Effective Dynamics of Nonlocal Many-Particle Systems with Dynamical Constraint

Joint work with Barbara Niethammer and Juan J.L. Velázquez

IMA, University of Minnesota, December 03, 2012
IMA Annual Program Year Workshop
Lattice and Nonlocal Dynamical Systems and Applications

Michael Herrmann

Saarlandes Universitäts DES
Lattice and Nonlocal Dynamical Systems and Applications

Contents

- Nonlocal Fokker-Planck equations driven by a dynamical constraint
 - Arise in modelling of Lithium-ion batteries
 - Complicate dynamics due to 3 different time scales
 - Involve two small parameters
- Reduced models for small parameter limits
 - Form rigorous proofs for fast and slow reactions driven and to be found, resp.
 - Formal and heuristic arguments only
 - Slow reaction regime with splitting of unstable peaks
 - Fast reaction regime driven by Kramers formula for time-dependent potentials
- This talk
 - Formal and heuristic arguments only
Model and Motivation

Nonlocal Fokker-Planck equation with dynamical constraint
Lithium-ion batteries

How to derive the hysteresis from the properties of nano-particles? (made of iron phosphate) powder of nano-particles

.. image:: lithium-ion.png
 :width: 100%

charging
discharging

capacity of powder

electrolyte

Lattice and Nonlocal Dynamical Systems and Applications
IMA, University of Minnesota, 3 Dec 2012

powder of nano-particles (made of iron phosphate)
Assumptions on dynamics

Dreyer, Gührike, Herrmann: Continuum Mechanics and Thermodynamics (2011)

1. Energy per particle has two local minima
2. Each particle minimizes its energy quickly
3. Mean position is prescribed by $\langle x \rangle (t)$
4. Evolution of ensemble
5. Stochastic fluctuations

Forces = chemical potential
"Position" = Li-concentration
"Position" = Li-concentration

Microscopic quantities

Modeling assumptions

IMA, University of Minnesota, 3 Dec 2012
Evolution equation

\[
\frac{\partial}{\partial t} \rho(x,t) + \nabla \cdot \left(\nabla \rho(x,t) \rho_0(x) \right) = \int H(x) \rho(x,t) dx = \rho(t) \phi
\]

Equivalent mean-field formula

\[
\rho(t) = \rho_0(x) \int H(x) \rho(x,t) dx
\]

Dynamical constraint

Energy per particle \((x) H\)

Dynamical multiplier \((t) \phi\)

Probability density of powder \((x,t) \rho\)

Nonlocal Fokker-Planck equation

\[
\left(\frac{\partial}{\partial t} \rho(t) - (x,H) \right) + \nabla \cdot \left(\nabla \phi \right) = \nabla \cdot \left(\rho(t) \right)
\]
Three time scales

- Relaxation to meta-stable state
- Convergence to equilibrium
- Dynamics constraint

Reduced models for small parameter limit

Goal

Which times scales are relevant?

\[\frac{1}{\tau} \left(\frac{\tau^2}{\beta H \nabla} \right) \exp \left(\frac{\tau}{\beta H \nabla} \right) \]

side comment: what about lattices?

similar equations

chain of bistable units + hard-loading device + overdamped limit + thermal fluctuations

bi-stable spring

dashpot

bi-stable spring

dashpot
Heuristics and Simulations
How is the mass transferred between the stable intervals?

\[\dot{\rho}(t) = 1, \quad \rho(0) = \rho_f, \quad (t_\rho) = \rho(\rho_f) \]

Phase fraction

\[\dot{u}(t) = (t)u, \quad u_0 = (t)u_f \]

Negative voltage

\[\dot{\varphi}(t) = (t)\varphi, \quad \varphi_0 = (t)\varphi_f \]

Capacity of powder

Macroscopic quantities

Simplifying assumptions

Final dynamics

Initial and final dynamics

Overview
Type II Lattice and Nonlocal Dynamical Systems and Applications

IMA, University of Minnesota, 3 Dec 2012

Simulations - macroscopic view

A: \(t = 1 \), \(n = 0.05 \), \(x, y \)

B: \(t = 0.5 \), \(n = 0.05 \), \(x, y \)

C: \(t = 0.25 \), \(n = 0.05 \), \(x, y \)

D: \(t = 0.1 \), \(n = 0.05 \), \(x, y \)

E: \(t = 0.05 \), \(n = 0.05 \), \(x, y \)

F: \(t = 0.001 \), \(n = 0.05 \), \(x, y \)

G: \(t = 0.001 \), \(n = 0.2 \), \(x, y \)

H: \(t = 0.00001 \), \(n = 0.2 \), \(x, y \)

I: \(t = 0.0001 \), \(n = 0.4 \), \(x, y \)

Type IV

Type III

Type II

Type I

Fast reactions

Slow reactions
Simulations - microscopic view
<table>
<thead>
<tr>
<th>Scaling Regimes</th>
<th>$\infty \leftarrow 1/\log 1+a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi-stationary Limit</td>
<td>$q > q > 0$</td>
</tr>
<tr>
<td>Kramers Formula</td>
<td>$\left(1-\frac{q}{a}\right) \exp = \frac{1}{x}$</td>
</tr>
<tr>
<td>Limit of Kramers Formula</td>
<td>$\infty > d > 3/2$, $\frac{d}{\sqrt{a}} = 1$</td>
</tr>
<tr>
<td>Open Problem</td>
<td>$3/2 > d > 0$, $d/\sqrt{a} = 1$</td>
</tr>
<tr>
<td>Two-peak Evolution</td>
<td>$q > q > 0$, $\frac{q}{\log 1+a} = 1$</td>
</tr>
<tr>
<td>Piecewise Continuous</td>
<td>$b > b > 0$, $b/\log 1 = 1$</td>
</tr>
<tr>
<td>Single-peak Evolution</td>
<td>$\infty \leftarrow a/\log 1+a$</td>
</tr>
<tr>
<td>$0 \leftarrow a/\log 1+a$</td>
<td></td>
</tr>
</tbody>
</table>
Fast reactions regime: Type-III Transitions

\[\frac{\epsilon}{q} \int \exp \left(-\frac{\epsilon}{q} \right) dx \equiv \mathcal{T} \]
Lattice and Nonlocal Dynamical Systems and Applications

Kramers formula

\[
\begin{align*}
(p)_t &= H = x^n_x - x^n
\\
0 &= H = x^n_x
\end{align*}
\]

Key Observation

Particles diffuse in a time-dependent effective potential

\[
\varphi - (x)H = (x)^\varphi H
\]

Asymptotics

- singe-well for \(\varphi < |(x)\varphi| \)
- double-well for \(\varphi > |(x)\varphi| \)

Effective potential

Particles diffuse in a time-dependent effective potential

FP-flux = 0

inner expansion

outer expansion

IMA, University of Minnesota, 3 Dec 2012
Singular ODE for the masses and the constraint:

\[(\varphi, -m) \frac{d}{dt} I = \gamma, \quad (\varphi, -m) = \frac{1}{(t) \mathcal{R}}, \quad I = \mp m + w \]

Further observations:

\[\left(\frac{q}{(\varphi)^q - q} \right) \exp (\varphi)^ \pm c = (\varphi)^ \pm \lambda \]

Effective mass flux (via asymptotic analysis):

\[\left(\frac{q}{q} \right) \exp = \lambda \]

Kramers formula

Small deviations from critical values determined by constraint.

Critical values (corresponding to increasing or decreasing constraint, resp.)

Mass flux is of order 1 if and only if multiplier is close to one of two
Lattice and Nonlocal Dynamical Systems and Applications

Limit model for type-I/II transitions

- • describes numerical observations very well
- • is rate-independent
- predicts the plateau height

\[
0 = \left(\left(t \right) \eta^l, \left(t \right) \gamma, \left(t \right) \phi \right) \in \mathcal{C} \\
\left(\left(t \right) \eta^l \right) \mathcal{I}^\eta \psi + \left(\left(t \right) \eta^l \right) \mathcal{R} \phi \subseteq \left(t \right) \phi
\]

\[
\left(t \right) \gamma \phi = \left(t \right) \eta^l, \quad \gamma \phi = \left(t \right) \eta^l = \left(t \right) \phi
\]

Intermediate (plateau) dynamics

\[
0 = \left(t \right) \eta^l, \quad \left(\left(t \right) \gamma \right), \mathcal{H} = \left(t \right) \eta^l = \left(t \right) \phi
\]

Initial and final dynamics
18

PDE techniques for fast reactions

• gradient flow structure, energy-dissipation estimates
• mass-dissipation estimates via Muckenhoupt functionals
• large deviations results
• dynamical peak stability estimates
• a priori and moment estimates

Herrmann, Niethammer, Velázquez: in preparation
Slow Reactions Regime: Type-I/II Transitions

\[
\left(\int_0^\infty \frac{t}{v} \exp{\xi} \, d\xi \right) = \alpha
\]
Type-II transitions
Simplified models

1. Mass-splitting problem
2. Peak-widening model
3. Two-peaks ODE

- To mass distribution after splitting
- To compute the next splitting time

- Unstable peaks merge rapidly with stable ones
- Stable peaks enter unstable interval
- Localised peaks move due to constraint
- Switching
- Transport
- Splitting
- Splitting
- Unstable peaks split rapidly

IMA, University of Minnesota, 3 Dec 2012
Two-peaks approximation

\[\dot{x} = \varepsilon x \varepsilon w + \mathbf{1} x \mathbf{1} w \]

Quasi-stationary limit \(\varepsilon \to 0 \)

Multiple solution branches:

\[\mathbf{j} = \varepsilon x \varepsilon w + \mathbf{1} x \mathbf{1} w \]

\[\mathbf{j} = (\varepsilon x, H = (\mathbf{1} x, H) \]

\[\mathbf{j} \perp + (\varepsilon x, H \varepsilon w + (\mathbf{1} x, H \mathbf{1} w = \mathbf{0} \]

\[\varepsilon x \mathbf{j} - \mathbf{0} = \varepsilon x \]

\[\mathbf{1} x \mathbf{j} - \mathbf{0} = \mathbf{1} x \]

\[\dot{x} = \mathbf{m} \]
\[
\left((t) \theta, \frac{(t) H}{(t) I} x - x \right) \mathcal{U} \frac{(t) H}{I} := (t, x) \tilde{\varphi}
\]

\[
((t) \theta) \Lambda(t) H = (t) m
\]

Width of peak

\[
(x)_I H - \varrho = x_I \perp
\]

Position of peak

\[
\int x w = y
\]

\[
\int \varphi \cdot x w + \varphi \cdot x \varphi \cdot x w = \varphi
\]

Peak-widening model
can be computed by quasi-stationary two-peaks approximation

\[0 = u + \tau p((\frac{\partial}{\partial x})^\perp x) \int_{\Delta t} H \frac{\partial \psi}{\partial \xi} \]

\[I \ll (\tau) \eta : \tau \gg ds \eta \]
\[I \gg (\tau) \eta \gg \alpha : ds \eta \gg \tau \gg ms \eta \]
\[\alpha Q = (\tau) \eta : ms \eta \gg \tau \gg 0 \]

\[\theta^\wedge \sim (\theta) M \left(\frac{\theta \psi}{\xi \bar{\psi}} - \right) dx \exp \frac{\int \psi \psi^\wedge}{\alpha} \approx (\theta, \tilde{\psi}) H \]
\[H^{\tilde{\psi} Q} = H^{\theta Q} \]

- only one reasonable choice for time and space scaling
- expand nonlinearity fine as long as width is small
- formula for width of unstable peaks

Formulas for width of unstable peaks
Asymptotic initial data (reminiscent of diffusion) from a curve of possible ones

\[
(t \varepsilon x, s, \hat{z}, \hat{z} x) \text{ for } s \to 1
\]

unstable steady state

unstable steady state

unstable manifold has codim=1

(unstable manifold has codim=1)

(unstable manifold has codim=1)

Splitting = heteroclinic connection

\[
(\forall x, H \varepsilon u + x \varepsilon 0(x), H \int \varepsilon u = (s) \varepsilon 0
\]

\[
(s) \varepsilon 0 = \varepsilon x
\]

\[
(\varepsilon (s) \varepsilon 0 - (x) \varepsilon H)^x = \varepsilon s \varepsilon q
\]

(\forall s, \varepsilon 0 = \varepsilon q + \varepsilon s \varepsilon t = t
\]

Simplified

Simplified

Equations

Mass splitting problem
Mass splitting function

\[
(m_1^2/m_1^1)\text{ versus } m_1^1
\]

Heteroclinic connection is well-defined and depends continuously on the parameters. Conjecture (for nonlocal but autonomous transport equation)

\[
(m_{11}, m_2) \leftrightarrow (m_1^1, m_2^1)
\]
Flowchart is numerical integrator!

Main result for slow reactions
Summary

• Kramers formula describes Type-III transitions
• Type-IV transitions as limiting case
• Type-I and Type-II transitions can be described by intervals of quasi-stationary transport
• Fast reaction regime
• Nonlocal Fokker-Planck equations with dynamical constraint involve 3 time scales

and preprint on rigorous PDE analysis (to appear on ArXiv soon).
For more details see paper in SIAM MMS (or arXiv:1110.3518).
Thank you!