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Kernel Machines

Grace Wahba. Spline Models for Observational Data. SIAM CBMS-NSF Regional
Conference Series in Applied Mathematics vol. 59, Philadelphia, 1990.

Discusses (reproducing) kernel methods in nonparametric regression. Not easy reading for
machine learning researchers, but containing fundamental material about precedents of today's

kernel machines
Cortes, Corinna; and Vapnik,Vladimir N. (1995); "Support-Vector Networks", Machine
Learning, 20,

Nello Cristianini and John Shawe-Taylor.

An introduction to SVMs which is concise yet comprehensive in its description of the

theoretical foundations of large margin algorithms

More information at
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Examples of kernel functions:

A kernel function is a continuous and symmetric function.
Linear kernel function: K (x,z) =<x,z >
Gaussian kernel function: K (X, 2) = exp(—||x — z|[?/ 2! ?)

Polynomial kernel function: K (z,2)=(< x,z > +¢)¢
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Heuristics on kernel machines

A kernel machine maps predictor vectors into a Reproducing
Kernel Hilbert Space (RKHS) implicitly through

a kernel function (or through its eigen decomposition).

Non-linear boundaries in the original predictor space could
become linear. All the computation relies on the kernel trick —
that is, only the kernel matrix and kernel function are needed,
not the mapping.

4 6/25/13



Mercer’s Theorem

For a continuous symmetric function K on a compact set A € RP, suppose
the integral operator induced by K

TK " L2(A) — LQ(A) ‘

(T £)(: /K

K(z,z)f(z)f(z)dzdz > 0,
AxA

for all f € Ly(A). Then we can find orthonormal eigenfuctions ¢; € Ly(A) and
non-negative associate eigenvalues A; > 0 such that

2)= ) Aidi(2)6(2)
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Kernel on a finite set of points

We can make the theorem extended to cover the Gaussian kernel if we put
in the marginal density function g of the predictors in the integral operator
definition above.

If A is a set of n points in R?, then the Mercer’s theorem is equivalent to
saying that the symmetric kernel matrix

K= (K(ziaxj))?,jzls

has an eigen decomposition with non-negative

eigenvalues.
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Reproducing Kernel Hilbert Space (RKHS)

Given a Mercer kernel function,
20
K(z,z) = Z/\j%‘ (z)9;(2),
j=1

we can map the predictor vector z into the feature space F induced by K:

z — ¢(z) = (¢1(2), ..., 0;(2), ...) € F C b (7.1)

equipped by the inner product

<9, >=) Nyivl

j=1
That is -
F= {’lj) = (’lj)l,...,wj, ) € €2 : Z)\wa < OO}

j=1
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RKHS

We can define the RKHS induced by K as follows:

H={f(z) Z/\J"#J ), ¥ € F},

with the inner product as

o0
<P >=) Ny,
j=1
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RKHS

In other words, for f,g € H,

flz) = Zz\j?ﬂj%(w)

glz) = Z/\ﬂb}%(ﬂ?)

<f,9>n= E&’%ﬂ’;-

j=1

Note that each f in H is indexed by an I, sequence in F, and an eigen
function ¢; with a small-eigen value A; is downweighted.
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RKHS

For every Mercer kernel K defined over the domain X C RP, we have con-
structed the reproducing kernel Hilbert space (RKHS) H of functions defined
over X. In fact, K enjoys the following reproducing property:

<f0),K(z) >x= ) Mwidi(2) = f(2),

j=1

for any f € H. There is also a dual representation for f € H in the following
sense:
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Kernel Regression

Let’s re-write f € H as
fle)= ) Bi/Nidjz),
j=1

with §; = \/)\—jz(;j and the constraint becomes

18]* < .
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Kernel Regression

Hence fitting a function in H to the response vector Y with the [, constraint
on 3 becomes a ridge regression with a new design matrix ®(X) with row vectors

¢($1), 3 ¢(zn) and
\/_¢l \/_¢J

We arrive at Kernel ridge regression which minimizes

1Y = Bo — 2(X)BI|* + A/l

It is worth noting that for this new design matrix:

K(z,z;) = §(2)¢ (=),

for any z including z;.
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Ridge regression in its dual form

Now let’s give a dual presentation of the ridge regression estimator: that
minimizes ’ '
Y = Bo+ XBI|* + 18],
where 3 = (01, ..., 8p).

BRE = (X'X 4+ AL)'X'Y (p x p inverse)
X' (XX' 4 M,)7'Y (n x ninverse)
= X'(G+M,)7'Y (Gram —matrz : G;; =< z;,z; >)
= X'a,
where a = (G + \I,,) Y.
The Gram matrix G above can be seen as from a linear kernel.

For a proof of the second equality above: http://eprints.soton.ac.uld/258942/1/Dualrr 1CMLY8 pdf
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Kernel Regression: the kernel trick

Given a kernel K, if we replace X by the matrix ®(X) defined earlier and
G with the Gram matrix from K:

Gij = K(zi,z;),
we end up the Kernel ridge regression estimate,
BER = @' (X)(K + M\,) Y = &' (X)a,
where

a=(K+\,)"Y.

Note that A% is also the estimator that uniquely minimizes the Kernel
ridge loss

1Y = Bo — @(X)BI1* + All8I|*.
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RKHS norm as a penalty

In the eigensystem representation of a function f in RKHS H we used ||3||* as
the penalty in Kernel ridge regression. In fact,

181* =< £, f >n=1I{llx-

Thus Kernel ridge regression is minimizing

Y = £II* + NIfll%»

over f € Hk.
In general, we may replace the L2 loss function by other loss functions.

minger Y Liue £(20) + M1

i=1

SV regression by Vapnik uses the e-sensitive loss function, for example.
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Support Vector Machines (SVMs)

The original form of SVM (Vapnik, 1995) is geometric and can be
traced back to Vapnik’s “method of portrait” in 1963.

In the linearly separable case, SVM seeks a linear classifier or a
hyper-plane to separate the two classes.When the two classes are
separable, there are many hyper-planes and SVM prefers the one
such that gives the largest "margin”.

Data (xi,yi){lzl ri ! R yi '{" 1,1}
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SVM in the separable case
a hyperplane can be expressed by the linear equation

<w,z>-b=0,

where w € RP is the normal vector, perpendicular to the hyperplane and b is
the offset of the hyperplane from the origin alone the normal vector w.

Given any w, we can move the hyperplane in the direction (up and down)
of w until the hyperplane touchese at least one data point in one of the two
classes. These touching hyperplanes are parallel and we denote them by

<w,r>-b=1, and <w,z>-b=-1,
to fix the scale.
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Support Vector Machines (SVMs)

The distance between these two parallel planes is called the
”margin” which can be shown to be 2/||wl||.

Hence we want to minimize ||w|| and at the same time keep
the two classes fall outside the two parallel planes by varying b:

min ||w||
b

Subiectto yi(<W,Xi>—b)Zl, fOI’I:].,,n

.1 5
i i ‘ min —{lw
This is equivalent to i 2” |

subject to  Yi(Sw,xi> —-b) >1 fori=1,...,n
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SVM

It can be shown that the dual form of the primal problem
mentioned above is the same as the dual form of the penalized
hinge loss formulation of SVM. This dual form depends on inner

product in the linear case and on kernel matrix in general.

In the non-separable case, we introduce a slack variable !,
to give a “soft margin” for each data uniti. The primal form of

the optimization problem for SVM is

min —||w||2 +OZ§.

subject to v (<w,x; > —b) >1-1;, fori=1,
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Gaussian Kernel Support Vector Machines

With labels y; in {-1, 1}, SVMs find f in RKHS, to minimize

n

S —yif (@)™ + M| fllx

1=1

The solution is in the (dual) form of

fx) = > o;K(z;,x)
i—1

with most of ! 's being 0O, the non-zero ! I are called

support vectors . The most common used kernel in machine
learning literature is the Gaussian kernel .

The computation of training SVM is O(n?) empirically.

June 25,2013 page 21



Gaussian Kernel SVMs

The solution is In the form of
T
f(@) = > o;K(z;,x)
i=1
i Many ! ‘s being O

The non-zero! s are

*/++ called support vectors .

\+ D L +

+ o Pt . : g
+ 104 O+ ! SV s are the misclassified
AT e T points and the points within

> the Imargin z
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Binning for Gaussian Kernel SVMs
(Shiand Yu, 05,
Statistica Sinica ,16, 541-567.
¥ Bin each predictor by its inverse marginal CDF
¥ Find the data points in each bin
¥ For non-empty bins, average the predictors and take a
majority vote of labels

A A
o o
d /
\+ '17//+ + \\"'\/‘F Pyt T
p-RagnPr-k X /
+ L THD+ |t + T 4
3+ e A
RS AS AR +oo
Original Data Binned data
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Binning for Gaussian Kernel SVMs (cont)

¥ Reduces the variance of labels (see illustration below)

¥ Maintains the marginal distribution of predictors

¥ Reduces the training sample size and the number of SV 's
¥ Keeps the optimal minimax rate over Sobolev spaces In

regression case/
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One example: Expert label-QDA gives 77%
accuracy on a separate test label set
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SVMs for Polar Cloud Detection: Expert
labels as training data

We train Gaussian Kernel SVMs on three features in 4 setups:
1. SVMs on random sample ~ 966 data points from 54K points

2. Bagged SVMs (repeat training SVM on ~ 966 random sample
21 times; then average the prediction of 21 runs)

3. SVMs on bin centers (split each predictor to 10 bins and use the
resulted 996 bin centers and majority vote of labels)

4. SVMs on half of the sample (27K training points)

All parameters of SVM are tuned by cross-validation.
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Comparisons

random sample size 966

SVM on 966

SVM

SVM Bagged SVM bin centers size 27179
Accuracy *85.09% 86.07% 86.08% 86.46%

Comp Time

(seconds)

81 x 1.85

= 2.5 minutes

21 x 81 x 1.85

= 52.11 minutes

3.87 4+ 81 x 1.85

= 2.50 minutes

81 x 266.06

= 5.99 hours

# Support Vectors

350

~ 7350

210

8630

Is chosen by CV over a 9 by 9 grid.

1. SVM on bin centers give the closest rate to the Ifull zZSVM

2. Binning step itself (3.87sec) is fast compared to training SVMs

3. SVM on bin centers have the fewest SVs, which leads to fast

computation in the prediction step.
June 25,2013
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Binning or Clustering ?

Feng and Mangasarian (2001) suggest using k-mean
clustering to reduce the training size.

The computation time and memory requirement of K-mean /
K-median clustering increase dramatically when the number

of centroids increases.

512 bins 966 bins Rate of SVM
Binning(+SVM) 3.45 sec 3.87 sec 85.64%
Clustering(+SVM) 21.65 min | Out of Memory 85.72%

The numbers of support vectors are almost the
same (143 for binning vs. 145 for clustering).
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Summary on Binning for SVMs

¥ Binning on Gaussian Kernel Regularization keeps
the accuracy and reduce the computation
significantly.

¥ Binning on Gaussian kernel SVMs speeds up
both the training and testing.

¥ The computation of binning is faster than

other training sample size reduction methods,
such as clustering and bagged SVMs.
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