Central paths, reciprocal linear spaces, and the algebra behind them

Cynthia Vinzant, North Carolina State University

with Jesús De Loera, Bernd Sturmfels, and Mario Kummer
The Central Path of a Linear Program

Linear Program: Maximize_{x \in \mathbb{R}^n} \ c \cdot x \ s.t. \ A \cdot x = b \ and \ x \geq 0.
The Central Path of a Linear Program

Linear Program: Maximize $x \in \mathbb{R}^n$ $c \cdot x$ s.t. $A \cdot x = b$ and $x \geq 0$.

Replace by: Maximize $x \in \mathbb{R}^n$ $f_\lambda(x)$ s.t. $A \cdot x = b$,

where $\lambda \in \mathbb{R}_+$ and $f_\lambda(x) := c \cdot x + \lambda \sum_{i=1}^n \log |x_i|$.
The Central Path of a Linear Program

Linear Program: Maximize \(x \in \mathbb{R}^n \) \(c \cdot x \) s.t. \(A \cdot x = b \) and \(x \geq 0 \).

Replace by: Maximize \(x \in \mathbb{R}^n \) \(f_\lambda(x) \) s.t. \(A \cdot x = b \),

where \(\lambda \in \mathbb{R}_+ \) and \(f_\lambda(x) := c \cdot x + \lambda \sum_{i=1}^n \log |x_i| \).

The maximum of the function \(f_\lambda \) is attained by a unique point \(x^*(\lambda) \) in the the open polytope \(\{ x \in (\mathbb{R}_{>0})^n : A \cdot x = b \} \).
The Central Path of a Linear Program

Linear Program: Maximize_{x \in \mathbb{R}^n} \ c \cdot x \ s.t. \ A \cdot x = b \ and \ x \geq 0.

Replace by: \ Maximize_{x \in \mathbb{R}^n} \ f_\lambda(x) \ s.t. \ A \cdot x = b,

where \ \lambda \in \mathbb{R}_+ \ and \ f_\lambda(x) := c \cdot x + \lambda \sum_{i=1}^n \log |x_i|.

The maximum of the function \ f_\lambda \ is attained by a unique point \ x^*(\lambda) \ in the open polytope \ \{x \in (\mathbb{R}_+)^n : A \cdot x = b\}.

The central path is \ \{x^*(\lambda) : \lambda > 0\}.
As \ \lambda \to 0 \ , \ the \ path \ leads \ from \ the \ analytic \ center \ of \ the \ polytope, \ x^*(\infty), \ to \ the \ optimal \ vertex, \ x^*(0).
The central path is \(\{ x^* (\lambda) : \lambda > 0 \} \).

As \(\lambda \to 0 \), the path leads from the analytic center of the polytope, \(x^*(\infty) \), to the optimal vertex, \(x^*(0) \).
The central path is \(\{ x^*(\lambda) : \lambda > 0 \} \).
As \(\lambda \to 0 \), the path leads from the analytic center of the polytope, \(x^*(\infty) \), to the optimal vertex, \(x^*(0) \).

Interior point methods \(\approx \) piecewise-linear approx. of this path.
The central path is \(\{ x^*(\lambda) : \lambda > 0 \} \). As \(\lambda \to 0 \), the path leads from the analytic center of the polytope, \(x^*(\infty) \), to the optimal vertex, \(x^*(0) \).

Interior point methods \(\approx \) piecewise-linear approx. of this path

Bounds on curvature of the path \(\rightarrow \) bounds on \(\# \) Newton steps
The central path is \(\{ \mathbf{x}^*(\lambda) : \lambda > 0 \} \).

As \(\lambda \to 0 \), the path leads from the analytic center of the polytope, \(\mathbf{x}^*(\infty) \), to the optimal vertex, \(\mathbf{x}^*(0) \).

Interior point methods \(\approx \) piecewise-linear approx. of this path

Bounds on curvature of the path \(\rightarrow \) bounds on \# Newton steps

The central path belongs to an algebraic variety and its rich real algebraic structure helps to bound the total curvature of the path.
The central curve C is the Zariski closure of the central path. It contains the central paths of all polyhedra in the hyperplane arrangement $\{x_i = 0\}_{i=1,\ldots,n} \subset \{A \cdot x = b\}$.
The central curve C is the Zariski closure of the central path. It contains the central paths of all polyhedra in the hyperplane arrangement $\{x_i = 0\}_{i=1,\ldots,n} \subset \{A \cdot x = b\}$.

Goal: Study the nice algebraic geometry of this curve and its applications to the linear program.
History and Contributions

Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry to bound the total curvature of the central path.

Conjecture: The total curvature of the central path is at most $O(n)$.

De Loera-Sturmfels-V. (2012) use results from algebraic geometry and matroid theory to find defining equations of the central curve and refine bounds on its degree and total curvature.

Allamigeon-Benchimol-Gaubert-Joswig (2014) use tropical geometry to disprove the continuous Hirsch conjecture.
Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.
Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry to bound the total curvature of the central path.
History and Contributions

Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry to bound the total curvature of the central path.

Conjecture: The total curvature of the central path is at most $O(n)$.

De Loera-Sturmfels-V. (2012) use results from algebraic geometry and matroid theory to find defining equations of the central curve and refine bounds on its degree and total curvature.

Allamigeon-Benchimol-Gaubert-Joswig (2014) use tropical geometry to disprove the continuous Hirsch conjecture.
Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry to bound the total curvature of the central path.

Conjecture: The total curvature of the central path is at most $O(n)$.

De Loera-Sturmfels-V. (2012) use results from algebraic geometry and matroid theory to find defining equations of the central curve and refine bounds on its degree and total curvature.
Motivating Question: What is the maximum total curvature of the central path given the size of the matrix A?

Bayer-Lagarias (1989) study the central path as an algebraic object and suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry to bound the total curvature of the central path.

Conjecture: The total curvature of the central path is at most $O(n)$.

De Loera-Sturmfels-V. (2012) use results from algebraic geometry and matroid theory to find defining equations of the central curve and refine bounds on its degree and total curvature.

Allamigeon-Benchimol-Gaubert-Joswig (2014) use tropical geometry to disprove the continuous Hirsch conjecture.
Algebraic conditions for analytic centers

If x maximizes $f_\infty(x) = \sum_{i=1}^{n} \log |x_i|$ in $\{x : Ax = b\}$ then
If x maximizes $f_\infty(x) = \sum_{i=1}^{n} \log|x_i|$
in $\{x : Ax = b\}$ then

$$\nabla f_\infty(x) = x^{-1} \in \text{rowspan}(A) := L_A$$
Algebraic conditions for analytic centers

If x maximizes $f_{\infty}(x) = \sum_{i=1}^{n} \log |x_i|$ in $\{x : Ax = b\}$ then

$$\nabla f_{\infty}(x) = x^{-1} \in \text{rowspan}(A) := \mathcal{L}_A$$

$$\Rightarrow \quad x \in \mathcal{L}_A^{-1}$$
If \(\mathbf{x} \) maximizes \(f_{\infty}(\mathbf{x}) = \sum_{i=1}^{n} \log |x_i| \) in \(\{ \mathbf{x} : A\mathbf{x} = \mathbf{b} \} \) then

\[
\nabla f_{\infty}(\mathbf{x}) = \mathbf{x}^{-1} \in \text{rowspan}(A) := \mathcal{L}_A
\]

\[\Rightarrow \mathbf{x} \in \mathcal{L}_A^{-1}\]

where \(\mathcal{L}^{-1} \) denotes the coordinate-wise reciprocal of \(\mathcal{L} \):

\[
\mathcal{L}^{-1} := \left\{ (u_1^{-1}, \ldots, u_n^{-1}) \mid (u_1, \ldots, u_n) \in \mathcal{L} \right\}
\]
If \(\mathbf{x} \) maximizes \(f_\infty(\mathbf{x}) = \sum_{i=1}^{n} \log |x_i| \) in \(\{ \mathbf{x} : A\mathbf{x} = \mathbf{b} \} \) then

\[
\nabla f_\infty(\mathbf{x}) = \mathbf{x}^{-1} \in \text{rowspan}(A) := \mathcal{L}_A
\]

\[
\Rightarrow \quad \mathbf{x} \in \mathcal{L}_A^{-1}
\]

where \(\mathcal{L}^{-1} \) denotes the coordinate-wise reciprocal of \(\mathcal{L} \):

\[
\mathcal{L}^{-1} := \left\{ \left(u_1^{-1}, \ldots, u_n^{-1} \right) \mid (u_1, \ldots, u_n) \in \mathcal{L} \right\}
\]

Proposition. All the intersection points of \(\mathcal{L}_A^{-1} \) with \(\{ A\mathbf{x} = \mathbf{b} \} \) are real. These are the analytic centers of all bounded regions of the hyperplane arrangement \(\{ x_i = 0 \}_{i=1}^{n} \subset \{ A\mathbf{x} = \mathbf{b} \} \).
The central curve is the union of the analytic centers of the arrangement
\[\{x_i = 0\}_{i \in [n]} \text{ in } \{Ax = b, \; cx = c_0\} \]
in the level sets of the cost function \(c \).
Algebraic conditions for the central curve

The central curve is the union of the analytic centers of the arrangement

\[\{ x_i = 0 \}_{i \in [n]} \text{ in } \{ Ax = b, \ cx = c_0 \} \]

in the level sets of the cost function \(c \).

Consequence: the central curve is the intersection of \(\{ Ax = b \} \) with the reciprocal linear space of \(\text{span}\{ \text{rows}(A), c \} \).
The **central curve** is the union of the analytic centers of the arrangement

\[\{x_i = 0\}_{i \in [n]} \text{ in } \{Ax = b, \; cx = c_0\} \]

in the level sets of the cost function \(c \).

Consequence: the central curve is the intersection of \(\{Ax = b\} \) with the reciprocal linear space of \(\text{span}\{\text{rows}(A), c\} \).

The algebraic equations of the analytic centers and the central curve come from reciprocal linear spaces \(\mathcal{L}^{-1} \).
Proudfoot and Speyer (2006) determine the ideal of polynomials vanishing on $\mathcal{L}_{A,c}^{-1}$ and its Hilbert series.
Proudfoot and Speyer (2006) determine the ideal of polynomials vanishing on $\mathcal{L}_{A,c}^{-1}$ and its Hilbert series.

Using the matroid associated to $\mathcal{L}_{A,c}^{-1}$, they construct a simplicial complex containing combinatorial data of this ideal.

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 0 & 4 & 0 \end{pmatrix} \begin{array}{c} \{123, 1245, 1345, 2345\} \\ h = (1, 2, 2) \end{array}$$

matrix $(^A_c) \rightarrow$ matroid \rightarrow “broken circuit” \rightarrow h-vector complex
Proudfoot and Speyer (2006) determine the ideal of polynomials vanishing on $\mathcal{L}^{-1}_{A,c}$ and its Hilbert series.

Using the matroid associated to $\mathcal{L}^{-1}_{A,c}$, they construct a simplicial complex containing combinatorial data of this ideal.

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 2 & 0 & 4 & 0 \\
\end{pmatrix}
\quad \{123, 1245, 1345, 2345\}
\quad h = (1, 2, 2)
\]

matrix $(A^c) \rightarrow$ matroid \rightarrow “broken circuit” \rightarrow h-vector complex

$\Rightarrow \deg(C) = \sum_{i=0}^{d} h_i$ and $\text{genus}(C) = 1 + \sum_{j=0}^{d} (j - 1) h_j$.
Classic differential geometry: The total curvature of any real algebraic curve C in \mathbb{R}^m is the arc length of its image under the Gauss map $\gamma : C \to S^{m-1}$. This quantity is bounded above by π times the degree of the projective Gauss curve in \mathbb{P}^{m-1}. That is,

$$\text{total curvature of } C \leq \pi \cdot \deg(\gamma(C)).$$
Total Curvature

Classic differential geometry: The total curvature of any real algebraic curve C in \mathbb{R}^m is the arc length of its image under the Gauss map $\gamma : C \rightarrow S^{m-1}$. This quantity is bounded above by π times the degree of the projective Gauss curve in \mathbb{P}^{m-1}. That is,

$$\text{total curvature of } C \leq \pi \cdot \deg(\gamma(C)).$$

Dedieu-Malajovich-Shub (2005) apply this to the central curve.
Total Curvature

Classic differential geometry: The total curvature of any real algebraic curve C in \mathbb{R}^m is the arc length of its image under the Gauss map $\gamma : C \to S^{m-1}$. This quantity is bounded above by π times the degree of the projective Gauss curve in \mathbb{P}^{m-1}. That is,

$$\text{total curvature of } C \leq \pi \cdot \deg(\gamma(C)).$$

Dedieu-Malajovich-Shub (2005) apply this to the central curve.

Classic algebraic geometry: $\deg(\gamma(C)) \leq 2 \cdot (\deg(C) + \text{genus}(C) - 1)$.
Total Curvature

Classic differential geometry: The total curvature of any real algebraic curve C in \mathbb{R}^m is the arc length of its image under the Gauss map $\gamma : C \rightarrow \mathbb{S}^{m-1}$. This quantity is bounded above by π times the degree of the projective Gauss curve in \mathbb{P}^{m-1}. That is,

$$\text{total curvature of } C \leq \pi \cdot \deg(\gamma(C)).$$

Dedieu-Malajovich-Shub (2005) apply this to the central curve.

Classic algebraic geometry: $\deg(\gamma(C)) \leq 2 \cdot (\deg(C) + \text{genus}(C) - 1)$

Theorem: The degree of the projective Gauss curve of the central curve C satisfies a bound in terms of matroid invariants:

$$\deg(\gamma(C)) \leq 2 \cdot \sum_{i=1}^{d} i \cdot h_i \leq 2 \cdot (n - d - 1) \cdot \binom{n-1}{d-1}.$$
A Tropical Counterexample

Allamigeon, Benchimol, Gaubert, and Joswig (2014) give a counterexample to the continuous Hirsch conjecture.
Allamigeon, Benchimol, Gaubert, and Joswig (2014) give a counterexample to the continuous Hirsch conjecture.

By working over $\mathbb{R}[[t]]$ and lifting to \mathbb{R}, they give a linear program with $n = 3r + 4$ inequalities and in dimension $2r + 2$ whose central path has total curvature $\Omega(2^r/r)$.
A Tropical Counterexample

Allamigeon, Benchimol, Gaubert, and Joswig (2014) give a counterexample to the continuous Hirsch conjecture.

By working over $\mathbb{R}\{\{t\}\}$ and lifting to \mathbb{R}, they give a linear program with $n = 3r + 4$ inequalities and in dimension $2r + 2$ whose central path has total curvature $\Omega(2^r/r)$.

\[
\begin{align*}
\min \ v_0 & \quad \text{subject to} \\
u_0 & \leq t, \quad v_0 \leq t^2, \\
u_r & \geq 0, \quad v_r \geq 0, \\
v_i & \leq t^{1-1/2^i}(u_{i-1} + v_{i-1}), \\
u_i & \leq tu_{i-1}, \quad u_i \leq tv_{i-1}
\end{align*}
\]
A Tropical Counterexample

Allamigeon, Benchimol, Gaubert, and Joswig (2014) give a counterexample to the continuous Hirsch conjecture.

By working over $\mathbb{R}\{\{t\}\}$ and lifting to \mathbb{R}, they give a linear program with $n = 3r + 4$ inequalities and in dimension $2r + 2$ whose central path has total curvature $\Omega(2r/r)$.

$$
\begin{align*}
\min v_0 \quad & \text{subject to} \\
& u_0 \leq t, \quad v_0 \leq t^2, \\
& u_r \geq 0, \quad v_r \geq 0, \\
& v_i \leq t^{1-1/2^i}(u_{i-1} + v_{i-1}), \\
& u_i \leq tu_{i-1}, \quad u_i \leq tv_{i-1}
\end{align*}
$$
A polynomial \(f \in \mathbb{R}[x_1, \ldots, x_n]_d \) is hyperbolic with respect to a point \(e \in \mathbb{R}^n \) if for every \(v \in \mathbb{R}^n \) all the roots of \(f(te + v) \) are real.

Central curves in the plane are hyperbolic!
Hyperbolic Polynomials

A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if for every $v \in \mathbb{R}^n$ all the roots of $f(te + v)$ are real.

Ex: $\prod_i x_i$ is hyperbolic w.r.t $(1, \ldots, 1)$.
A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if for every $v \in \mathbb{R}^n$ all the roots of $f(te + v)$ are real.

Ex: $\prod_i x_i$ is hyperbolic w.r.t $(1, \ldots, 1)$.

Ex: $\det \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{1n} & \cdots & x_{nn} \end{pmatrix}$ is hyperbolic w.r.t I_d.
A polynomial \(f \in \mathbb{R}[x_1, \ldots, x_n]_d \) is hyperbolic with respect to a point \(e \in \mathbb{R}^n \) if for every \(v \in \mathbb{R}^n \) all the roots of \(f(te + v) \) are real.

Ex: \(\prod_i x_i \) is hyperbolic w.r.t \((1, \ldots, 1)\).

Ex: \[\det \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{1n} & \cdots & x_{nn} \end{pmatrix} \] is hyperbolic w.r.t \(ld_n \).

Central curves in the plane are hyperbolic!
Hyperbolic Varieties

A homogeneous variety $\mathcal{V} \in \mathbb{R}^n$ of codimension-d is hyperbolic with respect to a $(d - 1)$-dimensional linear space \mathcal{L} if for every $v \in \mathbb{R}^n$, all the intersection points of $\mathcal{V} \cap (\mathcal{L} + v)$ are real.
A homogeneous variety $\mathcal{V} \in \mathbb{R}^n$ of codimension-d is hyperbolic with respect to a $(d - 1)$-dimensional linear space \mathcal{L} if for every $v \in \mathbb{R}^n$, all the intersection points of $\mathcal{V} \cap (\mathcal{L} + v)$ are real.

Ex: For any linear space \mathcal{L}, the variety \mathcal{L}^{-1} is hyperbolic w.r.t \mathcal{L}^\perp.
A homogeneous variety $\mathcal{V} \in \mathbb{R}^n$ of codimension-d is hyperbolic with respect to a $(d-1)$-dimensional linear space \mathcal{L} if for every $v \in \mathbb{R}^n$, all the intersection points of $\mathcal{V} \cap (\mathcal{L} + v)$ are real.

Ex: For any linear space \mathcal{L}, the variety \mathcal{L}^{-1} is hyperbolic w.r.t \mathcal{L}^\perp.

The set of $(d-1)$-planes that intersect \mathcal{V} nontrivially is a hyperbolic hypersurface in the Grassmannian.
Theorem (Kummer, V. (2015))

Let $\mathcal{L} \in \text{Gr}(d, n)$ be a linear space with non-zero Plücker coordinates a_T. A linear space $\mathcal{M} \in \text{Gr}(n - d, n)$ with Plücker coordinates p_S intersects \mathcal{L}^{-1} nontrivially if and only if

$$\det \left(\sum_{S \in \binom{[n]}{n-d}} (-1)^S \frac{p_S}{a_{S^c}} v_S v_S^T \right) = 0,$$

where $v_S \in \{-1, 0, 1\}^{(n-1)}$ for $S \in \binom{[n]}{n-d}$.

Cynthia Vinzant, North Carolina State University

Central paths, reciprocal linear spaces, and the algebra behind
Theorem (Kummer, V. (2015))

Let $\mathcal{L} \in \text{Gr}(d, n)$ be a linear space with non-zero Plücker coordinates a_T. A linear space $\mathcal{M} \in \text{Gr}(n - d, n)$ with Plücker coordinates p_S intersects \mathcal{L}^{-1} nontrivially if and only if

$$
\det \left(\sum_{S \in \binom{[n]}{n-d}} (-1)^S \frac{p_S}{a_S^c} v_S v_S^T \right) = 0,
$$

where $v_S \in \{-1, 0, 1\}^{(n-1)}$ for $S \in \binom{[n]}{n-d}$.

When $\mathcal{M} = \mathcal{L}^\perp$, $(-1)^S \frac{p_S}{a_S^c} = 1$ and this matrix is positive definite.
Example: \((d, n) = (2, 4)\)

\[
L = \text{rowspan} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}
\]

\[
\begin{align*}
a_{12} &= 1 \\
a_{13} &= 2 \\
a_{14} &= 3 \\
a_{23} &= 1 \\
a_{24} &= 2 \\
a_{34} &= 1
\end{align*}
\]
Example: \((d, n) = (2, 4)\)

\[
\mathcal{L} = \text{rowspan} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \quad a_{12} = 1 \quad a_{13} = 2 \quad a_{14} = 3 \\
a_{23} = 1 \quad a_{24} = 2 \quad a_{34} = 1
\]

\(\mathcal{L}^{-1}\) is a cubic 2-fold in \(\mathbb{R}^4\) \Rightarrow \(\mathbb{P}(\mathcal{L}^{-1})\) is a cubic curve in \(\mathbb{P}^3\).
Example: \((d, n) = (2, 4)\)

\[
\mathcal{L} = \text{rowspan} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \quad a_{12} = 1 \quad a_{13} = 2 \quad a_{14} = 3 \\
a_{23} = 1 \quad a_{24} = 2 \quad a_{34} = 1
\]

\(\mathcal{L}^{-1}\) is a cubic 2-fold in \(\mathbb{R}^4\) \(\Rightarrow\) \(\mathbb{P}(\mathcal{L}^{-1})\) is a cubic curve in \(\mathbb{P}^3\).

The line spanned by points \(v^1\) and \(v^2\) intersects \(\mathcal{L}^{-1}\) if and only if

\[
\det \begin{pmatrix}
\frac{p_{12}}{a_{34}} + \frac{p_{14}}{a_{23}} - \frac{p_{24}}{a_{13}} & \frac{p_{14}}{a_{23}} & \frac{p_{24}}{a_{13}} \\
\frac{p_{14}}{a_{23}} - \frac{p_{13}}{a_{24}} + \frac{p_{14}}{a_{23}} + \frac{p_{34}}{a_{12}} & \frac{p_{34}}{a_{12}} \\
\frac{p_{24}}{a_{13}} & \frac{p_{34}}{a_{12}} & \frac{p_{23}}{a_{14}} - \frac{p_{24}}{a_{13}} + \frac{p_{34}}{a_{12}}
\end{pmatrix} = 0
\]

where \(p_{ij}\) is the \(\{i, j\}\)th minor of \(\begin{pmatrix} v^1 \\ v^2 \end{pmatrix}\).
Conclusions

- Optimization can produce beautiful real algebraic objects.
- Their algebraic structure can reveal their behavior and answer questions in the theory of optimization.
Optimization can produce beautiful real algebraic objects.

Their algebraic structure can reveal their behavior and answer questions in the theory of optimization.

Thanks!