Exercises

There are far too many exercises to cover during the summer school. The idea of providing these was to give interested readers the opportunity for a self-study introduction to a/c coupling. In the tutorials we will cover primarily the exercises on the B-QCE method.

Atomistic Model, General Background

Exercise 1 Prove Lemma 2.1.

Hint: Let \(u \in U \) be defined by \(u'_m = 1 \) and \(u'_\ell = 0 \) for \(m \neq \ell \). Then construct an approximating sequence from \(U_0 \).

Exercise 2 Prove Lemma 2.2.

Hint: This is a slightly involved proof. Show first that you can replace \(\phi_i(r) \) with \(\psi_i(r) := \phi_i(r) - \phi'_i(0)r \), i.e., redefine \(E_a(u) = \sum_\ell \{ \psi_1(u'_\ell) + \psi_2(u'_\ell + u'_{\ell+1}) \} \). Note that \(|\psi_i(r)| \lesssim r^2 \) and use this to show that the new form of \(E_a \) is well-defined on \(U \) and \(C^3 \).

Exercise 3 Recall that \(U \) is the closure of \(U_0 \), and according to Exercise 2, \(E_a(u) \sim \|u\|_U^2 \) hence the closure is taken in the correct “energy norm”.

Prove that, if \(u \in U \) then \(|u_\ell| \leq C \ell^{1/2} \). Show that this estimate is essentially sharp. Why does this not contradict the far-field boundary condition \(u_\ell \sim 0 \) as \(\ell \to \infty \)?

Exercise 4 Show that \(\langle f, u \rangle \lesssim C\|u'\|_{\ell^2} \) if and only if there exists \(g \in \ell^2 \) such that \(f_\ell = g'_\ell \). Show that \(C = \|g\|_{\ell^2} \) is the optimal constant.

Exercise 5 Prove Lemma 2.3.

Exercise 6 1. Let \(K \in \mathbb{N} \) be arbitrary. Prove that \(\|\delta E^{\text{qce}}(0)\|_{U_K} \geq \frac{1}{\sqrt{2}}|\phi'_2(0)| \).

2. Moreover (after introducing the FE spaces) prove that, if \(K - 1, K \) are finite element nodes (repatoms) then we still have \(\|\delta E^{\text{qce}}(0)\|_{U_K} \geq \frac{1}{\sqrt{8}}|\phi'_2(0)| \).

The Cauchy–Born Model

Exercise 7 Review the derivation of the Cauchy–Born approximation. Make this more precise by showing that, if

\[
E^c(u) := \int_0^\infty W(\nabla u) \, dx = \sum_{\ell=1}^\infty W(u'_\ell),
\]
then
\[|\mathcal{E}^a(u) - \mathcal{E}^c(u)| \lesssim \|u''\|_{\ell^1} + \|u''\|_{\ell^2}^2. \]

Explain why this is a second-order estimate. This is a bit surprising, since the construction would indicate only a first-order approximation. Can you think of the reason why it is second-order?

Exercise 8 Prove a sharp consistency estimate for the Cauchy–Born model:
\[\langle \delta \mathcal{E}^a(u) - \delta \mathcal{E}^c(u), v \rangle \lesssim \left(\|u''\|_{\ell^2} + \|u''\|_{\ell^2}^2 \right). \]

Explain again, why this is a second-order estimate.

Exercise 9 Stability for a homogeneous deformation: Show that, if
\[\langle \delta^2 \mathcal{E}^a(0)v, v \rangle \geq c_0 \|v'\|_{\ell^2}^2 \quad \forall v \in U_0, \]
then also
\[\langle \delta^2 \mathcal{E}^c(0)v, v \rangle \geq c_0 \|v'\|_{\ell^2}^2 \quad \forall v \in U_0, \]
but not vice-versa.

Hint: show that \(\inf \delta^2 \mathcal{E}^a(0) > 0 \) always implies \(\inf \delta^2 \mathcal{E}^c(0) > 0 \). But show that if \(\phi''_2(0) > 0 \) and \(\phi''_1(0) < 0 \), then it is possible that \(\delta^2 \mathcal{E}^c(0) \) is unstable while \(\delta^2 \mathcal{E}^a(0) \) is stable.

Exercise 10 Prove a stability estimate for the Cauchy–Born model: Suppose that \(u \in U \) is atomistically stable:
\[\langle \delta^2 \mathcal{E}^a(u)v, v \rangle \geq c_0 \|v'\|_{\ell^2}^2 \quad \forall v \in U_0. \]
Show that there exists \(\epsilon > 0 \) such that, if \(\|u''\|_{\ell^\infty} \lesssim \epsilon \), then
\[\langle \delta^2 \mathcal{E}^a(u)v, v \rangle \geq c_0 \|v'\|_{\ell^2}^2. \]

Hint: Write \(\langle \delta^2 \mathcal{E}^a(u)v, v \rangle = \sum_{\ell} A_\ell \|v'\|_{\ell^2}^2 + B_\ell \|v''\|_{\ell^2}^2. \) Now use a localisation argument to show that \(A_\ell \geq c_0/2 \) provided that \(\|u''\|_{\ell^\infty} \) is sufficiently small.

Exercise 11 Combine the foregoing exercises to prove a rigorous second-order error estimate for the Cauchy–Born model.

Exercise 12 1. Sharper consistency error analysis for the QNL method: In the same setting as Lemma 8, prove that
\[\|\delta \mathcal{E}^a(u) - \delta \mathcal{E}^{\text{qnl}}(u)\|_{U^*} \lesssim |u''_K| + \|u''\|_{\ell^2(\Lambda_{\kappa})} + \|u''\|_{\ell^2(\Lambda_{\kappa})}^2. \]
Assuming that \(u \) satisfies (DH), deduce that \(\|\delta \mathcal{E}^a(u) - \delta \mathcal{E}^{\text{qnl}}(u)\|_{U^*} \lesssim K^{-\alpha - 1}. \)

2. Does the same (or a similar) estimate hold for nearest-neighbour many-body interactions as in Example 22?
Results on the FE coarsening error

Exercise 13 Let $J_h : \mathcal{U} \to \text{P1}(\mathcal{T}_h)$ be the nodal interpolant ($J_h \neq I_h$)! Prove the interpolation error estimate

$$\|\nabla u - \nabla J_h u\|_{L^2} \lesssim h \|\nabla^2 \tilde{u}\|_{L^2(K,N)}$$

for any choice of $\tilde{u} \in C^{1,1}$ s.t. $\tilde{u}(\ell) = u_\ell$ for all $\ell \in \mathbb{Z}$. Deduce that

$$\|\nabla u - \nabla I_h u\|_{L^2} \lesssim h \|\nabla^2 \tilde{u}\|_{L^2(K,N)} + N^{1/2-\alpha}.$$

Hint: if you don’t know the standard 1D interpolation error estimates, try to derive this result using Friedrich’s / Poincaré’s inequalities.

Exercise 14 Prove Lemma 6.2.

(Hint: Suppose that $|\nabla^2 \tilde{u}(x)| \lesssim x^{-\alpha-1}$ for $x \geq r_0$ (as suggested by (DH)). Write the error as a functional $\text{Err}(h)$ of the mesh size $h \in L^\infty(K,N)$ and the number of degrees of freedom as another functional $\text{DoF}(h)$. Now minimize Err subject to DoF held fixed.)

Exercise 15 Prove Lemma 6.3. (DIFFICULT)

(Hint: first try the standard interpolation error analysis. This will fail because we need a Poincaré inequality. But the Poincaré constant on $[0,N]$ is $O(N)$. Instead, try to employ the weighted Poincaré inequality

$$\|w^{-1}u\|_{L^2(K,\infty)} \leq \frac{1}{\log K} \|\nabla u\|_{L^2(K,\infty)} \quad \forall u \in \mathcal{U},$$

where $w(x) = x \log^2(x)$.)

The **B-QCE Method**

The B-QCE method is defined by

$$\mathcal{E}^\text{bqce}(u) := \sum_{\ell=0}^{\infty} \left\{ (1 - \beta_\ell) \Phi^a_\ell(u) + \beta_\ell \Phi^c_\ell(u) \right\};$$

see slides for further detail.

Exercise 16 1. Prove a basic consistency estimate for the B-QCE method:

$$\|\delta E^a(u) - \delta \mathcal{E}^\text{bqce}(u)\|_{\mathcal{U}^*} \lesssim \|\beta''\|_\varepsilon + \|u''\|_{\mathcal{E}^2(\Delta K_{\ell-1})}.$$

2. Improved consistency estimate for the B-QCE method: Prove that

$$\|\delta E^a(u) - \delta \mathcal{E}^\text{bqce}(u)\|_{\mathcal{U}^*} \lesssim \|\beta''\|_\varepsilon + \|\beta' u''\|_\varepsilon + \|u'''\|_{\mathcal{E}^2(\Delta K_{\ell-1})} + \|u''\|_{\mathcal{E}^2(\Delta K_{\ell-1})}^2,$$

where $\beta' u''$ is understood as pointwise multiplication.
Exercise 17 Linear blending function: Suppose that we use the blending function
\[\beta_\ell = \begin{cases}
0, & \ell = 0, \ldots, K, \\
(\ell - K)/(L - K), & \ell = K + 1, \ldots, L - 1, \\
1, & \ell = L, L + 1, \ldots.
\end{cases} \]
Suppose, in addition, that \(L - K \leq K\) (why should we always require this anyhow?) and that \(u\) satisfies (DH). Prove that, for \(K\) sufficiently large,
\[\|\delta E^a(0) - \delta E^{\text{bqce}}(0)\| U^* \gtrsim (L - K)^{-1}. \]

Exercise 18 Prove that, if
\[\langle \delta^2 E^a(0)v, v \rangle \geq c_0 \|v\|^2_{L^2} \quad \forall v \in U_0, \]
then, there exists a constant such that
\[\langle \delta^2 E^{\text{qnl}}(0)v, v \rangle \geq (c_0 - C(L - K)^{-1/2})\|v\|^2_{L^2} \quad \forall v \in U_0. \]
In particular, if \(L - K\) is sufficiently large, the \(\delta^2 E^{\text{qnl}}(0)\) is stable.

Exercise 19 Apply the foregoing estimates and extend the stability analysis for the QNL method, to prove an existence and convergence result for the B-QCE method.

Error Estimates for the Energy
In these exercises, we show that in all three “consistent” approximation ATM, QNL, B-QCE, the convergence rate is typically doubled. To simplify notation, we define the total energies
\[E^a(u) := \mathcal{E}^a(u) - \langle f, u \rangle \quad \text{and} \quad E^*(u_h) := \mathcal{E}^*(u_h) - \langle f, u_h \rangle \]
for \(* \in \{\text{qnl, bqce}\}\).

Exercise 20 In the setting of Theorem 4.2, prove that
\[\big| E^a(u^a) - E^a(u^a_N) \big| \lesssim N^{1-2\alpha}. \]

Exercise 21 In the setting of Theorem 6.4, prove that
\[\big| E^a(u^a) - E^{\text{qnl}}(u^{\text{qnl}}) \big| \lesssim J^{-1-2\alpha} + \log(J)J^{-\alpha-3/2} \]
Hint: Split the energy error as follows:
\[\big| E^a(u^a) - E^{\text{qnl}}(u^{\text{qnl}}) \big| \leq \big| E^a(u^a) - E^a(I_h u^a) \big| + \big| E^a(I_h u^a) - E^{\text{qnl}}(I_h u^a) \big| + \big| E^{\text{qnl}}(I_h u^a) - E^{\text{qnl}}(u^{\text{qnl}}) \big|. \]

Exercise 22 In the setting of Theorem 7.3, what is the convergence rate for the energy,
\[\big| \{ E^a(u^a) - \langle f, u^a \rangle \} - \{ E^{\text{bqce}}(u^{\text{bqce}}) - \langle f, u^{\text{bqce}} \rangle_h \} \big| \lesssim ??? \]
Hint: see the hint in Exercise 20.
Many-Body Interactions

The following exercises are intended to show how some of the ideas developed in these lectures can be extended to many-body interactions.

Exercise 23 Suppose that the atomistic energy is given by a general nearest-neighbour model of the form

\[\mathcal{E}^a(u) = \sum_{\ell=0}^{\infty} \Phi^a_{\ell}(u), \quad \text{where} \quad \Phi^a_{\ell}(u) = V(u_{\ell-1}, u_{\ell+1}) \quad \text{for} \quad \ell \geq 2. \]

1. Derive the Cauchy–Born model. (Hint: \(W(F) = V(F, F) \).)
2. Construct the QCE energy and show that it has no ghost forces, i.e., prove that \(\delta \mathcal{E}^{\text{qce}}(u_F) = 0 \) for all \(F \), provided that \(V(r, s) = V(s, r) \).
 (Note that \(\delta \mathcal{E}^{\text{qce}}(u_F) \) must be defined with care since \(u_F \notin \mathcal{U} \); however, it is ok if we test with displacements from \(\mathcal{U}_N \).)
3. Show how the QNL method for 2nd-neighbour pair interactions can be derived in this way.

Exercise 24 Construction of a ghost-force free scheme from second-neighbour many-body interactions: Let the atomistic energy be given by

\[\mathcal{E}^a(u) := \sum_{\ell=0}^{\infty} \Phi^a_{\ell}(u), \quad \text{where} \quad \Phi^a_{\ell}(u) := V(u_{\ell-2} - u_{\ell}, u_{\ell-1} - u_{\ell}, u_{\ell+1} - u_{\ell}, u_{\ell+2} - u_{\ell}), \]

and \(V \) possesses the symmetry \(V(-g_{-2}, -g_{-1}, -g_1, -g_2) = V(g_2, g_1, g_{-1}, g_{-2}) \). Define the QNL-type interface potentials

\[\Phi^i_{\ell}(u) := V(u_{\ell-2} - u_{\ell}, u_{\ell-1} - u_{\ell}, u_{\ell+1} - u_{\ell}, 2(u_{\ell+1} - u_{\ell})), \quad \text{for} \quad \ell = K, K + 1, \]

and the QNL-type energy

\[\mathcal{E}^{\text{qnl}}(u) := \sum_{\ell=0}^{K-1} \Phi^a_{\ell}(u) + \sum_{\ell=K}^{K+1} \Phi^i_{\ell}(u) + \sum_{\ell=K+2}^{\infty} \Phi^c_{\ell}(u). \]

1. Prove that \(\delta \mathcal{E}^{\text{qnl}}(F x) = 0 \) for all \(F \in \mathbb{R} \).
2. (DIFFICULT) Can you generalize the method to third neighbours?

Exercise 25 (DIFFICULT) For the method(s) derived in Exercise 23, prove an optimal consistency error estimate. Can you come up with an argument that would apply to any a/c coupling energy that has no ghost forces?

Hint: Show that the first variation of any a/c coupling can be written in the form

\[\langle \delta \mathcal{E}^{\text{ac}}(u), v \rangle = \sum_{\ell=1}^{\infty} \sigma^*_\ell(u) \cdot v_{\ell}, \]

Show that \(\sigma_\ell(F x) = W'(F) \) for all \(F \), i.e., if \(u \) is locally homogeneous, then \(\sigma_\ell \) equals the Cauchy–Born stress. Conclude that \(|\sigma^*_\ell(u) - \sigma^a_\ell(u)| \lesssim \|u''\|_{\ell=\infty}(\mathcal{N}_\ell) \) where \(\mathcal{N}_\ell \) is a suitable neighbourhood of \(\ell \).

Exercise 26 (DIFFICULT) Formulate the B-QCE method for second-neighbour many-body interactions and prove an analogous consistency estimate.