} = \frac{1 + r}{2} g_{ut} + \frac{1 - r}{2} (1 - g_{ut}) \]

- Initial prior:
 \[\nu_t^0 = \frac{1}{|\mathcal{T}|} \]

- Pseudo-posterior update:
 \[
 \nu_t^{i+1} = \frac{\nu_t^i[q_{U_{it}}X_i + (1 - q_{U_{it}})(1 - X_i)]}{\sum_{s \in \mathcal{T}} \nu_s^i[q_{U_{is}}X_i + (1 - q_{U_{is}})(1 - X_i)]}
 \]
Greedy-Bayes Algorithm

- Initialize pseudo-preferences and prior
- At each step i
 - Make greedy selection $U^i \in \arg\max_{u \neq U^1, \ldots, U^{i-1}} \sum_{t \in \mathcal{T}} g_{ut} \nu^i_t$
 - Based on response X^i, update pseudo-posterior $\nu^{i+1}_t, \forall t \in \mathcal{T}$
 - Stop if $\nu^{i+1}\left\{ t : \exists u \notin U^i, g_{ut} = 1 \right\} \leq \epsilon^{\text{threshold}}$
How good is Greedy-Bayes?

• Separation: \[|p_{ut} - \frac{1}{2}| \geq \delta \quad \forall u, t \]

• Main Theorem:
 – If \(r = \Theta(\delta) \) and \(\log \frac{1}{\epsilon} = \Omega \left(\log (|U| \cdot |T|) \right) \)
 – Then, under Greedy-Bayes:
 \[
 \mathbb{E}[C_0 + C_1] = O \left(\frac{|T|}{\delta^2} \log (|U| \cdot |T|) \right)
 \]
 – Moreover \(p_{ut} \) can be such that for any algorithm (uniformly at least as good as Greedy-Bayes):
 \[
 \mathbb{E}[C_0 + C_1] = \Omega \left(\frac{|T|}{\delta} \log (|U|) \right)
 \]
The tool: Bernstein’s inequality for martingales

[Freedman’75]

Martingale $\{M^i\}_{i \geq 1}$ with compensator $\{\langle M \rangle^i\}$ and increments bounded by r satisfies for any stopping time I

$$\forall L, z > 0, \ P \left(\max_{i \leq I} |M^i| \geq z, \langle M \rangle^I \leq L \right) \leq 2e^{-\frac{z^2}{2(L + rz/3)}}$$
Proof sketch

bound on spamming regret C_1

\[C_1 \leq \sum_{i=1}^I 1\{\text{spam at } i\} \leq |U| \]

Goal:

\[\mathbb{P} \left\{ \sum_{i=1}^I Z_i > x \right\} = o \left(\frac{1}{|U|} \right) \]

Key quantity:

\[R^i = \log \frac{\nu^i_{\Theta}}{\nu^i \{ t : \exists u \notin U^i, g_{ut} = 1, g_{u\Theta} = 0 \}} \]

\[\mathbb{P} \left\{ \sum_{i=1}^I Z_i > x \right\} = \sum_{i=1}^{\left| U \right|} \mathbb{P} \left\{ Z_i = 1, \sum_{j=1}^i Z_j = x \right\} \]

\[\leq \sum_{i=1}^{\left| U \right|} \mathbb{P} \left\{ R^i \leq \log(1/\epsilon), \sum_{j=1}^i Z_j = x \right\} \]
Proof sketch
bound on spamming regret C_1

Martingale analysis of $R^i : R^i = A^i + M^i$ where M^i martingale with increments bounded by $O(\delta)$, and for some $\tilde{Z}^i \geq Z^i$:

$$A^i \geq \Omega \left(\frac{\delta^2}{\tau} \sum_{j=1}^{i} \tilde{Z}^j \right),$$
$$\langle M \rangle^i \leq O \left(\frac{\delta^2}{\tau} \sum_{j=1}^{i} \tilde{Z}^j \right).$$

Hence:

$$P \left\{ R^i \leq \log(1/\epsilon), \sum_{j=1}^{i} Z^j = x \right\} \leq \sum_{\ell \geq x} P \left\{ R^i \leq \log(1/\epsilon), \lfloor \sum_{j=1}^{i} \tilde{Z}^j \rfloor = \ell \right\} \leq \sum_{\ell \geq x} P \left\{ M^i \leq -\Omega(\delta^2 \ell/\tau) + \log(1/\epsilon), \ldots \right\} \leq \sum_{\ell \geq x} P \left\{ \langle M \rangle^i \leq O(\delta^2 \ell/\tau) \right\} \rightarrow \text{then apply Freedman’s inequality}$$
Lower regret with extra structure

• Topic that many like who dislike other topics

\((*)\) \(\forall t \neq \theta, |\{u : g_{u\theta} = 1, g_{ut} = 0\}| \geq c \log |U|\)

• **Theorem**: Under \((*)\), if \(c = \Omega\left(\frac{1}{\delta^2}\right)\) then for topic \(\theta\)

Greedy-Bayes has regret \(O\left(\frac{|T|}{\delta^2}\right) \rightarrow \text{Constant in } |U|\)

• Moreover \(p_{ut}\) can be such that \(E[C_0 + C_1] = \Omega\left(\frac{|T|}{\delta}\right)\)

for any algorithm (uniformly at least as good as Greedy-Bayes)

• Other conditions give \(\log|T|\) instead of \(|T|\)
Greedy-Bayesian Algorithm

• Given $|U| \times |T|$ matrix $g_{ut} = 1\{p_{ut} > \frac{1}{2}\}$:
 – Initialize pseudo-preferences and prior.
 – At each step i
 • Make a greedy selection:

 $$\text{Sample } t^* \sim \nu^i, \ U^i \leftarrow \arg \max_{u \neq U^1, \ldots, U^{i-1}} g_{u^*t^*}$$

 • Observe the response X^i.
 • Update the pseudo-posterior: $\nu^{i+1}_t, \forall t \in T$.
 – Stop if:
 $$\nu^{i+1}_t \{ t : \exists u \neq U^1, \ldots, U^{i-1}, g_{ut} = 1 \} \leq \epsilon$$
Example

Groups of users, each prefers 1 topic

An additional topic is **pure spam**

When the truth is not spam, exploration has to continue

Easier Case

Groups of users, each prefers ½ of all topics

Topic identified “by bisection”, regret of order $\log |T|$
Summary

• Push-based news dissemination
• Extension of multi-armed bandit ideas
• **Greedy-Bayes** algorithm
 – *Simple yet provably order-optimal*
 – *Robust*, uses only partial preference information
 – *Adaptive* to structure
• Implications
 – Benchmark for push-pull decentralization
 – Importance of leveraging negative feedback
Open questions

• Is there a simple characterization in terms of \(\{p_{ut}\}, \ t \in T, \ u \in U \) of the optimal regret?

• Is Greedy-Bayes (or Thompson Sampling) order-optimal under more general conditions?

→ partial answers:
Toy examples where greed fails to probe highly informative nodes with high expected contribution to regret
Hope for somewhat general conditions under which Greedy Bayes performs near-bisection
Capacity of Information Processing Systems

- Systems that perform inference/categorization tasks, based on queries to resource-limited agents
 - Crowd sourcing → Human experts
 - Machine learning (e.g., clustering) → Cloud clusters
 - Medical lab diagnostics → Specialized lab machines

- Output based on large number of noisy inspections

Goal: identify efficient processing which uses minimum amount of resources
Problem Formulation

- Jobs arrive to system as unit rate Poisson process
- Job i has hidden label H_i in finite set \mathcal{H}
- H_i generated i.i.d from distribution, π

$H_i \sim \pi$

$H_i = \text{‘cat’}$
(hidden)
Problem Formulation

• Goal: output estimated label, H_i', s.t.

$$P(H_i' \neq h | H_i = h) \leq \delta, \quad \forall h$$
System resources

- m experts of which r_k fraction is type-k
- Type-k expert when inspecting type h- job produces random response X:
 \[P(X = x) = f(h, k, x) \]
 for distributions \{ $f(h, k, *)$ \} assumed known
- Single job inspection occupies an expert for time $\text{Exp}(1)$

\[H_i' = \max_h \prod_{j=1}^{n} f(h, k_j, x_j) \]
Learning System

$H_i \sim \pi$

$H_i = 'cat'$ (hidden)

$P(\text{error}) \leq \delta$

$(x,1)$

$1 \quad 1 \quad 2 \quad 2 \quad 2 \quad K \quad K$

$m \cdot r_2$
Inspection Policy

• An inspection policy, ϕ, decides

 1. Which experts to inspect which jobs
 - based on past history

 2. When a job will be allowed to depart from the system
Capacity Efficiency

- \(m_\phi (\pi, \delta) \) = smallest number of experts needed for stability under
 - policy \(\phi \)
 - job type distribution \(\pi \)
 - Estimation error \(\delta \)

- Let \(m^*(\pi, \delta) = \min_\phi m_\phi (\pi, \delta) \)

Definition: \(\phi \) is capacity efficient, if for all \(\pi \)

\[
\lim_{\delta \to 0} \frac{m_\phi (\pi, \delta)}{m^* (\pi, \delta)} = 1
\]
Main Result

Theorem

1. There exists a capacity efficient policy \(\phi \), s.t.

\[
\sup_{\pi} \frac{m_{\phi}(\pi, \delta)}{m^{*}(\pi, \delta)} \leq 1 + c \sqrt{\frac{\ln \ln(1/\delta)}{\ln(1/\delta)}} = 1 + \tilde{O}\left(\frac{1}{\sqrt{\ln(1/\delta)}}\right)
\]

2. The policy \(\phi \) does not require knowledge of \(\pi \)
Main Result (cont.)

• Makes no restrictions on response distributions \(\{f(h,k, *)\} \)

• Distribution \(\pi \) may be unknown and change over time

→ advantageous to have
 – Upper bound independent of \(\pi \)
 – \(\pi \)-oblivious inspection policy

• Constant \(c \) is explicit (but messy), and is proportional to
 – \(1/ (\min_k r_k) \)
 – total number of labels
 – Ratio between KL-divergences among distributions of inspection results

\[
\sup_{\pi} \frac{m_{\phi}(\pi, \delta)}{m^*(\pi, \delta)} \leq 1 + c \sqrt{\frac{\ln \ln(1/\delta)}{\ln(1/\delta)}}
\]
Related Work

• Classical sequential hypothesis testing
 – Single expert by Wald 1945, Multi-expert model by Chernoff 1959
 – Costs measured by sample complexity
 – Does not involve finite resource constraint or simultaneous processing of multiple jobs

• Max-Weight policy in network resource allocation
 – Policy contains a variant of Max-Weight policy as a sub-module
 – Need to work with approximate labels and resolve synchronicity issues
Proof Outline

Main Steps:

1. Translate estimation accuracy into service requirements

2. Design processing architecture to balance contention for services among different job labels

Technical ingredients:

1. “Min-weight” adaptive policy using noisy job labels
2. Fluid model to prove stability over multiple stages
From Statistics to Services

• Consider single job i
• Suppose i leaves system upon receiving N inspections, with history

$$Y_N = \{(X_1, K_1), (X_2, K_2), \ldots (X_N, K_N)\}$$

• Write $f(h, y) = P(\text{seeing history } y|H_i = h)$
• Define likelihood ratio: $S_N(h, l) = \ln \frac{f(h, Y_N)}{f(l, Y_N)}$
Lemma (Sufficiency of a Likelihood Ratio Test)
Define event
\[\mathcal{B} = \{ \exists H' \text{ s.t. } S_N(H', l) \geq \ln(|\mathcal{H}|/\delta), \quad \forall l \neq H' \} \]
Then
\[\mathbf{P}(H' \neq h|\mathcal{B}, H_i = h) \leq \delta, \quad \forall h. \]

Lemma (Necessity)
If decision rule yields error $< \delta$ then it must be that
\[\mathbf{E}(S_N(H_i, l)) \geq \ln(1/\delta), \quad \forall l \neq H_i \]
From Statistics to Services

• For true job type $H_i=h$, “service requirement” of job i:
 For all $l \neq h$ need to inspect job i until $S(h,l)$ reaches $\ln(1/\delta)$

 \rightarrow Job i arrives with vector of “workloads” with initial level $= \ln(1/\delta)$ for all coordinates $l \neq h$

• Job of true type h when inspected by type-k expert receives “service” $\ln \left(\frac{f(h,k,X_j)}{f(l,k,X_j)} \right)$

 \rightarrow Expected service amount: KL-divergence

$$D(h, l, k) = \mathbb{E}_h \left(\ln \frac{f(h,k,X)}{f(l,k,X)} \right)$$
Lower bound on performance

• If we knew true labels of all jobs and label distribution π, we would need m as large as solution $\tilde{m}(\pi, \delta)$ of LP:

$$\text{minimize} \quad m$$

$$\text{s.t.} \quad \sum_h n_{h,k} \pi_h \leq r_k m, \quad \forall k,$$

$$\sum_k n_{h,k} D(h, l, k) \geq \ln(1/\delta), \quad \forall h \neq l$$

$$n_{h,k} \geq 0, \quad \forall h, k$$

Where $n_{h,k}$: Number of inspections of h-labeled job by type-k expert

\rightarrow Solution of LP, $\tilde{m}(\pi, \delta) = C \ln\left(\frac{1}{\delta}\right)$: lower bound on optimal capacity requirement
Processing Architecture

• Preparation stage: crude estimates of types from randomized inspections

• Adaptive stage: use crude estimates to “boot-strap” adaptive allocation policy for bulk of inspections and refinement of type estimates
 – Generate approximately optimal $n_{h,k}$ as in LP

• Residual stage: fix poorly learned labels from Adaptive Stage with randomized inspections
System size requirements

- **Preparation stage**
 - Short: $\approx \ln \ln \left(\frac{1}{\delta} \right)$ inspections
 - produces rough estimates

- **Adaptive stage**
 - Long: $\approx \ln \left(\frac{1}{\delta} \right) + \sqrt{\ln \left(\frac{1}{\delta} \right) \ln \ln \left(\frac{1}{\delta} \right)}$
 - produces good estimates with high probability

- **Residual stage**
 - Long $\approx \ln \left(\frac{1}{\delta} \right)$
 - produces good estimates $\frac{1}{\ln \left(\frac{1}{\delta} \right)}$
 - only invoked with small probability
System size requirements

• Total overhead compared to m^*

$$
\ln \ln(1/\delta) + \sqrt{\ln(1/\delta) \ln \ln(1/\delta)} + \ln(1/\delta) \ast \ln^{-1}(1/\delta)
$$

$$
= \tilde{O}(\sqrt{\ln(1/\delta)}) = \tilde{O} \left(\frac{1}{\sqrt{\ln(1/\delta)}} \right) m^*(\pi, \delta)
$$
Conclusions

• Considered resource allocation issues for “learning systems”

• Leads to unusual combination of sequential hypothesis testing with network resource scheduling

• Outlook
 – Simpler solutions with better performance?
 – Impact of number of types, and structure of expertise?