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Grace Wahba. Spline Models for Observational Data. SIAM CBMS-NSF Regional 

Conference Series in Applied Mathematics vol. 59, Philadelphia, 1990. 

     Discusses (reproducing) kernel methods in nonparametric regression. Not easy reading for 

machine learning researchers, but containing fundamental material about precedents of today's 

kernel machines  

Cortes, Corinna; and Vapnik, Vladimir N. (1995); "Support-Vector Networks", Machine 

       Learning,   20, http://www.springerlink.com/content/k238jx04hm87j80g/ 

Nello Cristianini and John Shawe-Taylor. 

An Introduction to Support Vector Machines. Cambridge University Press, 

Cambridge, UK, 2000. 

    An introduction to SVMs which is concise yet comprehensive in its description of the 

theoretical foundations of large margin algorithms 

More information at  http://www.kernel-machines.org 

Kernel Machines 
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    A kernel function is a continuous and symmetric function. 
 
    Linear kernel function: 
  
    Gaussian kernel function:    
 
    Polynomial kernel function:  

 Examples of kernel functions: 

K (x, z) =< x, z >

K(x, z) = ( < x, z > + c)d

K (x, z) = exp(−||x − z||2/ 2! 2)
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     A kernel machine maps predictor vectors into a Reproducing 

Kernel Hilbert Space (RKHS) implicitly through 
   a kernel function (or through its eigen decomposition). 
 
   Non-linear boundaries in the original predictor space could 

become linear.  All the computation relies on the kernel trick – 
that is, only the kernel matrix and kernel function are needed, 
not the mapping. 

 Heuristics on kernel machines 
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 Mercer’s Theorem 
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        has an eigen decomposition with non-negative  
        eigenvalues. 

 Kernel on a finite set of points 



6/25/13 7 

 
 
 
 
 
 
 
 
 
     

 Reproducing Kernel Hilbert Space (RKHS) 
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 Mercer’s Theorem 
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    We can define the RKHS induced by K as follows: 
 
 
 
 
 
 
 
     

 RKHS 
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 RKHS 
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 RKHS 

f (x) =
n!

i=1

! iK (xi, x)
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 Kernel Regression 
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 Kernel Regression 
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Ridge regression in its dual form 

For a proof of the second equality above:  http://eprints.soton.ac.uk/258942/1/Dualrr_ICML98.pdf 
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 Kernel Regression: the kernel trick 
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RKHS norm as a penalty 
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The original form of SVM (Vapnik, 1995) is geometric and can be 
traced back to Vapnik’s “method of portrait” in 1963.  
 
In the linearly separable case, SVM seeks a linear classifier or a 
hyper-plane to separate the two classes. When the two classes are 
separable, there are many hyper-planes and SVM prefers the one 
such that gives the largest ”margin”. 
      
       Data  

 Support Vector Machines (SVMs) 

(xi , yi )
n
i =1 yi ! {" 1, 1}xi ! Rp
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SVM in the separable case 
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      The distance between these two parallel planes is called the 
      ”margin” which can be shown to be 2/||w||. 
     Hence we want to minimize ||w|| and at the same time keep 

the two classes fall outside the two parallel planes by varying b: 
 
 
    subject to  
 
    This is equivalent to 
 
    subject to    

 Support Vector Machines (SVMs) 

min
w,b

||w||

yi (< w, x i > −b) ≥ 1, for i = 1 , . . . , n

yi (< w, x i > −b) ≥ 1, for i = 1 , . . . , n

min
w,b

1
2

||w||2
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   It can be shown that the dual form of the primal problem 
mentioned above is the same as the dual form of the penalized 
hinge loss formulation of SVM. This dual form depends on inner 
product in the linear case and on kernel matrix in general. 

 
   In the non-separable case, we introduce a slack variable       
   to give a “soft margin” for each data unit i.   The primal form of  
   the optimization problem for SVM is  
                                                             
            
         subject to  
 
 
     

 SVM 

! i

yi (< w, x i > −b) ≥ 1− ! i , for i = 1 , . . . , n

min
w,b,!

1

2
||w||2 + C

�

i

ξi
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Gaussian Kernel Support Vector Machines 

With labels yi in {-1, 1}, SVMs find f in RKHSK to minimize 

The solution is in the (dual) form of 

with most of ! � s̀ being 0, the non-zero ! �bs are called 
support vectors . The most common used kernel in machine 
learning literature is the Gaussian kernel . 
 
The computation of training SVM is O(n2) empirically. 



page 22 June 25, 2013 

Gaussian Kernel SVMs 

The solution is in the form of 

Many ! � s̀ being 0 
 
The non-zero ! �bs are 
called support vectors .  
 
SV� s̀ are the misclassified 
points and the points within 
the �lmargin�z. 
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 Binning for Gaussian Kernel SVMs 
               (Shi and Yu, 05,  Binning in Gaussian Kernel Regularization.  
                                                                         Statistica  Sinica  ,16, 541-567. ) 

¥   Bin each predictor by its inverse marginal CDF 
¥   Find the data points in each bin 
¥   For non-empty bins, average the predictors and take a 
   majority vote of labels 
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Binning for Gaussian Kernel SVMs (cont) 

¥   Reduces the variance of labels (see illustration below) 
¥   Maintains the marginal distribution of predictors 
¥   Reduces the training sample size and the number of SV� s̀ 
¥   Keeps the optimal minimax rate over Sobolev spaces in  
    regression case  
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One example: Expert label-QDA gives 77% 
accuracy on a separate test label set 
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 SVMs for Polar Cloud Detection: Expert 
labels as training data 

We train Gaussian Kernel SVMs on three features in 4 setups: 
 
1. SVMs on random sample ~ 966 data points from 54K points 
 
2. Bagged SVMs (repeat training SVM on ~ 966 random sample  
    21 times; then average the prediction of 21 runs) 
 
3. SVMs on bin centers (split each predictor to 10 bins and use the 
    resulted 996 bin centers and majority vote of labels) 
 
4. SVMs on half of the sample (27K training points) 
 
All parameters of SVM are tuned by cross-validation. 
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 Comparisons 

"   is chosen by CV over a 9 by 9 grid. 

1. SVM on bin centers give the closest rate to the �lfull�z SVM 
 
2. Binning step itself (3.87sec) is fast compared to training SVMs 
 
3. SVM on bin centers have the fewest SVs, which leads to fast 
    computation in the prediction step. 
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 Binning or Clustering ? 

Feng and Mangasarian (2001) suggest using k-mean 
clustering to reduce the training size.  
 
The computation time and memory requirement of K-mean / 
K-median clustering increase dramatically when the number 
of centroids increases. 

512 bins 966 bins Rate of SVM 

Binning(+SVM) 3.45 sec 3.87 sec 85.64% 

Clustering(+SVM) 21.65 min Out of Memory 85.72% 

The numbers of support vectors are almost the 
same (143 for binning vs. 145 for clustering). 
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Summary on Binning for SVMs 

¥   Binning on Gaussian Kernel Regularization keeps 
    the accuracy and reduce the computation 
    significantly. 
 
¥   Binning on Gaussian kernel SVMs speeds up 
    both the training and testing. 
 
¥   The computation of binning is faster than 
   other training sample size reduction methods, 
   such as clustering and bagged SVMs. 


