Counting independent sets in hypergraphs and its applications

József Balogh
U. of Illinois at U.C.

September 2014
Transference theorems

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

$\mathcal{R} + \implies$ random analogue of \mathcal{R}.

supersaturation

Dr D. Conlon Sir W.T. Gowers Dr M. Schacht
Szemerédi’s theorem

Theorem (Szemerédi [1975])

For every $k \geq 3$, the largest subset of $\{1, \ldots, n\}$ with no k-term AP has $o(n)$ elements.

Endre Szemerédi
Random analogue of Szemerédi’s theorem

Theorem (Kohayakawa–Łuczak–Rödl [1996])

For every $\delta > 0$, there exists a C such that if $p(n) \geq Cn^{-1/2}$, then a.a.s.: the p-random subset $[n]_p$ satisfies:

Every $A \subseteq [n]_p$ with $|A| \geq \delta|[n]_p|$ contains a 3-term AP.

Y. Kohayakawa
T. Łuczak
V. Rödl
Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

\Rightarrow random analogue of \mathcal{R}

supersaturation
Transference theorems — corollary

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

extremal result \mathcal{R}

$$+ \quad \implies \quad \text{random analogue of } \mathcal{R}$$

supersaturation

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|[n]_p|$ contains a k-term AP.
Transference theorems — corollary

Theorem (Turán [1941])

For every \(k \geq 3 \),

\[
\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.
\]
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k - 1} + o(1)\right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.

by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu,...
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1) \right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, . . .

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1) \right) e(G(n, p)).$$
Transference theorems — corollary

Theorem (Turán [1941])

For every $k \geq 3$,

$$\text{ex}(n, K_k) = e(T_{k-1}(n)) = \left(1 - \frac{1}{k-1} + o(1)\right) \binom{n}{2}.$$

Motivated by: Haxell, Kohayakawa, Łuczak, Rodl.
by many others later (or earlier): Babai, Gerke, Simonovits, Spencer, Steger, Szabó, Sudakov, Vu, . . .

Theorem (Conlon–Gowers [2009+], Schacht [2009+])

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$

This is usually referred to as the random analogue of Turán’s theorem.
Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta |[n]_p|$ contains a k-term AP.

Corollary (Random analogue of Turán’s theorem)

For $p(n) \gg n^{-\frac{1}{k+1}}$ a.a.s.: $\text{ex}(G(n, p), K_k) = (1 - \frac{1}{k-1} + o(1)) \cdot e(G(n, p))$.
Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Random analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $p(n) \geq C(k, \delta) \cdot n^{-\frac{1}{k-1}}$, then a.a.s. $[n]_p$ satisfies that every $A \subseteq [n]_p$ with $|A| \geq \delta|[n]_p|$ contains a k-term AP.

Corollary (Random analogue of Turán’s theorem)

For $p = p(n) \gg n^{-\frac{2}{k+1}}$ a.a.s.:

$$\text{ex}(G(n, p), K_k) = \left(1 - \frac{1}{k-1} + o(1)\right) \cdot e(G(n, p)).$$
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\#m\text{-subsets of } [n] \text{ with no } k\text{-term AP } \leq \binom{\delta n}{m}.$$
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta) n^{1 - \frac{1}{k-1}}$, then

$$\#m\text{-subsets of } [n] \text{ with no } k\text{-term AP} \leq \binom{\delta n}{m}.$$

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most $2^{(1+o(1)) \cdot \text{ex}(n,K_k)} K_k$-free graphs on n vertices.
Counting Independent sets in Hypergraphs

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

Certain hypergraphs have only few independent sets.

Corollary (Counting analogue of Szemerédi’s theorem)

For every $k \geq 3$ and $\delta > 0$, if $m \geq C(k, \delta)n^{1-\frac{1}{k-1}}$, then

$$\# m\text{-subsets of } [n] \text{ with no } k\text{-term AP} \leq \binom{\delta n}{m}.$$

Theorem (Erdős–Kleitman–Rothschild [1976])

There are at most $2^{(1+o(1)) \cdot \text{ex}(n,K_k)} K_k$-free graphs on n vertices.

Corollary (Sparse analogue of Erdős–Kleitman–Rothschild’s theorem)

A.a. K_k-free graph with m edges can be made $(k - 1)$-partite by removing at most $o(m)$ edges when $m \gg n^{2-\frac{2}{k}}$.
Sharp sparse analogue of Erdős–Kleitman–Rothschild’s theorem

Almost every K_k-free n vertex graph with $m > m(n)$ edges is $(k - 1)$-partite. $m(n)$ is best possible.

Sharp sparse analogue of Erdős–Kleitman–Rothschild’s theorem

Balogh–Morris–Samotij–Warnke [2013+]

For every $r \geq 3$, there exists a $d_r = d_r(n) = \Theta(n)$ such that the following holds for every $\varepsilon > 0$. Define

$$\theta_r = \frac{r - 1}{2r} \cdot \left[r \cdot \left(\frac{2r + 2}{r + 2} \right)^{\frac{1}{r-1}} \right]^{\frac{2}{r+2}}$$

and

$$m_r = m_r(n) = \theta_r n^{2-\frac{2}{r+2}} (\log n)^{\frac{1}{(r+1)^2}}.$$

If $F_{n,m}$ is the uniformly chosen random element of $\mathcal{F}_{n,m}(K_{r+1})$, then

$$\lim_{n \to \infty} \Pr[F_{n,m} \text{ is } r\text{-partite}] = \begin{cases}
1, & \text{if } m \leq (1 - \varepsilon) d_r, \\
0, & \text{if } (1 + \varepsilon) d_r \leq m \leq (1 - \varepsilon) m_r, \\
1, & \text{if } m \geq (1 + \varepsilon) m_r.
\end{cases}$$
New applications of the “Counting Method”:

Sperner (1928)

The size of the largest antichain in the Boolean lattice over
\([n] = \{1, \ldots, n\}\) is \(\left(\begin{array}{c} n \\ \lfloor n/2 \rfloor \end{array}\right)\).
New applications of the “Counting Method”:

Sperner (1928)

The size of the largest antichain in the Boolean lattice over \([n] = \{1, \ldots, n\}\) is \(\binom{n}{\lfloor n/2 \rfloor}\).

Problem [Kohayakawa–Kreuter–Osthus (2000)]

With probability \(p\) keep elements of the Boolean lattice over \([n]\).

For what \(p = p(n)\) will have the largest antichain size \((1 + o(1))p \cdot \binom{n}{\lfloor n/2 \rfloor}\)?
New applications of the “Counting Method”:

<table>
<thead>
<tr>
<th>Sperner (1928)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The size of the largest antichain in the Boolean lattice over $[n] = {1, \ldots, n}$ is $\binom{n}{\lfloor n/2 \rfloor}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem [Kohayakawa–Kreuter–Osthus (2000)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>With probability p keep elements of the Boolean lattice over $[n]$. For what $p = p(n)$ will have the largest antichain size $(1 + o(1))p \cdot \binom{n}{\lfloor n/2 \rfloor}$?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osthus (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $p \gg (\log n)/n$: YES. For $p = O(1/n)$: NO.</td>
</tr>
</tbody>
</table>
New applications of the “Counting Method”:

Sperner (1928)

The size of the largest antichain in the Boolean lattice over $[n] = \{1, \ldots, n\}$ is $\binom{n}{\lfloor n/2 \rfloor}$.

Problem [Kohayakawa–Kreuter–Osthus (2000)]

With probability p keep elements of the Boolean lattice over $[n]$. For what $p = p(n)$ will have the largest antichain size $(1 + o(1))p \cdot \binom{n}{\lfloor n/2 \rfloor}$?

For $p \gg (\log n)/n$: YES.

For $p = O(1/n)$: NO.

Collares Neto–Morris, Balogh–Mycroft–Treglown [2014+]

For $p \gg 1/n$: YES.
New applications of the “Counting Method”:

For

\[
\frac{\log n}{n^t} \ll p \ll \frac{1}{n^{t-1}}
\]

the size of the largest antichain is

\[
(t + o(1)) p \cdot \binom{n}{\lfloor n/2 \rfloor}.
\]

Balogh–Mycroft–Treglown [2014]

For

\[
\frac{1}{n^t} \ll p \ll \frac{1}{n^{t-1}}
\]

the size of the largest antichain is

\[
(t + o(1)) p \cdot \binom{n}{\lfloor n/2 \rfloor}.
\]
New applications of the “Counting Method”:

Balogh–Mycroft–Treglown [2014]

For

\[\frac{1}{n^t} \ll p \ll \frac{1}{n^{t-1}} \]

the size of the largest antichain is \((t + o(1)) p \cdot \left(\begin{array}{c} n \\ \lfloor n/2 \rfloor \end{array}\right)\).
Question

How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of

\[
x + y = z
\]
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of
\[x + y = z? \]

Observation
- Set of odds is sum-free.
The Cameron–Erdős problem

Question

How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of

\[
x + y = z
\]

Observation

- Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\} \) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n - 1\} \) is sum-free.
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\}\) can we select without creating a solution of
\[x + y = z?\]

Observation
- Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\}\) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n - 1\}\) is sum-free.

Cameron – Erdős Conjecture (1990)
The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\).
The Cameron–Erdős problem

Question
How many integers from \(\{1, \ldots, n\} \) can we select without creating a solution of

\[
x + y = z?
\]

Observation
- Set of odds is sum-free.
- \(\{n/2 + 1, n/2 + 2, \ldots, n\} \) is sum-free.
- \(\{n/2, n/2 + 1, \ldots, n − 1\} \) is sum-free.

Cameron – Erdős Conjecture (1990)
The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\).

Remark
The number of sum-free subsets of \([n]\) is more than \(2 \times 2^{n/2}\).
Any subset of \(\{n/2, n/2 + 1, \ldots, n − 1\} \) is sum-free, etc...
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1990)
The number of sum-free subsets of \([n]\) is \(O(2^{n/2})\).

There are constants \(c_e\) and \(c_o\) s.t. the number of sum-free subsets of \([n]\) is

\[(1 + o(1))c_e2^{n/2}, \quad (1 + o(1))c_o2^{n/2}\]

depending on the parity of \(n\).
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is

$$O(2^{n/2-cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.
Cameron–Erdős Conjecture (1999)

There is $c > 0$ that the number of maximal sum-free subsets of $[n]$ is

$$O(2^{n/2 - cn}).$$

There are at least $2^{n/4}$ maximal sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of maximal sum-free subsets of $[n]$ is at most $O(2^{n/2 - 2^{-28}n})$.

The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)
There is $c > 0$ that the number of **maximal** sum-free subsets of $[n]$ is

$$O(2^{n/2 - cn}).$$

There are at least $2^{n/4}$ **maximal** sum-free subsets of $[n]$.

Łuczak and Schoen (2001)
The number of **maximal** sum-free subsets of $[n]$ is at most $O(2^{n/2 - 2^{-28}n})$.

Wolfowitz (2009)
The number of **maximal** sum-free subsets of $[n]$ is at most $2^{3n/8 - o(n)}$.
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)

There is $c > 0$ such that the number of **maximal** sum-free subsets of $[n]$ is $O(2^{n/2 - cn})$.

There are at least $2^{n/4}$ **maximal** sum-free subsets of $[n]$.

Łuczak and Schoen (2001)

The number of **maximal** sum-free subsets of $[n]$ is at most $O(2^{n/2 - 2^{-28} n})$.

Wolfowitz (2009)

The number of **maximal** sum-free subsets of $[n]$ is at most $2^{3n/8 - o(n)}$.

The number of **maximal** sum-free subsets of $[n]$ is $2^{n/4 + o(n)}$.
The Cameron–Erdős problem

Cameron – Erdős Conjecture (1999)
There is \(c > 0 \) that the number of maximal sum-free subsets of \([n]\) is

\[
O\left(2^{n/2 - cn}\right).
\]

There are at least \(2^{n/4} \) maximal sum-free subsets of \([n]\).

Łuczak and Schoen (2001)
The number of maximal sum-free subsets of \([n]\) is at most \(O\left(2^{n/2 - 2^{-28} n}\right)\).

Wolfowitz (2009)
The number of maximal sum-free subsets of \([n]\) is at most \(2^{3n/8 - o(n)}\).

The number of maximal sum-free subsets of \([n]\) is \(O\left(2^{n/4}\right)\).
New applications of the “Counting Method”:

Definition
- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.

(i) The number of intersecting families of permutations is $2(1+o(1))(n−1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** \(\pi = \pi(n) \) is a bijective map from \([n]\) to \([n]\).
- Permutations \(\rho, \pi \) are **intersecting** if there is an \(i \) that \(\rho(i) = \pi(i) \).
- \(\Pi \) is an **intersecting family** of permutations if for every \(\rho, \pi \in \Pi \), \(\rho, \pi \) are intersecting.

(i) The number of intersecting families of permutations is \(2^{(1+o(1))(n-1)!} \).

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n - 1)!$.

(i) The number of intersecting families of permutations is $2(1+o(1))(n-1)!$.

(ii) Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n - 1)!$.
- The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

1. The number of intersecting families of permutations is $2(1 + o(1))(n - 1)!$.
2. Almost every intersecting permutation family is trivially intersecting.
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i,j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n - 1)!$.
- The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}.$$
New applications of the “Counting Method”:

Definition

- **Permutation** $\pi = \pi(n)$ is a bijective map from $[n]$ to $[n]$.
- Permutations ρ, π are **intersecting** if there is an i that $\rho(i) = \pi(i)$.
- Π is an **intersecting family** of permutations if for every $\rho, \pi \in \Pi$, ρ, π are intersecting.
- $\Pi(i, j) := \{\pi : \pi(i) = j\}$ is a **trivially intersecting family**; of size $(n-1)!$.
- The number of intersecting families is at least $(1 - o(1)) \cdot n^2 \cdot 2^{(n-1)!}$.

Balogh–Das–Delcourt–Liu–Sharifzadeh [2014++]

(i) The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}.$$

(ii) Almost every intersecting permutation family is trivially intersecting.
The number of intersecting families of permutations is
\[2^{(1+o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:

- Form graph: \(V := \text{permutations}, E := \text{non-intersecting pairs}. \)
- Apply Alon–Chung Expander-Mixing Lemma:
 \[|G[S]| \geq D^2 N |S|^2 + \lambda^2 N |S| (N-|S|). \]
- Ellis:
 \[\lambda = (1-e+o(1))(n-1)!, \]
 \[N = n!, D = (1+o(1)) N, |S| = (1+o(1))(n-1)! \]
 \(G[S] \) spans many edges \(\rightarrow \) \(G \) does not have 'many' independent sets.
Permutations:

The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

- Proof follows Alon–Balogh–Morris–Samotij [2014]:
- Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.

The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

- Proof follows Alon–Balogh–Morris–Samotij [2014]:
- Form graph: \(V := \text{permutations}, \ E := \text{non-intersecting pairs}. \)
- Apply Alon–Chung Expander-Mixing Lemma:
The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!} \, . \]

- Proof follows Alon–Balogh–Morris–Samotij [2014]:
- Form graph: \(V \) := permutations, \(E \) := non-intersecting pairs.
- Apply Alon–Chung Expander-Mixing Lemma:
 Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),

\[
e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|) .
\]
The number of intersecting families of permutations is

\[2^{(1 + o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:

Form graph: \(V := \) permutations, \(E := \) non-intersecting pairs.

Apply Alon–Chung Expander-Mixing Lemma:
Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),

\[
e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|).\]

Ellis: \(\lambda = \left(-\frac{1}{e} + o(1)\right)(n-1)!, \)
\(N = n!, \) \(D = \left(\frac{1}{e} + o(1)\right)N, \) \(|S| = (1 + o(1))(n-1)! \)
The number of intersecting families of permutations is

\[2^{(1+o(1))(n-1)!}. \]

Proof follows Alon–Balogh–Morris–Samotij [2014]:
Form graph: \(V := \text{permutations}, \ E := \text{non-intersecting pairs}. \)
Apply Alon–Chung Expander-Mixing Lemma:
Let \(G \) be a \(D \)-regular graph on \(N \) vertices, and let \(\lambda \) be its smallest eigenvalue. Then for all \(S \subseteq V(G) \),

\[e(G[S]) \geq \frac{D}{2N} |S|^2 + \frac{\lambda}{2N} |S| (N - |S|). \]

Ellis: \(\lambda = \left(-\frac{1}{e} + o(1)\right)(n-1)!, \)
\(N = n!, \) \(D = \left(\frac{1}{e} + o(1)\right)N, \) \(|S| = (1 + o(1))(n-1)! \)
\(G[S] \) spans many edges \(\rightarrow \) \(G \) does not have ‘many’ independent sets.
Almost every intersecting permutation family is trivially intersecting.
Almost every intersecting permutation family is trivially intersecting.
Permutations:

Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let \(\Pi \) be such family.
Almost every intersecting permutation family is trivially intersecting.

- **Count maximal** intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \} \).
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.

- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \ \forall \rho \in \Gamma \}$.

- $\Gamma \subset \Pi$ is a generating set of Π if $\mathcal{I}(\Gamma) = \Pi$.

Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has DIFFERENT **minimal generating sets**.
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
 \[I(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}. \]
- $\Gamma \subset \Pi$ is a generating set of Π if $I(\Gamma) = \Pi$.
- Every Π has DIFFERENT minimal generating sets.
- Count minimal generating sets!
Permutations:

Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \} \).
- \(\Gamma \subset \Pi \) is a **generating set** of \(\Pi \) if \(\mathcal{I}(\Gamma) = \Pi \).
- Every \(\Pi \) has DIFFERENT **minimal generating sets**.
- Count minimal generating sets!
- \(\forall \rho_i \in \Gamma \) there is a \(\pi_i \not\in \Pi \) that \((\rho_i, \pi_i) \) is not an intersecting pair, but \(\forall \rho_j \in \Gamma \) with \(i \neq j \), \((\rho_j, \pi_i) \) is an intersecting pair.
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let Π be such family.
 \[
 \mathcal{I}(\Gamma) := \{\pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma\}.
 \]
- $\Gamma \subseteq \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has **DIFFERENT minimal generating sets**.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \not\in \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \to \{(i, \rho(i) : i \in [n]\}$ maps an n-uniform hypergraph.
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \ \forall \rho \in \Gamma \} \).
- \(\Gamma \subset \Pi \) is a **generating set** of \(\Pi \) if \(\mathcal{I}(\Gamma) = \Pi \).
- Every \(\Pi \) has **DIFFERENT minimal generating sets**.
- Count minimal generating sets!
- \(\forall \rho_i \in \Gamma \) there is a \(\pi_i \notin \Pi \) that \((\rho_i, \pi_i) \) is not an intersecting pair, but \(\forall \rho_j \in \Gamma \) with \(i \neq j \), \((\rho_j, \pi_i) \) is an intersecting pair.
- \(\rho \rightarrow \{ (i, \rho(i) : i \in [n] \} \) maps an \(n \)-uniform hypergraph.
- **Bollobás** set-pair inequality: \(|\Gamma| \leq \binom{2n}{n} \).
Permutations:

Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let Π be such family.
- $\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \}$.
- $\Gamma \subset \Pi$ is a **generating set** of Π if $\mathcal{I}(\Gamma) = \Pi$.
- Every Π has **DIFFERENT minimal generating sets**.
- Count minimal generating sets!
- $\forall \rho_i \in \Gamma$ there is a $\pi_i \notin \Pi$ that (ρ_i, π_i) is not an intersecting pair, but $\forall \rho_j \in \Gamma$ with $i \neq j$, (ρ_j, π_i) is an intersecting pair.
- $\rho \rightarrow \{(i, \rho(i)) : i \in [n]\}$ maps an n-uniform hypergraph.
- **Bollobás** set-pair inequality: $|\Gamma| \leq \binom{2n}{n}$.
- **Ellis (2011)**: Largest non-trivial intersecting permutation family has size at most $(1 - \frac{1}{e} + o(1))(n - 1)!$.
Almost every intersecting permutation family is trivially intersecting.

- Count maximal intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \ \forall \rho \in \Gamma \} \).
- \(\Gamma \subset \Pi \) is a \textbf{generating set} of \(\Pi \) if \(\mathcal{I}(\Gamma) = \Pi \).
- Every \(\Pi \) has \textbf{DIFFERENT minimal generating sets}.
- Count minimal generating sets!
- \(\forall \rho_i \in \Gamma \) there is a \(\pi_i \notin \Pi \) that \((\rho_i, \pi_i) \) is not an intersecting pair, but \(\forall \rho_j \in \Gamma \) with \(i \neq j \), \((\rho_j, \pi_i) \) is an intersecting pair.
- \(\rho \rightarrow \{(i, \rho(i)) : i \in [n]\} \) maps an \(n \)-uniform hypergraph.
- \textbf{Bollobás} set-pair inequality: \(|\Gamma| \leq \binom{2n}{n} \).
- \textbf{Ellis (2011)}: Largest non-trivial intersecting permutation family has size at most \((1 - \frac{1}{e} + o(1))(n - 1)! \).
- \(\left(\binom{n!}{\binom{2n}{n}} \right) \)
Almost every intersecting permutation family is trivially intersecting.

- Count **maximal** intersecting families. Let \(\Pi \) be such family.
- \(\mathcal{I}(\Gamma) := \{ \pi \in S_n : \pi \cap \rho \neq \emptyset, \forall \rho \in \Gamma \} \).
- \(\Gamma \subset \Pi \) is a **generating set** of \(\Pi \) if \(\mathcal{I}(\Gamma) = \Pi \).
- Every \(\Pi \) has DIFFERENT **minimal generating sets**.
- Count minimal generating sets!
- \(\forall \rho_i \in \Gamma \) there is a \(\pi_i \notin \Pi \) that \((\rho_i, \pi_i) \) is not an intersecting pair, but \(\forall \rho_j \in \Gamma \) with \(i \neq j \), \((\rho_j, \pi_i) \) is an intersecting pair.
- \(\rho \to \{(i, \rho(i) : i \in [n]\} \) maps an \(n \)-uniform hypergraph.
- **Bollobás** set-pair inequality: \(|\Gamma| \leq \binom{2n}{n} \).
- **Ellis (2011):** Largest non-trivial intersecting permutation family has size at most \((1 - \frac{1}{e} + o(1))(n - 1)! \).
- \(\left(\frac{n!}{\binom{2n}{n}} \right) \cdot 2(1 - 1/e + o(1))(n-1)! \ll 2^n \log n \cdot 2^{2n} \cdot 2(1 - 1/e + o(1))(n-1)! \ll 2^{(n-1)!} \).
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only "few" complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on \(n \) vertices?

\[
2^{n^2/8} \cdot 2^{n^2/4 - c n^2/2}.
\]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of **maximal** triangle-free graphs on n vertices?
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on n vertices?

$2^{n^{3/2+o(1)}}$
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of maximal triangle-free graphs on \(n \) vertices?

\[
2^{n^{3/2+o(1)}} \quad 2^{o(n^2)}
\]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])
Almost all triangle-free graphs are bipartite.

Remark
Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])
What is the number of **maximal** triangle-free graphs on n vertices?

\[
2^{n^3/2+o(1)} \quad 2^{o(n^2)} \quad 2^{n^2/8}
\]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

\[2^{n^3/2+o(1)} \quad 2^{o(n^2)} \quad 2^{n^2/8} \quad 2^{(1/4−c)n^2} \]
New applications of the “Counting Method”:

Theorem (Erdős–Kleitman–Rothschild [1976])

Almost all triangle-free graphs are bipartite.

Remark

Most bipartite graphs are not maximal; there are only “few” complete bipartite graphs.

Question (Erdős [1996])

What is the number of maximal triangle-free graphs on n vertices?

$2^{n^3/2+o(1)}$, $2^{o(n^2)}$, $2^{n^2/8}$, $2^{(1/4-c)n^2}$, $2^{n^2/4}$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Folklore
There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1 v_1, \ldots, u_{n/4} v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.
New applications of the “Counting Method”:

Folklore

There are at least $2^{n^2/8}$ maximal triangle-free graphs on n vertices.

- Let $X := \{u_1v_1, \ldots, u_{n/4}v_{n/4}\}$ be a matching;
- Y be an independent set of size $n/2$.
- For every i: partition $Y := A_i \cup B_i$.
- Add all edges between u_i and A_i; add all edges between v_i and B_i.
- Most of these graphs will be maximal triangle-free.
- Number of graphs: $(2^{n/2})^{n/4} = 2^{n^2/8}$.

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.
New applications of the “Counting Method”:

Almost every maximal triangle-free graph has the above structure.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
The number of triangle-free graphs:
Regularization Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{\frac{n^2}{4} + o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.

The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n.$$
The number of triangle-free graphs:
Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4 + o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4}.$$
The number of triangle-free graphs: Regularity Lemma approach

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

- Apply Szemerédi Regularity Lemma for a G_n triangle-free graph.
- Obtain cluster graph R_t.
- Clean G_n: remove edges inside clusters, between sparse pairs, and irregular pairs.
- $C_n :=$ blow up R_t to n vertices.
- C_n contains all but $o(n^2)$ edges of G_n. [Approximate Container]
- C_n is triangle-free, hence $e(C_n) \leq n^2/4$.
- Number of choices for C_n is $O(1) \cdot n^n$.
- Number of choices for G_n is

$$O(1) \cdot n^n \cdot 2^{n^2/4} \cdot \left(\frac{n^2}{o(n^2)} \right) = 2^{n^2/4+o(n^2)}.$$
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4+o(n^2)} \).
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is \(2^{n^2/4+o(n^2)}\).

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a \(t < 2^{O(\log n \cdot n^{3/2})}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is an \(i \in [t]\) such that \(H \subseteq G_i\).
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
The number of triangle-free graphs: ‘New approach’

<table>
<thead>
<tr>
<th>Theorem (Erdős–Kleitman–Rothschild [1976])</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Balogh–Morris–Samotij, Saxton–Thomason [2012+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set ${G_1, \ldots, G_t}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.</td>
</tr>
</tbody>
</table>

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$. |
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subseteq G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])
The number of triangle-free graphs is \(2^{n^2/4+o(n^2)}\).

Balogh–Morris–Samotij, Saxton–Thomason [2012+]
There is a \(t < 2^{O(\log n \cdot n^{3/2})}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is an \(i \in [t]\) such that \(H \subseteq G_i\).

- For each \(F_n\) triangle-free graph there is an \(i\) that \(F_n \subset G_i\).
- \(e(G_i) \leq n^2/4 + o(n^2)\).
- Number of choices for \(F_n\) is \(t\).
The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4+o(n^2)} = 2^{n^2/4+o(n^2)}$.

Szemerédi container lemma

There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4+o(n^2)} = 2^{n^2/4+o(n^2)}$.

The number of triangle-free graphs: ‘New approach’

Theorem (Erdős–Kleitman–Rothschild [1976])

The number of triangle-free graphs is $2^{n^2/4+o(n^2)}$.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]

There is a $t < 2^{O(\log n \cdot n^3/2)}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$.

- For each F_n triangle-free graph there is an i that $F_n \subset G_i$.
- $e(G_i) \leq n^2/4 + o(n^2)$.
- Number of choices for F_n is $t \cdot 2^{n^2/4+o(n^2)} = 2^{n^2/4+o(n^2)}$.

Szemerédi container lemma

There is a $t = 2^{o(n^2)}$ and a set $\{G_1, \ldots, G_t\}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is $i \in [t]$ such that $H \subseteq G_i$.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.
The number of maximal triangle-free graphs

<table>
<thead>
<tr>
<th>Balogh–Petříčková [2014+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Balogh–Morris–Samotij, Saxton–Thomason [2012+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a $t < 2^{O(\log n \cdot n^{3/2})}$ and a set ${G_1, \ldots, G_t}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.</td>
</tr>
</tbody>
</table>
The number of maximal triangle-free graphs

<table>
<thead>
<tr>
<th>Source</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balogh–Petříčková [2014+]</td>
<td>There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.</td>
</tr>
<tr>
<td>Balogh–Morris–Samotij, Saxton–Thomason [2012+]</td>
<td>There is a $t < 2^{O\left(\log n \cdot n^{3/2}\right)}$ and a set ${G_1, \ldots, G_t}$ of graphs, each containing at most $o(n^3)$ triangles, such that for every triangle-free graph H there is an $i \in [t]$ such that $H \subseteq G_i$. Note $e(G_i) \leq n^2/4 + o(n^2)$.</td>
</tr>
<tr>
<td>Ruzsa–Szemerédi (1976)</td>
<td>Any graph G_n with at most $o(n^3)$ triangles can be made triangle-free by removing at most $o(n^2)$ edges.</td>
</tr>
</tbody>
</table>
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]
There are at most \(2^{n^2/8+o(n^2)}\) maximal triangle-free graphs on \(n\) vertices.

Balogh–Morris–Samotij, Saxton–Thomason [2012+]
There is a \(t < 2^{O(\log n \cdot n^{3/2})}\) and a set \(\{G_1, \ldots, G_t\}\) of graphs, each containing at most \(o(n^3)\) triangles, such that for every triangle-free graph \(H\) there is an \(i \in [t]\) such that \(H \subseteq G_i\). Note \(e(G_i) \leq n^2/4 + o(n^2)\).

Ruzsa–Szemerédi (1976)
Any graph \(G_n\) with at most \(o(n^3)\) triangles can be made triangle-free by removing at most \(o(n^2)\) edges.

Hujter–Tuza (1993)
Any triangle-free graph \(T_N\) has at most \(2^{N/2}\) maximal independent sets. Sharpness is by a perfect matching.
There are at most $2^{n^2/8 + o(n^2)}$ maximal triangle-free graphs on n vertices.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most \(2^{n^2/8+o(n^2)}\) maximal triangle-free graphs on \(n\) vertices.

- For \(F_n\) triangle-free graph there is a \(G_i\) containing it. \(2^{O(\log n \cdot n^{3/2})}\) choices.
- Fix a \(T_i \subset E(G_i)\) that \(|T_i| = o(n^2)\) and \(E(G_i) - T_i\) is triangle-free.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most \(2^{n^2/8 + o(n^2)} \) maximal triangle-free graphs on \(n \) vertices.

- For \(F_n \) triangle-free graph there is a \(G_i \) containing it. \(2^{O(\log n \cdot n^{3/2})} \) choices.
- Fix a \(T_i \subset E(G_i) \) that \(|T_i| = o(n^2) \) and \(E(G_i) - T_i \) is triangle-free. Decide on \(T_i \cap E(F_n) \). Number of choices is \(2^{o(n^2)} \).
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle.}\}$
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it.
 $2^{O(\log n \cdot n^{3/2})}$ choices.
- Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free.
 Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.
- Form auxiliary graph: $V := E(G_i) - T_i$,
 $E = \{ef : \exists g \in T_i \cap E(F_n), \text{ that } efg \text{ is a triangle}\}$.
- This graph is triangle-free;
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

- For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.

- Fix a $T_i \subseteq E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.

- Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \text{if } \exists g \in T_i \cap E(F_n), \text{that } efg \text{ is a triangle.}\}$

- This graph is triangle-free;

- Number of choices for $(F_n \cap G_i) - T_i$ is at most the number of maximal independent sets in the auxiliary graph.
The number of maximal triangle-free graphs

Balogh–Petříčková [2014+]

There are at most $2^{n^2/8+o(n^2)}$ maximal triangle-free graphs on n vertices.

For F_n triangle-free graph there is a G_i containing it. $2^{O(\log n \cdot n^{3/2})}$ choices.

Fix a $T_i \subset E(G_i)$ that $|T_i| = o(n^2)$ and $E(G_i) - T_i$ is triangle-free. Decide on $T_i \cap E(F_n)$. Number of choices is $2^{o(n^2)}$.

Form auxiliary graph: $V := E(G_i) - T_i$, $E = \{ef : \text{if } \exists \ g \in T_i \cap E(F_n), \text{that } efg \text{ is a triangle.}\}$

This graph is triangle-free;

Number of choices for $(F_n \cap G_i) - T_i$ is at most the number of maximal independent sets in the auxiliary graph.

$|V| \leq n^2/4$; Hujter–Tuza gives $\leq 2^{n^2/8}$ choices.
Example (Erdős–Turán problem)

- $V = \{1, \ldots, n\}$,
- $\mathcal{H} = k$-term APs in $[n]$.

Example (Turán problem)

- $V = \text{edges of } K_n$,
- $\mathcal{H} = \text{edge-sets of copies of } K_k \text{ in } K_n$.

Example (sum-free sets)

- $V = \text{an Abelian group}$,
- $\mathcal{H} = \text{sets of the form } \{x, y, z\} \text{ with } x+y=z \text{ (Schur triples)}$.

Example (Erdős–Turán problem)
- \(V = \{1, \ldots, n\} \),
- \(\mathcal{H} = k\)-term APs in \([n]\).

Example (Turán problem)
- \(V = \) edges of \(K_n \),
- \(\mathcal{H} = \) edge-sets of copies of \(K_k \) in \(K_n \).
Example (Erdős–Turán problem)

- $V = \{1, \ldots, n\}$,
- $\mathcal{H} = k$-term APs in $[n]$.

Example (Turán problem)

- $V =$ edges of K_n,
- $\mathcal{H} =$ edge-sets of copies of K_k in K_n.

Example (sum-free sets)

- $V =$ an Abelian group,
- $\mathcal{H} =$ sets of the form $\{x, y, z\}$ with $x + y = z$ (Schur triples).
Transference Theorem

Theorem (Balogh–Morris–S. [2012+])

For every \(k, c, \varepsilon \) there is a \(C \) that the following holds. Let \(\mathcal{H} \subseteq \binom{V}{k} \) such that for \(\ell \in [k], p \in [0, 1] \)

\[
\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.
\]
Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$.

Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $\mathcal{S} \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : \mathcal{S} \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : I(\mathcal{H}) \rightarrow S$,

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem

Theorem (Balogh–Morris–S. [2012+])

For every \(k, c, \varepsilon \) there is a \(C \) that the following holds. Let \(\mathcal{H} \subseteq \binom{V}{k} \) such that for \(\ell \in [k], \ p \in [0, 1] \)

\[
\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.
\]

Let \(\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \} \). Then there are:

- a very small family \(S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})} \) of labels,
- \(f : S \rightarrow \mathcal{F}^c \) (maps each label to a set that is sparse in \(\mathcal{H} \)),
- a labeling function \(g : \mathcal{I}(\mathcal{H}) \rightarrow S \),

such that for every \(l \in \mathcal{I}(\mathcal{H}) \),
Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k]$, $p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{ A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H}) \}$. Then there are:

- a very small family $\mathcal{S} \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : \mathcal{S} \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow \mathcal{S}$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$
Transference Theorem

Theorem (Balogh–Morris–S. [2012+])

For every k, c, ε there is a C that the following holds. Let $\mathcal{H} \subseteq \binom{V}{k}$ such that for $\ell \in [k], p \in [0, 1]$

$$\Delta_\ell(\mathcal{H}) \leq c \cdot p^{\ell-1} \frac{e(\mathcal{H})}{v(\mathcal{H})}.$$

Let $\mathcal{F} = \{A \subseteq V : |\mathcal{H}[A]| \geq \varepsilon \cdot e(\mathcal{H})\}$. Then there are:

- a very small family $S \subseteq \binom{V(\mathcal{H})}{\leq Cp \cdot v(\mathcal{H})}$ of labels,
- $f : S \rightarrow \mathcal{F}^c$ (maps each label to a set that is sparse in \mathcal{H}),
- a labeling function $g : \mathcal{I}(\mathcal{H}) \rightarrow S$,

such that for every $I \in \mathcal{I}(\mathcal{H})$,

$$g(I) \subseteq I \quad \text{and} \quad I \setminus g(I) \subseteq f(g(I)).$$

Similar result was obtained independently by Saxton and Thomason.

Explain: Example of triangle-free graphs.
Transference Theorem: — illustration

- Dense sets
- Independent sets
- Small sets (labels)
Transference Theorem: — illustration

- Dense sets
- Covering sets
- Independent sets
- Small sets (labels)

\[f(S) \]

\[\mathcal{I}(\mathcal{H}) \]

\[\mathcal{F} \]
Transference Theorem: — illustration

- Dense sets
- Covering sets
- Independent sets
- Small sets (labels)
- \mathcal{F}
- $f(S)$
- $\mathcal{I}(\mathcal{H})$
Transference Theorem: — illustration

- dense sets
- covering sets
- independent sets
- small sets (labels)

\[\mathcal{F} \]

\[f(\mathcal{S}) \]

\[\mathcal{I}(\mathcal{H}) \]

\[g \]

\[g(I) \]
Transference Theorem: — illustration

\[f(g(l)) \]

\[f(S) \]

\[f(\mathcal{H}) \]

dense sets
covering sets
independent sets
small sets (labels)
Transference Theorem: — illustration

- dense sets
- covering sets
- independent sets
- small sets (labels)

\[f(g(I)) \]

\[f(S) \]

\[\mathcal{F} \]

\[\mathcal{I}(H) \]
How to use Transference Theorem?

Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2} \right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \binom{n^2/2}{Cn^2-1/r}$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.

Super-saturation implies that for each i:

$$e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}.$$

Super-saturation – Stability theorems implies that each G_i is almost r-partite or

$$e(G_i) < (1 - \frac{1}{r} - c) \frac{n^2}{2}.$$

Computation gives: Almost all K_{r+1}-free graph is almost r-partite.

$$\left(\frac{n^2/2}{Cn^2-1/r}\right)^2 \left(1 - \frac{1}{r} - c\right) \frac{n^2}{2} \ll 2^{\left(1 - \frac{1}{r}\right) \frac{n^2}{2}}.$$
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \binom{n^2/2}{cn^{2-1/r}}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each $i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) =$ copies of K_{r+1}.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \binom{n^2/2}{Cn^2-1/r}$. There are G_1, \ldots, G_t graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:

 $$e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}.$$

- Super-saturation – Stability theorems implies that each G_i is
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2Cn^2 - \frac{1}{r}}\right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
- Super-saturation – Stability theorems implies that each G_i is either almost r-partite or
How to use Transference Theorem?

- Let $V(\mathcal{H}) = E(K_n)$, $E(\mathcal{H}) = \text{copies of } K_{r+1}$.
- An I independent set in \mathcal{H} is a K_{r+1}-free graph.
- Let $t = \left(\frac{n^2}{2Cn^2 - 1/r}\right)$. There are $G_1, \ldots G_t$ graphs that for any H K_{r+1}-free graph there is an i that $H \subset G_i$.
- The number of K_{r+1} in each G_i is $o(n^{r+1})$.
- Super-saturation implies that for each i:
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
- Super-saturation – Stability theorems implies that each G_i is either almost r-partite or
 \[e(G_i) < (1 - \frac{1}{r} - c) \frac{n^2}{2}. \]
How to use Transference Theorem?

- Let \(V(\mathcal{H}) = E(K_n) \), \(E(\mathcal{H}) = \) copies of \(K_{r+1} \).
- An \(I \) independent set in \(\mathcal{H} \) is a \(K_{r+1} \)-free graph.
- Let \(t = \left(\frac{n^2/2}{Cn^2-1/r} \right) \). There are \(G_1, \ldots G_t \) graphs that for any \(H \) \(K_{r+1} \)-free graph there is an \(i \) that \(H \subset G_i \).
- The number of \(K_{r+1} \) in each \(G_i \) is \(o(n^{r+1}) \).
- Super-saturation implies that for each \(i \):
 \[e(G_i) < (1 - \frac{1}{r} + o(1)) \frac{n^2}{2}. \]
- Super-saturation – Stability theorems implies that each \(G_i \) is either almost \(r \)-partite or
 \[e(G_i) < (1 - \frac{1}{r} - c) \frac{n^2}{2}. \]
- Computation gives: Almost all \(K_{r+1} \)-free graph is almost \(r \)-partite.

\[
\left(\frac{n^2/2}{Cn^2-1/r} \right) 2^{(1-1/r-c)n^2/2} \ll 2^{(1-1/r)n^2/2}.
\]