Permanence in the STEM Workforce: The Route to Tenure in Academia

Karen R. Ríos-Soto
Associate Professor
Department of Mathematical Sciences
University of Puerto Rico Mayaguez

Careers in the Mathematical Sciences Workshop at IMA
April, 2012 Report INSIDE HIGHER ED: Why Women Leave Academia by Curt Rice

- Young women scientists leave academia in far greater numbers than men.
- Change of interest during PhD years among expressing an intention to pursue careers as researchers, either in industry or academia.

<table>
<thead>
<tr>
<th></th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of PhD</td>
<td>72%</td>
<td>61%</td>
</tr>
<tr>
<td>By end years of PhD</td>
<td>37%</td>
<td>59%</td>
</tr>
<tr>
<td>Academia as Preferred Job</td>
<td>12%</td>
<td>21%</td>
</tr>
</tbody>
</table>
April, 2012 Report INSIDE HIGHER ED: Why Women Leave Academia by Curt Rice

- Young women scientists leave academia in far greater numbers than men.

- Change of interest during PhD years among expressing an intention to pursue careers as researchers, either in industry or academia.

<table>
<thead>
<tr>
<th></th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of PhD</td>
<td>72%</td>
<td>61%</td>
</tr>
<tr>
<td>By end years of PhD</td>
<td>37%</td>
<td>59%</td>
</tr>
<tr>
<td>Academia as Preferred Job</td>
<td>12%</td>
<td>21%</td>
</tr>
</tbody>
</table>
Youth women scientists leave academia in far greater numbers than men.

Change of interest during PhD years among expressing an intention to pursue careers as researchers, either in industry or academia.

<table>
<thead>
<tr>
<th></th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of PhD</td>
<td>72%</td>
<td>61%</td>
</tr>
<tr>
<td>By end years of PhD</td>
<td>37%</td>
<td>59%</td>
</tr>
<tr>
<td>Academia as Preferred Job</td>
<td>12%</td>
<td>21%</td>
</tr>
</tbody>
</table>
II. Motivation for Session

- February, 2012 Report INSIDE HIGHER ED: *Survival Factor by Kaustuv Basu*

 - Based on a *Science* study that tracked 2,966 assistant professors at 14 research universities.

 - Report by Deborah Kaminski of Rensselaer Polytechnic Institute and Cheryl Geisler of Simon Fraser University in Canada.

 - Half of all tenure-track faculty members in STEM leave their research universities within 11 years of being hired.

 - Only 64.2% assistant professors become associate professors at the same institution where they were hired.
February, 2012 Report INSIDE HIGHER ED: *Survival Factor by Kaustuv Basu*

- Based on a *Science* study that tracked 2,966 assistant professors at 14 research universities.

- Report by Deborah Kaminski of Rensselaer Polytechnic Institute and Cheryl Geisler of Simon Fraser University in Canada.

- Half of all tenure-track faculty members in STEM leave their research universities within 11 years of being hired.

- Only 64.2% assistant professors become associate professors at the same institution where they were hired.
II. Motivation for Session

- February, 2012 Report INSIDE HIGHER ED: *Survival Factor by Kaustuv Basu*

 - Based on a *Science* study that tracked 2,966 assistant professors at 14 research universities.

 - Report by Deborah Kaminski of Rensselaer Polytechnic Institute and Cheryl Geisler of Simon Fraser University in Canada.

 - Half of all tenure-track faculty members in STEM leave their research universities within 11 years of being hired.

 - Only 64.2% assistant professors become associate professors at the same institution where they were hired.
II. Motivation for Session

- February, 2012 Report INSIDE HIGHER ED: *Survival Factor by Kaustuv Basu*

 - Based on a *Science* study that tracked 2,966 assistant professors at 14 research universities.

 - Report by Deborah Kaminski of Rensselaer Polytechnic Institute and Cheryl Geisler of Simon Fraser University in Canada.

 - Half of all tenure-track faculty members in STEM leave their research universities within 11 years of being hired.

 - Only 64.2% assistant professors become associate professors at the same institution where they were hired.
II. Motivation for Session

- **February, 2012 Report INSIDE HIGHER ED: Survival Factor by Kaustuv Basu**

- Based on a *Science* study that tracked 2,966 assistant professors at 14 research universities.

- Report by Deborah Kaminski of Rensselaer Polytechnic Institute and Cheryl Geisler of Simon Fraser University in Canada.

- Half of all tenure-track faculty members in STEM leave their research universities within 11 years of being hired.

- Only 64.2% assistant professors become associate professors at the same institution where they were hired.
II. Motivation for Session

Median Time to Exit, by Discipline and Gender

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Median Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
</tr>
<tr>
<td>Elec Eng</td>
<td>12.92</td>
</tr>
<tr>
<td>Physics</td>
<td>11.14</td>
</tr>
<tr>
<td>Mech Eng</td>
<td>16.19</td>
</tr>
<tr>
<td>Chemistry</td>
<td>12.46</td>
</tr>
<tr>
<td>Mathematics</td>
<td>7.33</td>
</tr>
<tr>
<td>Comp Sci</td>
<td>9.32</td>
</tr>
<tr>
<td>Civil Eng</td>
<td>8.68</td>
</tr>
<tr>
<td>Biology</td>
<td>11.96</td>
</tr>
<tr>
<td>Chem Eng</td>
<td>11.64</td>
</tr>
</tbody>
</table>

Karen R. Ríos-Soto
IMA: 3/27/15
Median Time to Exit, by Discipline and Gender

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elec Eng</td>
<td>12.92</td>
<td>10.68</td>
</tr>
<tr>
<td>Physics</td>
<td>11.14</td>
<td>9.41</td>
</tr>
<tr>
<td>Mech Eng</td>
<td>16.19</td>
<td>10.41</td>
</tr>
<tr>
<td>Chemistry</td>
<td>12.46</td>
<td>10.53</td>
</tr>
<tr>
<td>Mathematics</td>
<td>7.33</td>
<td>4.45</td>
</tr>
<tr>
<td>Comp Sci</td>
<td>9.32</td>
<td>10.25</td>
</tr>
<tr>
<td>Civil Eng</td>
<td>8.68</td>
<td>10.74</td>
</tr>
<tr>
<td>Biology</td>
<td>11.96</td>
<td>16.36</td>
</tr>
<tr>
<td>Chem Eng</td>
<td>11.64</td>
<td>9.78</td>
</tr>
</tbody>
</table>
“Our work confirms the importance of the late pre-tenure period as a period of critical risk in the retention of faculty in STEM," the report states.

Over all, faculty members were less likely to depart after tenure than before tenure.
“Our work confirms the importance of the late pre-tenure period as a period of critical risk in the retention of faculty in STEM," the report states.

Over all, faculty members were less likely to depart after tenure than before tenure.
Trends in Faculty Employment Status

Trends in Faculty Employment Status, 1975 and 1976 to 2011

Notes: Figures in this chart have been updated from those published by AAUP in 1975-76. Figures for full-time faculty are for 1975 and are estimated; part-time figures are for 1976.
Source: US Department of Education, IPEDS Fall Staff Survey. Tabulation by John W. Curtis, American Association of University Professors, Washington, DC.

American Association of University Professors The Employment Status of Instructional Staff, Fall 2011 April 2014, Page 4
Faculty Employment Status by Race or Ethnicity

Faculty Employment Status, by Race or Ethnicity, Fall 2011

- Full-Time Tenured Faculty
- Full-Time Tenure-Track Faculty
- Full-Time Non-Tenure-Track Faculty
- Part-Time Faculty

Percent of Total Faculty

- Asian: 27.9, 24.3, 32.2
- Black or African American: 15.6, 13.9, 17.3
- Hispanic or Latino: 20.2, 8.2, 17.2
- White: 22.0, 7.8, 19.5
- Other: 11.4, 9.0, 18.7

Notes: “Other” race or ethnicity includes American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Two or More Races, Race/Ethnicity Unknown, and Nonresident Alien.

Source: US Department of Education, IPEDS Fall Staff Survey. Tabulation by John W. Curtis, American Association of University Professors, Washington, DC.

American Association of University Professors The Employment Status of Instructional Staff, Fall 2011

April 2014, Page 40
National analysis of minorities faculties in STEM at research universities by Dr. Donna J. Nelson and Christopher N. Brammer 2010.

The few URM in academia usually concentrated as assistant professors.

A relatively large proportion of minority faculty members lack tenure.

Without job security or a critical mass, most minority faculty members lack the capability or leverage to change the environment greatly within their discipline.

Slow promotion rates.
National analysis of minorities faculties in STEM at research universities by Dr. Donna J. Nelson and Christopher N. Brammer 2010.

The few URM in academia usually concentrated as assistant professors.

A relatively large proportion of minority faculty members lack tenure.

Without job security or a critical mass, most minority faculty members lack the capability or leverage to change the environment greatly within their discipline.

Slow promotion rates.
Minorities in Sciences and Engineering Faculties

- National analysis of minorities faculties in STEM at research universities by Dr. Donna J. Nelson and Christopher N. Brammer 2010.

- The few URM in academia usually concentrated as assistant professors.

- A relatively large proportion of minority faculty members lack tenure.

- Without job security or a critical mass, most minority faculty members lack the capability or leverage to change the environment greatly within their discipline.

- Slow promotion rates.
Minorities in Sciences and Engineering Faculties

- National analysis of minorities faculties in STEM at research universities by Dr. Donna J. Nelson and Christopher N. Brammer 2010.

- The few URM in academia usually concentrated as assistant professors.

- A relatively large proportion of minority faculty members lack tenure.

- Without job security or a critical mass, most minority faculty members lack the capability or leverage to change the environment greatly within their discipline.

- Slow promotion rates.
National analysis of minorities faculties in STEM at research universities by Dr. Donna J. Nelson and Christopher N. Brammer 2010.

The few URM in academia usually concentrated as assistant professors.

A relatively large proportion of minority faculty members lack tenure.

Without job security or a critical mass, most minority faculty members lack the capability or leverage to change the environment greatly within their discipline.

Slow promotion rates.
STEM and URM Professors by Rank

Table 1. URM Professors (Black, Hispanic, Native American) by Rank and Year at the Top 50

<table>
<thead>
<tr>
<th>Discipline</th>
<th>FY2002*</th>
<th></th>
<th></th>
<th>FY2007</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assistant</td>
<td>Associate</td>
<td>Full</td>
<td>All Ranks</td>
<td>Assistant</td>
<td>Associate</td>
</tr>
<tr>
<td>Chemistry</td>
<td>2.8%</td>
<td>7.5%</td>
<td>2.3%</td>
<td>3.2%</td>
<td>4.7%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Math</td>
<td>6.0%</td>
<td>4.6%</td>
<td>3.0%</td>
<td>3.6%</td>
<td>2.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Computer Science</td>
<td>2.1%</td>
<td>1.7%</td>
<td>1.3%</td>
<td>1.6%</td>
<td>3.1%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Astronomy**</td>
<td>5.5%</td>
<td>4.0%</td>
<td>1.6%</td>
<td>2.5%</td>
<td>3.3%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Physics</td>
<td>5.2%</td>
<td>2.8%</td>
<td>2.0%</td>
<td>2.6%</td>
<td>4.4%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Chemical Eng.</td>
<td>3.4%</td>
<td>8.2%</td>
<td>4.2%</td>
<td>4.9%</td>
<td>7.7%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Civil Eng.</td>
<td>9.3%</td>
<td>4.8%</td>
<td>3.9%</td>
<td>5.4%</td>
<td>10.5%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Electrical Eng.</td>
<td>5.4%</td>
<td>8.2%</td>
<td>2.2%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Mechanical Eng.</td>
<td>7.0%</td>
<td>5.4%</td>
<td>2.4%</td>
<td>3.9%</td>
<td>8.1%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Economics</td>
<td>6.6%</td>
<td>4.4%</td>
<td>3.4%</td>
<td>4.3%</td>
<td>10.9%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Political Science</td>
<td>8.0%</td>
<td>9.8%</td>
<td>4.5%</td>
<td>6.9%</td>
<td>8.3%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Sociology</td>
<td>14.8%</td>
<td>12.4%</td>
<td>6.6%</td>
<td>10.1%</td>
<td>19.2%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Psychology</td>
<td>12.0%</td>
<td>9.4%</td>
<td>3.1%</td>
<td>6.3%</td>
<td>12.5%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>5.7%</td>
<td>3.0%</td>
<td>2.1%</td>
<td>3.0%</td>
<td>6.5%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
<td>5.4%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

*Chemistry and astronomy data are for FY2003. **Top 40 departments in FY2007*

Figure: Nelson and Brammer (2010)
Culture and Institutional Expectations at Most Institutions

- Teaching
- Scholarship
- Service
Culture and Institutional Expectations at Most Institutions

- Teaching
- Scholarship
- Service
Culture and Institutional Expectations at Most Institutions

- Teaching
- Scholarship
- Service
Culture and Institutional Expectations at Most Institutions

Teaching

Show evidence of excellence in teaching characterized by clarity, effectiveness, and organization.

- Students Evaluations
- Peer teaching evaluations with classroom visit.
- Teacher portfolio, include syllabus, assignments, among others.
Culture and Institutional Expectations at Most Institutions

- **Teaching**
 Show evidence of excellence in teaching characterized by clarity, effectiveness, and organization.

- **Students Evaluations**
 - Peer teaching evaluations with classroom visit.
 - Teacher portfolio, include syllabus, assignments, among others.
Culture and Institutional Expectations at Most Institutions

Teaching

Show evidence of excellence in teaching characterized by clarity, effectiveness, and organization.

- Students Evaluations

- Peer teaching evaluations with classroom visit.

- Teacher portfolio, include syllabus, assignments, among others.
Teaching
Show evidence of excellence in teaching characterized by clarity, effectiveness, and organization.

- Students Evaluations

- Peer teaching evaluations with classroom visit.

- Teacher portfolio, include syllabus, assignments, among others.
Culture and Institutional Expectations at Most Institutions

Scholarship

Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

- A paper published in a peer-reviewed journal or conference proceedings.
- Appropriate book chapter(s).
- An externally funded grant devoted to scholarship in the area.
- An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.
- Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

- **Scholarship**
 Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

- A paper published in a peer-reviewed journal or conference proceedings.

- Appropriate book chapter(s).

- An externally funded grant devoted to scholarship in the area.

- An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.

- Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

- **Scholarship**
 - Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

 - A paper published in a peer-reviewed journal or conference proceedings.

 - Appropriate book chapter(s).

 - An externally funded grant devoted to scholarship in the area.

 - An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.

 - Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

- **Scholarship**
 Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

 - A paper published in a peer-reviewed journal or conference proceedings.
 - Appropriate book chapter(s).
 - An externally funded grant devoted to scholarship in the area.
 - An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.
 - Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

- **Scholarship**
 Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

 - A paper published in a peer-reviewed journal or conference proceedings.

 - Appropriate book chapter(s).

 - An externally funded grant devoted to scholarship in the area.

 - An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.

 - Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

Scholarship

Typically considered are activities that involve an external (off-campus) peer review and dissemination process.

- A paper published in a peer-reviewed journal or conference proceedings.
- Appropriate book chapter(s).
- An externally funded grant devoted to scholarship in the area.
- An invited presentation (e.g. keynote speaker, major presenter, etc.) at an appropriate meeting.
- Collaboration with students in scholarly activities leading to a peer reviewed publication.
Culture and Institutional Expectations at Most Institutions

- **Service**
 - Typically, the time spent on service activities should be less than that spent on teaching and scholarship.
 - Serving on a departmental or university committee.
 - Projects that develop bridges between the department and groups external to the department and university.
 - Applying one’s academic expertise to enhance and invigorate community activities.
 - Interdisciplinary projects.
 - Organizing and advising clubs connected with the Department of Mathematics.
Service

Typically, the time spent on service activities should be less than that spent on teaching and scholarship.

- Serving on a departmental or university committee.
- Projects that develop bridges between the department and groups external to the department and university.
- Applying one’s academic expertise to enhance and invigorate community activities.
- Interdisciplinary projects.
- Organizing and advising clubs connected with the Department of Mathematics.
Culture and Institutional Expectations at Most Institutions

Service

Typically, the time spent on service activities should be less than that spent on teaching and scholarship.

- Serving on a departmental or university committee.
- Projects that develop bridges between the department and groups external to the department and university.
- Applying one’s academic expertise to enhance and invigorate community activities.
- Interdisciplinary projects.
- Organizing and advising clubs connected with the Department of Mathematics.
Culture and Institutional Expectations at Most Institutions

Service

Typically, the time spent on service activities should be less than that spent on teaching and scholarship.

- Serving on a departmental or university committee.
- Projects that develop bridges between the department and groups external to the department and university.
- Applying one’s academic expertise to enhance and invigorate community activities.
- Interdisciplinary projects.
- Organizing and advising clubs connected with the Department of Mathematics.
Service
Typically, the time spent on service activities should be less than that spent on teaching and scholarship.

- Serving on a departmental or university committee.
- Projects that develop bridges between the department and groups external to the department and university.
- Applying one’s academic expertise to enhance and invigorate community activities.
- Interdisciplinary projects.
- Organizing and advising clubs connected with the Department of Mathematics.
Culture and Institutional Expectations at Most Institutions

- **Service**

 Typically, the time spent on service activities should be less than that spent on teaching and scholarship.

 - Serving on a departmental or university committee.

 - Projects that develop bridges between the department and groups external to the department and university.

 - Applying one’s academic expertise to enhance and invigorate community activities.

 - Interdisciplinary projects.

 - Organizing and advising clubs connected with the Department of Mathematics.
Strategies

- Keep yourself available
 - Be active... become a journal reviewer.
 - Take advantage of summer months and programs for faculty.
 - Supervise undergraduate/graduate students research.
 - Attend meetings... and remember networking is the key.
 - Read papers to know current research.
 - Be a member of key professional societies in your field.
 - Participate on proposal review panels even as junior reviewer.
 - Start writing small grants.
 - Seek help from institution programs and mentors.
 - Use technology in the classroom.
 - Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.

Karen R. Ríos-Soto IMA: 3/27/15
Strategies

- Keep yourself available
- Be active... become a journal reviewer.
- Take advantage of summer months and programs for faculty.
- Supervise undergraduate/graduate students research.
- Attend meetings... and remember networking is the key.
- Read papers to know current research.
- Be a member of key professional societies in your field.
- Participate on proposal review panels even as junior reviewer.
- Start writing small grants.
- Seek help from institution programs and mentors.
- Use technology in the classroom.
- Perform activities for the students to work in groups.