Reduced-Order Models of Fluids

Jeff Borggaard

Department of Mathematics
Interdisciplinary Center for Applied Mathematics
Virginia Tech

Institute for Mathematics and its Applications
13 June 2013
Overview

POD Sensitivity Analysis

Collaborators

VT: J. Burns, E. Cliff, S. Gugercin, T. Iliescu, L. Zietsman
IMA: Z. Wang
IMI: A. Hay
NUST: I. Akhtar
ORNL: M. Stoyanov
UTRC: S. Ahuja, S. Narayanan, A. Surana
Objective:

Replace current “well mixed,” “node” models with reduced-order models to facilitate analysis, optimization and/or control.

Models may include parameters, such as

- model coefficients
- initial conditions
- boundary conditions
- shape

Need to work for moderately turbulent flows. (Zhu Wang’s talk)

Need to improve accuracy of models over parameter ranges.
Outline

- Review of POD/Galerkin
- Alternate Basis Selection Methods
- Sensitivity analysis
 - to generate bases at new parameter values
Proper Orthogonal Decomposition

Given data $y(\cdot, t) \in \mathcal{H}$ and $t \in [0, T]$, find $\phi(\cdot) \in \mathcal{H}$ such that

$$\phi(\cdot) \text{ solves } \max_{\|\hat{\phi}\|=1} \frac{1}{T} \int_0^T |\langle y(\cdot, t), \hat{\phi}(\cdot) \rangle|^2 dt.$$

Necessary Conditions (L^2)

Let $R^s(x, \bar{x}) \equiv \frac{1}{T} \int_0^T y(x, t)y^*(\bar{x}, t) \, dt$ then $\phi(\cdot)$ is a solution to the eigenvalue problem

$$\int_{\Omega} R^s(x, \bar{x}) \phi(\bar{x}) \, d\bar{x} = \lambda \phi(x).$$
Proper Orthogonal Decomposition

Given data \(y(\cdot, t) \in \mathcal{H} \) and \(t \in [0, T] \), find \(\phi(\cdot) \in \mathcal{H} \) such that

\[
\phi(\cdot) \text{ solves } \max_{\|\hat{\phi}\|=1} \frac{1}{T} \int_{0}^{T} \left| \langle y(\cdot, t), \hat{\phi}(\cdot) \rangle \right|^2 \, dt.
\]

Necessary Conditions (\(L^2 \))

Let \(R^s(x, \bar{x}) \equiv \frac{1}{T} \int_{0}^{T} y(x, t)y^*(\bar{x}, t) \, dt \) then \(\phi(\cdot) \) is a solution to the eigenvalue problem

\[
\int_{\Omega} R^s(x, \bar{x})\phi(\bar{x}) \, d\bar{x} = \lambda \phi(x).
\]
Keep dominant r vectors using heuristic.
The POD basis maintains linear properties.

Define

$$\mathbf{u}'(x, t) = \mathbf{U}(x) + \sum_{j=1}^{r} \phi_j(x) a_j(t).$$

Substitute into the weak form of the partial differential equations to obtain r-dimensional dynamical system for \mathbf{a}.
Example: Navier-Stokes Equations

\[
\begin{align*}
 \mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} &= -\nabla p + \nabla \cdot \left[\nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right] \\
 \nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

Reduced-Order Model

\[\dot{\mathbf{a}} = \mathbf{b} + \mathbf{Aa} + \mathbf{a}^T \mathbf{B} \mathbf{a} \]

where \(\mathbf{B} \) is a tensor and \(a_i(0) = \langle \mathbf{u}(0, \cdot) - \mathbf{U}(\cdot), \phi_i(\cdot) \rangle, \quad i = 1, \ldots, r \).

Integrate to find \(\mathbf{a} \), then reconstruct \(\mathbf{u}^r \).

Flow past a square cylinder, \(Re = 100 \quad (\nu = 1/100) \ldots \)
Flow Past a Square Cylinder
Figure: POD functions: Steamwise Component

(a) ϕ^u_1

(b) ϕ^u_2

(c) ϕ^u_3

(d) ϕ^u_4
Figure: First 20 values of the POD spectrum for the baseline flow.
POD Accuracy

Figure: Accuracy of the ROM for the Baseline Flow, $Re = 100$
Limitations of the Basis

(a) $\text{Re} = 99.50 \ (0.5\%)$
(b) $\text{Re} = 95.24 \ (5\%)$
(c) $\text{Re} = 90.91 \ (10\%)$

Figure: Relative errors in reduced-order models using POD basis
Limitations of POD/Galerkin

Accuracy of the Basis
Basis is only as good as the data it is constructed from.
- optimization
- selection of time intervals
- parametric derivatives of the data

Accounting for Discarded Modes
Especially important for turbulent flows
- add stabilization terms
- use LES closure models to close the POD model
Limitations of POD/Galerkin

Accuracy of the Basis

Basis is only as good as the data it is constructed from.
- optimization
- selection of time intervals
- parametric derivatives of the data

Accounting for Discarded Modes

Especially important for turbulent flows
- add stabilization terms
- use LES closure models to close the POD model
"Definition" of Sensitivity Analysis

Quantify the dependence of parameters on flow variables using the Implicit Function Theorem

Let

\[s_u \equiv \frac{\partial u}{\partial \nu} \quad \text{and} \quad s_p \equiv \frac{\partial p}{\partial \nu}. \]

\[
\dot{s}_u + s_u \cdot \nabla u + u \cdot \nabla s_u = -\nabla s_p + \nabla \cdot \left[\nu \left(\nabla s + \nabla s^T \right) \right] + \nabla \cdot \left[\nu' \left(\nabla u + \nabla u^T \right) \right]
\]

\[\nabla \cdot s_u = 0 \]

with \(s(x, 0) = 0, \ s(\cdot, t)|_{\Gamma_w} = 0 \) and \(\tau(s) \cdot \hat{n} = 0 \) at \(\Gamma_{\text{out}} \).
Sensitivity of the POD Basis

POD Eigenvalue Problem

\[\int_{\Omega} R^s(x, \bar{x}) \phi(\bar{x}) \, d\bar{x} = \lambda \phi(x) \]

Solve for pairs \(\lambda \) and \(\phi(\cdot) \).

Implicit differentiation wrt \(\nu \)

\[\int_{\Omega} R^s_{\nu}(x, \bar{x}) \phi(\bar{x}) + R^s(x, \bar{x}) \phi_{\nu}(\bar{x}) \, d\bar{x} = \lambda_{\nu} \phi(x) + \lambda \phi_{\nu}(x) \]

Solve for pairs \(\lambda_{\nu} \) and \(\phi_{\nu}(\cdot) \).
Sensitivity of the POD Basis

POD Eigenvalue Problem

\[\int_\Omega R^s(x, \bar{x}) \phi(\bar{x}) \, d\bar{x} = \lambda \phi(x) \]

Solve for pairs \(\lambda \) and \(\phi(\cdot) \).

Implicit differentiation wrt \(\nu \)

\[\int_\Omega R^s_{\nu}(x, \bar{x}) \phi(\bar{x}) + R^s(x, \bar{x}) \phi_{\nu}(\bar{x}) \, d\bar{x} = \lambda_{\nu} \phi(x) + \lambda \phi_{\nu}(x) \]

Solve for pairs \(\lambda_{\nu} \) and \(\phi_{\nu}(\cdot) \).
Solution by finite element discretization

\[R^S_\nu \phi + R^S \phi_\nu = \lambda_\nu M \phi + \lambda M \phi_\nu \]

Solution

\[\lambda_\nu = \frac{\phi^T R^S_\nu \phi}{\phi^T M \phi} = \phi^T R^S_\nu \phi \]

and

\[(R^S - \lambda M) \phi_\nu = - (R^S_\nu - \lambda_\nu M) \phi \]

\[R^S_\nu = M \left(Y_\nu Y^T + YY^T \right) M. \]
Extrapolated Basis

Idea

Use

$$\phi^i(x; \nu + \Delta \nu) \approx \phi^i(x; \nu) + \Delta \nu \phi^i_{\nu}(x; \nu)$$

as a basis for the flow at $\nu \equiv \nu + \Delta \nu$.

$$u^r(x, t; \nu) \approx U + \Delta \nu U_{\nu} + \sum_{j=1}^{r} \left(\phi^j(x; \nu) + \Delta \nu \phi^j_{\nu}(x; \nu) \right) a^j(t).$$
Since
\[u^r(x, t; \nu) = \sum_{j=1}^{r} \phi_j(x; \nu) a_j(t) \]
we have
\[u^r_{\nu}(x, t; \nu) = \sum_{j=1}^{r} \left(\phi_j(x; \nu) a_j(t) + \phi_j(x; \nu) a_j(\nu)(t) \right). \]

Idea
\[u^r(x, t; \tilde{\nu}) \approx \sum_{j=1}^{r} \phi_j a_j + \Delta \nu \left[\sum_{j=1}^{r} \phi_j a_j + \phi_j a_j(\nu) \right] \]
\[= \sum_{j=1}^{r} \left[\phi_j + \Delta \nu \phi_j \right] a_j + \Delta \nu \sum_{j=1}^{r} \left[\phi_j \right] a_j(\nu) \]

Use both \(\phi_j \) and \(\phi_j \nu \) (and add \(U + \Delta \nu U_\nu \)).
Example: Navier-Stokes, $Re = 100$

(a) ϕ^1_{ν}

(b) ϕ^2_{ν}

(c) ϕ^3_{ν}

(d) ϕ^4_{ν}
Sensitivity of the POD Basis (not in the POD)

(a) ϕ_1^{ν}

(b) ϕ_2^{ν}

(c) ϕ_3^{ν}

(d) ϕ_4^{ν}
Relative errors in Reduced-Order Models

Figure: \[\frac{\Delta v}{v_0} = 0.5\% \text{ (Re} = 99.50) \]
Relative errors in Reduced-Order Models

Figure: \[\frac{\Delta \nu}{\nu_0} = 5\% \text{ (Re} = 95.24) \]
Relative errors in Reduced-Order Models

\[\frac{\Delta \nu}{\nu_0} = 10\% \ (\text{Re} = 90.91) \]

Figure: [\(\frac{\Delta \nu}{\nu_0} = 10\% \ (\text{Re} = 90.91) \)]
Strouhal Number versus Reynolds Number

![Graph showing Strouhal Number versus Reynolds Number with lines and markers for different models: DNS, DNS-1st order from baseline, ROM - baseline POD, ROM - extrapolated POD, ROM - expanded POD.](image_url)
Comparison of Model Components to DNS Data (dashed)
$Re = 111$: Expanded Basis Model

Comparison of Model Components to DNS Data (dashed)
Re = 150: Baseline Model

Comparison of Model Components to DNS Data (dashed)
Comparison of Model Components to DNS Data (dashed)
Vertical Velocity Max/Min at Downstream Point
In the POD Sensitivity Problem...

\[R_s^\ell \phi + R^S \phi_\ell = \lambda_\ell M \phi + \lambda M_\ell \phi + \lambda M \phi_\ell \]

Solve for pairs \(\lambda_\ell \) and \(\phi_\ell(\cdot) \).

We now need Lagrangian derivatives.
Lagrangian Derivatives

Figure: Mapping from the physical domain to the reference domain

\[\chi^\alpha : \Omega_\alpha \longrightarrow \Omega_0 \]
\[x(\alpha) \longmapsto \chi^\alpha(x(\alpha); \alpha) = \xi. \]

\[G^\alpha : \Omega_0 \longrightarrow \Omega_\alpha \]
\[\xi \longmapsto G^\alpha(\xi; \alpha) = x(\alpha). \]
Rotation of Cylinder
Mesh Warping

Figure: Nominal Mesh: $\alpha = 0^\circ$

Figure: $\alpha = -22.5^\circ$
Mesh Warping

Figure: Nominal Mesh: $\alpha = 0^\circ$

Figure: $\alpha = 22.5^\circ$
POD Spectra

\[\lambda_q \]

\[10^4 \]

\[10^2 \]

\[10^0 \]

\[10^{-2} \]

\[10^{-4} \]

\[10^{-6} \]

\[10^{-8} \]

\[q \]

\[\alpha = 22.5 \text{ deg.} \]

\[\alpha = 0 \text{ deg.} \]

\[\alpha = -22.5 \text{ deg.} \]
POD Basis Functions

(a) Streamwise component of ϕ_1
(b) Normal component of ϕ_1
(c) Streamwise component of ϕ_2
(d) Normal component of ϕ_2
POD Basis Sensitivity Functions

(a) Streamwise component of ϕ_1^*
(b) Normal component of ϕ_1^*
(c) Streamwise component of ϕ_2^*
(d) Normal component of ϕ_2^*
Error in ROM

(a) Projection on the perturbed data for $q = 6$

(b) ROM for $q = 6$
Error in ROM

(c) Projection on the perturbed data for $q = 12$

(d) ROM for $q = 12$
Boussinesq CFD: $Re = 4.9 \times 10^4$, $Gr = 7.4 \times 10^7$
Boussinesq ROM: \(\mathbf{u} \) Modes

First two velocity modes
First two temperature modes
a Coefficient Phase Portraits
b Coefficient Phase Portraits

Graphs showing the phase portraits of coefficients b_2, b_3, b_4, and b_2.
Boussinesq ROM: $Re = 6800, Gr = 10^7$

DNS

POD

Mixing Length
Work in Progress

- Hermite interpolation
- Boundary conditions
- Other strategies for using sensitivity information
- Application to methods other than POD
- Coupling multiple room models

