Phase Transitions in Random Hypergraphs

Mihyun Kang

Joint work with Oliver Cooley and Christoph Koch
Emergence of Giant Component in $G(n, p)$

$L_1(d) = \# \text{ vertices in the largest component with } d = p \cdot (n - 1)$
Emergence of Giant Component in $G(n, p)$

$L_1(d) = \# \text{ vertices in the largest component with } d = p \cdot (n - 1)$

Theorem

- If $d < 1$, whp $L_1(d) = O(\log n)$
- If $d = 1$, whp $L_1(d) = \Theta(n^{2/3})$
- If $d > 1$, whp $L_1(d) = \Theta(n)$

$O(\log n)$
Emergence of Giant Component in $G(n, p)$

$L_1(d) = \# $ vertices in the largest component with $d = p \cdot (n - 1)$

Theorem

- If $d < 1$, whp $L_1(d) = O(\log n)$
- If $d = 1$, whp $L_1(d) = \Theta(n^{2/3})$
- If $d > 1$, whp $L_1(d) = \Theta(n)$
Emergence of Giant Component in $G(n, p)$

$L_1(d) = \#\text{ vertices in the largest component with } d = p \cdot (n - 1)$

Theorem [Erdős–Rényi 60]

- If $d < 1$, whp $L_1(d) = O(\log n)$
- If $d = 1$, whp $L_1(d) = \Theta(n^{2/3})$
- If $d > 1$, whp $L_1(d) = \Theta(n)$

$O(\log n) \quad \Theta(n^{2/3}) \quad \Theta(n)$
Let \(d = p \cdot (n - 1) = 1 + \epsilon \) for \(\epsilon = o(1) \).
Critical Phenomenon in $G(n, p)$

Let $d = p \cdot (n - 1) = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem

[BOLLOBÁS 84; ŁUCZAK 90; ALDOUS 97]

- If $\epsilon^3 n \to -\infty$, whp
 \[L_1(d) \sim 2\epsilon^{-2} \log \epsilon^3 n \ll n^{2/3} \]

\[
\begin{align*}
\text{If } &\epsilon^3 n \to -\infty, \text{ whp} & L_1(d) &\sim 2\epsilon^{-2} \log \epsilon^3 n &\ll n^{2/3} \\
\end{align*}
\]
Critical Phenomenon in $G(n, p)$

Let $d = p \cdot (n - 1) = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem \[\text{Bollobás 84; Łuczak 90; Aldous 97} \]

- If $\epsilon^3 n \to -\infty$, whp $L_1(d) \sim 2\epsilon^{-2} \log \epsilon^3 n \ll n^{2/3}$
- If $\epsilon^3 n \to \lambda \in (-\infty, \infty)$, whp $L_1(d) = \Theta(n^{2/3})$
Critical Phenomenon in $G(n, p)$

Let $d = p \cdot (n - 1) = 1 + \epsilon$ for $\epsilon = o(1)$.

Theorem

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\epsilon^3 n \to -\infty$, whp</td>
<td>$L_1(d) \sim 2\epsilon^{-2} \log \epsilon^3 n \ll n^{2/3}$</td>
</tr>
<tr>
<td>If $\epsilon^3 n \to \lambda \in (-\infty, \infty)$, whp</td>
<td>$L_1(d) = \Theta(n^{2/3})$</td>
</tr>
<tr>
<td>If $\epsilon^3 n \to +\infty$, whp</td>
<td>$L_1(d) \sim 2\epsilon n \gg n^{2/3}$</td>
</tr>
</tbody>
</table>

Diagrams:

- $\ll n^{2/3}$
- $\Theta(n^{2/3})$
- $\gg n^{2/3}$
- $\ll n^{2/3}$
Asymptotic Normality of Giant Component

Assume \(d = \rho \cdot (n - 1) > 1 \) and \(0 < \rho < 1 \) satisfies \(1 - \rho = e^{-d \cdot \rho} \).

Let \(\mu := \rho \cdot n \) and \(\sigma^2 := \frac{\rho (1 - \rho)}{(1 - d (1 - \rho))^2} \cdot n \).
Asymptotic Normality of Giant Component

Assume $d = \rho \cdot (n - 1) > 1$ and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$.

Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-d(1-\rho))^2} \cdot n$

Central limit theorem

Let $N(0, 1)$ denote the standard normal distribution. Then

$$\frac{L_1(d) - \mu}{\sigma} \xrightarrow{d} N(0, 1)$$

for d constant [Stepanov 70; Behrisch–Coja-Oghlan–K. 09]

for $(d - 1)^3 n \to \infty$ [Pittel–Wormald 05; Bollobás–Riordan 12]

Proof techniques

- Counting connected graphs inside-out [PW 05]
- Stein’s method [BC-OK 09]
- Random walk [BR 12]
Local Limit Theorem for Giant Component

Assume $d = p \cdot (n - 1) > 1$ and $0 < \rho < 1$ satisfies $1 - \rho = e^{-d \cdot \rho}$.

Let $\mu := \rho \cdot n$ and $\sigma^2 := \frac{\rho(1-\rho)}{(1-d(1-\rho))^2} \cdot n$

Theorem [Stepanov 70; Pittel-Wormald 05; Behrisch-Coja-Oghlan-K 09]

Let $d > 1$ be constant and $I \subset \mathbb{R}$ compact. For any $k \in \mathbb{N}$ with $\sigma^{-1}(k - \mu) \in I$

$$\mathbb{P}[L_1(d) = k] \sim \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(k - \mu)^2}{2\sigma^2}\right)$$
Local Limit Theorem for Giant Component

Assume \(d = p \cdot (n - 1) > 1 \) and \(0 < \rho < 1 \) satisfies \(1 - \rho = e^{-d \cdot \rho} \).

Let \(\mu := \rho \cdot n \) and \(\sigma^2 := \frac{\rho(1 - \rho)}{(1 - d(1 - \rho))^2} \cdot n \)

Theorem \[\text{Stepanov 70; Pittel–Wormald 05; Behrisch–Coja-Oghlan–K. 09} \]

Let \(d > 1 \) be constant and \(I \subset \mathbb{R} \) compact. For any \(k \in \mathbb{N} \) with \(\sigma^{-1}(k - \mu) \in I \)

\[
\mathbb{P}[L_1(d) = k] \sim \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(k - \mu)^2}{2\sigma^2}\right)
\]

LLT for joint distribution of \(\# \) vertices and \(\# \) edges

- Recurrence formulas for \(\# \) connected graphs \[S 70 \]
- Counting connected graphs inside-out \[PW 05 \]
- Two round exposure and smoothing (for \(L_1(d) \)) \[BC-OK 09 \]
- Fourier analysis (for joint distribution) \[BC-OK 14 \]
Part II

Random k-uniform Hypergraph $H_k(n, p), \ k \geq 2$
Vertex connectivity

A vertex v is said to be reachable from a vertex w if there is a sequence E_1, \ldots, E_ℓ of hyperedges such that $v \in E_1$, $w \in E_\ell$ and $|E_i \cap E_{i+1}| \geq 1$ for each $i = 1, \ldots, \ell - 1$.

The reachability is an equivalence relation, and the equivalence classes are called components.
Phase Transition in $H_k(n, p)$

$L_1(d) = \# \text{ vertices in the largest component, where } d = p \cdot (k - 1) \cdot \binom{n-1}{k-1}$

Emergence of giant component

- If $d < 1$, whp $L_1(d) = O(\log n)$
- If $d > 1$, whp $L_1(d) = \Theta(n)$
Phase Transition in $H_k(n, p)$

$L_1(d) = \# \text{ vertices in the largest component}, \text{ where } d = p \cdot (k - 1) \cdot \binom{n-1}{k-1}$

Emergence of giant component [Schmidt-Pruzan–Shamir 85]

- If $d < 1$, whp $L_1(d) = O(\log n)$
- If $d > 1$, whp $L_1(d) = \Theta(n)$

Local limit theorem for ($\# \text{ vertices, } \# \text{ edges}$) in the giant component

- $(d - 1)^3 n \to \infty$, $(d - 1)^3 n = o\left(\frac{\log n}{\log \log n}\right)$ [Karoński–Łuczak 02]
- $d > 1$ constant [Behrisch–Coja-Oghlan–K. 14]
- $(d - 1)^3 n \to \infty$, $d - 1 \to 0$ [Bollobás–Riordan 14+]
Counting Connected k-uniform Hypergraphs

... with n vertices and m edges

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m - \frac{n}{k-1} \ll \frac{\log n}{\log \log n}$</td>
<td>[Karoński–Łuczak 02]</td>
</tr>
<tr>
<td>$m - \frac{n}{k-1} = \Theta(n)$</td>
<td>[Behrisch–Coja-Oghlan–K. 14]</td>
</tr>
<tr>
<td>$m - \frac{n}{k-1} = o(n)$</td>
<td>[Bollobás–Riordan 14+]</td>
</tr>
<tr>
<td>$n^{1/3} \log^2 n \ll m - \frac{n}{2} \ll n$ for $k = 3$</td>
<td>[Sato–Wormald 14+]</td>
</tr>
</tbody>
</table>

Proof techniques

- Combinatorial enumeration [KŁ02]
- Local limit theorem for the giant in $H_k(n, p)$ [BC-OK 14; BR 14+]
- Counting connected graphs inside-out (cores and kernels) [SW 14+]
Let $1 \leq j \leq k - 1$.

- A j-element subset J_1 is said to be reachable from another j-set J_2 if there is a sequence E_1, \ldots, E_ℓ of hyperedges such that $J_1 \subseteq E_1$, $J_2 \subseteq E_\ell$, and $|E_i \cap E_{i+1}| \geq j$ for each $i = 1, \ldots, \ell - 1$.

The reachability is an equivalence relation on j-sets, and the equivalence classes are called j-connected component.
Let $1 \leq j \leq k - 1$.

- A j-element subset J_1 is said to be reachable from another j-set J_2 if there is a sequence E_1, \ldots, E_ℓ of hyperedges such that $J_1 \subseteq E_1$, $J_2 \subseteq E_\ell$ and $|E_i \cap E_{i+1}| \geq j$ for each $i = 1, \ldots, \ell - 1$.

 e.g. $k = 3$, $j = 2$

- The reachability is an equivalence relation on j-sets, and the equivalence classes are called j-connected component.
Emergence of Giant j-Component

$L_j(d) = \# j$-sets in the largest j-component, where $d = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \binom{n-j}{k-j}$

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Cooley–Person–K. 13+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If $d < 1$, whp</td>
<td>$L_j(d) = O(\log n)$</td>
</tr>
<tr>
<td>• If $d > 1$, whp</td>
<td>$L_j(d) = \Theta(n^i)$</td>
</tr>
</tbody>
</table>
Emergence of Giant j-Component

Let $L_j(d) = \# j$-sets in the largest j-component, where $d = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \frac{n-j}{k-j}$.

Theorem

- If $d < 1$, whp $L_j(d) = O(\log n)$
- If $d > 1$, whp $L_j(d) = \Theta(n^j)$

Remarks

- Short alternative proof of [Schmidt-Pruzan–Shamir 85]
- Extension of Depth-First Search approach of [Krivelevich–Sudakov 13]

When $d = 1 + \epsilon$ for $\epsilon \in (0, 1)$,
whp \exists a loose path of length $\Omega(\epsilon^2 n)$.
Critical Phase in $H_k(n, p)$

$L_j(d) = \# j$-sets in the largest j-component

where $d = p \cdot \left(\binom{k}{j} - 1\right) \cdot \binom{n-j}{k-j}$ and $d = 1 + \epsilon$ for $\epsilon = o(1)$

Theorem [Cooley–K.–Koch 14+]

- If $\epsilon^3 n \to -\infty$, whp $L_j(d) = O(\epsilon^{-2} \log n)$
- If $\epsilon^3 n \to +\infty$, whp $L_j(d) \sim 2 \epsilon \frac{1}{\binom{k}{j} - 1} \binom{n}{j}$
Critical Phase in $H_k(n, p)$

$L_j(d) = \# j\text{-sets in the largest } j\text{-component}$

where $d = p \cdot \left(\binom{k}{j} - 1 \right) \cdot \binom{n-j}{k-j}$ and $d = 1 + \epsilon$ for $\epsilon = o(1)$

Theorem [Cooley–Koch 14+]

- If $\epsilon^3 n \to -\infty$, whp $L_j(d) = O(\epsilon^{-2} \log n)$
- If $\epsilon^3 n \to +\infty$, whp $L_j(d) \sim 2 \epsilon \frac{1}{\binom{k}{j} - 1} \binom{n}{j}$

Proof techniques

- Extension of Breadth-First Search, Galton-Watson branching process and second moment approach of [Bollobás–Riordan 12+]
- Smooth boundary lemma
Part III

Proof Ideas for Supercritical Regime in $H_k(n, p)$

$k \geq 2, \ j \geq 1$
Heuristic for Threshold

- Breadth-First Search process & Galton-Watson branching process
Heuristic for Threshold

- Breadth-First Search process & Galton-Watson branching process

- Begin with a j-set J

$\exists (n - j \cdot k - j)$ k-sets containing J, each of which is an edge with prob. p

So, $E(\#j$-sets discovered from J in one generation) = $p \cdot ((k \cdot j) - 1) \cdot (n - j \cdot k - j)$
Heuristic for Threshold

- Breadth-First Search process & Galton-Watson branching process

- Begin with a \(j \)-set \(J \)

- Discover all edges that contain the \(j \)-set \(J \)
 \[\exists \binom{n-j}{k-j} \text{ \(k \)-sets containing } J \text{, each of which is an edge with prob. } p \]
Heuristic for Threshold

- Begin with a j-set J

- Discover all edges that contain the j-set J
 \[\exists \binom{n-j}{k-j} \text{k-sets containing } J, \text{ each of which is an edge with prob. } p \]

- For each edge E, discover $\binom{k}{j} - 1$ new j-sets contained in E
 (It could be fewer if some of these j-sets were discovered earlier)
Heuristic for Threshold

- Breadth-First Search process & Galton-Watson branching process

- Begin with a \(j \)-set \(J \)

- Discover all edges that contain the \(j \)-set \(J \)
 \[\exists \binom{n-j}{k-j} k \text{-sets containing } J, \text{ each of which is an edge with prob. } p \]

- For each edge \(E \), discover \(\binom{k}{j} - 1 \) new \(j \)-sets contained in \(E \)
 (It could be fewer if some of these \(j \)-sets were discovered earlier)

So, \[\mathbb{E}(\text{# \(j \)-sets discovered from } J \text{ in one generation}) = p \cdot \binom{k}{j} - 1 \cdot \binom{n-j}{k-j} \]
Heuristic for Threshold

- Breadth-First Search process & Galton-Watson branching process

- Begin with a j-set J

- Discover all edges that contain the j-set J
 \[\exists \binom{n-j}{k-j} k\text{-sets containing } J, \text{ each of which is an edge with prob. } p \]

- For each edge E, discover $\binom{k}{j} - 1$ new j-sets contained in E
 (It could be fewer if some of these j-sets were discovered earlier)

So, \[\mathbb{E}(\# \text{ j-sets discovered from } J \text{ in one generation}) = p \cdot \left(\binom{k}{j} - 1\right) \cdot \binom{n-j}{k-j} \]
Proof Sketch

(1) Breadth-First Search
(1) Breadth-First Search

Given j-set J
construct spanning tree T_J
of j-component C_J
consisting of j-sets as vertices
Proof Sketch

(1) Breadth-First Search

Given j-set J
construct spanning tree T_J
of j-component C_J
consisting of j-sets as vertices
Proof Sketch

(1) Breadth-First Search

Given j-set J

construct spanning tree T_J

of j-component C_J

consisting of j-sets as vertices

(2) Coupling T_J from above with Galton-Watson branching process

with offspring distribution $((\binom{k}{j} - 1)Bi(\binom{n-j}{k-j}, p))$

$$\rho := \mathbb{P}(\text{process survives})$$

$$1 - \rho = \sum_{\ell} \mathbb{P}(Bi(\binom{n-j}{k-j}, p) = \ell) \cdot (1 - \rho)^{\ell((\binom{k}{j}) - 1)}$$
Proof Sketch

(1) Breadth-First Search

Given \(j \)-set \(J \)
construct spanning tree \(T_J \)
of \(j \)-component \(C_J \)
consisting of \(j \)-sets as vertices

(2) Coupling \(T_J \) from above with Galton-Watson branching process
with offspring distribution \(\binom{k}{j} - 1 \) \(Bi(\binom{n-j}{k-j}, p) \)

\[\varrho := \mathbb{P} \text{(process survives)} \]

\[1 - \varrho = \sum_{\ell} \mathbb{P} (Bi(\binom{n-j}{k-j}, p) = \ell) \cdot (1 - \varrho)^{\ell(\binom{k}{j} - 1)} \]

\[\rightarrow \varrho \sim \frac{2\epsilon}{(k)^{j-1}} \]
Proof Sketch – cont.

(3) First moment argument

- Let $N := \# j$-sets in 'large' j-components with $\geq L := \epsilon n^j$ many j-sets

- Using upper and lower couplings with Galton-Watson branching process,

$$\mathbb{E}(N) \sim \frac{2\epsilon}{\binom{k}{j} - 1} \binom{n}{j}$$
Proof Sketch – cont.

(3) First moment argument

- Let \(N := \# j\text{-sets in 'large' } j\text{-components} \) with \(\geq L := \epsilon n^j \) many \(j\text{-sets} \)

- Using upper and lower couplings with Galton-Watson branching process,

\[
\mathbb{E}(N) \sim \frac{2\epsilon}{\binom{k}{j} - 1} \binom{n}{j}
\]

(4) Second moment argument

IF we could show

\[
\mathbb{E}(N^2) \sim (\mathbb{E}(N))^2,
\]

THEN

\[
N \sim \frac{2\epsilon}{\binom{k}{j} - 1} \binom{n}{j}
\]
Proof Sketch – cont.

(3) First moment argument

- Let $N := \# j$-sets in 'large' j-components with $\geq L := \epsilon n^j$ many j-sets
- Using upper and lower couplings with Galton-Watson branching process,
 \[
 \mathbb{E}(N) \sim \frac{2\epsilon}{k^j - 1} \binom{n}{j}
 \]

(4) Second moment argument

IF we could show
\[
\mathbb{E}(N^2) \sim (\mathbb{E}(N))^2,
\]
THEN
\[
N \sim \frac{2\epsilon}{k^j - 1} \binom{n}{j}
\]

(5) Two round exposure

Almost all j-sets in 'large' j-components are in a single j-component
More on Second Moment Argument

Need to consider \# pairs of j-sets in 'large' j-components

More on Second Moment Argument

Need to consider \# pairs of j-sets in 'large' j-components
More on Second Moment Argument

Need to consider \# pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C_1 \)
More on Second Moment Argument

Need to consider \# pairs of j-sets in 'large' j-components

- Fix j-set J_1 and grow its j-component C'_1 until hit stopping conditions

\[S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \} \]
More on Second Moment Argument

Need to consider \# pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C'_1 \)
 until hit stopping conditions

\[
S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \}
\]

Then \(\mathbb{P} (S_1) \lesssim \frac{2\epsilon}{\binom{k}{j} - 1} \)
More on Second Moment Argument

Need to consider \(\# \) pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C'_1 \) until hit stopping conditions

\[
S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \}
\]

Then \(\mathbb{P}(S_1) \lesssim \frac{2\epsilon}{(k_j)^{-1}} \)

- Delete all the vertices in \(C'_1 \)

& fix a \(j \)-set \(J_2 \), grow component \(C'_2 \)
More on Second Moment Argument

Need to consider \(\# \) pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C'_1 \) until hit stopping conditions

 \[S_1 = \{ |C'_1| \geq L \quad \text{or} \quad |\partial C'_1| \geq \epsilon L \} \]

 Then \(\mathbb{P}(S_1) \lesssim \frac{2\epsilon}{(k_j)}^{-1} \)

- Delete all the vertices in \(C'_1 \)

 & fix a \(j \)-set \(J_2 \), grow component \(C'_2 \)

 Need to show \(\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \) is small
More on Second Moment Argument

Need to consider \# pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C'_1 \) until hit stopping conditions

\[
S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \}
\]

Then \(\mathbb{P}(S_1) \lesssim \frac{2\epsilon}{(k)_1} \)

- Delete all the vertices in \(C'_1 \)

& fix a \(j \)-set \(J_2 \), grow component \(C'_2 \)

Need to show \(\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \) is small

\[
\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \leq p \cdot |\partial C'_1| \cdot |C'_2|
\]
More on Second Moment Argument

Need to consider \# pairs of \(j \)-sets in 'large' \(j \)-components

- Fix \(j \)-set \(J_1 \) and grow its \(j \)-component \(C'_1 \) until hit stopping conditions

\[
S_1 = \{ |C'_1| \geq L \text{ or } |\partial C'_1| \geq \epsilon L \}
\]

Then \(\mathbb{P}(S_1) \lesssim \frac{2\epsilon}{(k_j^j - 1)} \)

- Delete all the vertices in \(C'_1 \)

\& fix a \(j \)-set \(J_2 \), grow component \(C'_2 \)

Need to show \(\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \) is small

However,

\[
p \cdot |\partial C'_1| \cdot |C'_2| \text{ is not the right thing to do}
\]
Instead we need

\[\mathbb{P}(e(\partial C_1, C_2') \geq 1) \leq \mathbb{E}(\# \text{ 3-sets containing a pair of 2-sets intersecting at a vertex}) \]
More on Second Moment Argument – cont.

Instead we need

- for $k = 3, j = 2$,

\[\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \leq \mathbb{E}(\text{# 3-sets containing a pair of 2-sets intersecting at a vertex}) \]

- for $k \geq 3, j \geq 2$,

\[\mathbb{P}(e(\partial C'_1, C'_2) \geq 1) \leq \mathbb{E}(\text{# k-sets containing a pair of j-sets, J, J', intersecting at an } \ell \text{-set L for some } 0 \leq \ell \leq j - 1) \]
Boundary Is Smooth

Key lemma [Cooley–K.-Koch 14+]

For every $0 \leq \ell \leq j - 1$, every ℓ-set L,

$$\# j\text{-sets in } \partial C'_1 \text{ containing } L \sim \frac{|\partial C'_1|}{\binom{n}{j}} \binom{n-\ell}{j-\ell}$$
'Reasonably Large' Boundary Is Smooth

Key lemma

Let $\partial C'_1(t)$ denote the collection of j-sets in $\partial C'_1$ after t generations of BFS.

With probability at least $1 - \exp(-\Theta(n^{1/11}))$ the following is true.

For every $0 \leq \ell \leq j - 1$, every ℓ-set L, and every $s_{\ell} \leq t \leq s_{\ell} + O(\log n)$,

$$\# \text{ j-sets in } \partial C'_1(t) \text{ containing } L \sim \frac{|\partial C'_1(t)|}{\binom{n}{j}} \binom{n-\ell}{j-\ell}$$

where $s_{\ell} := \min\{ d : |\partial C'_1(t)| \geq n^{\ell+1/10} \}$.
Open Problems

(1) What about the number of j-set in the largest j-component at the criticality, i.e. when $d = 1$?

(2) Is the width of critical window, $(d - 1)^3 n = O(1)$, best possible? Perhaps $(d - 1)^j n = O(1)$?

(3) What about the number of j-set in the 2nd largest j-component in the supercritical regime?

(4) What is the actual distribution of $\# j$-sets in the largest j-component? Central limit theorem? Local limit theorem?