Model Reduction for Uncertainty Quantification and Optimization (Under Uncertainty) of Complex Systems

Karen Willcox
Aerospace Computational Design Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

IMA Workshop on Computing with Uncertainty
October 22, 2010
Acknowledgements

- Doug Allaire, Chad Lieberman, Andrew March, Leo Ng (MIT)
- David Galbally (Iberdrola)
- Krzysztof Fidkowski (U. Michigan)
- Tan Bui-Thanh, Omar Ghattas (University of Texas at Austin)
- Matthias Heinkenschloss, Dan Sorensen (Rice University)
- Bart van Bloemen Waanders (Sandia National Labs)
Outline

• Motivation and example problems

• Model reduction

• Multifidelity optimization

• Multidisciplinary optimization decomposition methods
Decision under uncertainty (in engineering problems)

• Decision problem may take many forms
 – Design optimization
 – Control
 – Policy decision support

• Many flavors of uncertainty
 – Parameter uncertainty (uncertainty in inputs)
 – Parametric variability (uncontrolled variations in inputs, design requirements)
 – Model inadequacy
 – Discretization error/approximation error
Example: FAA Aviation Environmental Tools Suite

Uncertainty assessment of complex multidisciplinary systems to support policy-making.

Policy and Scenarios

Environmental Design Space
What are the aircraft design characteristics?

APMT Economics
What are the airline supply & consumer demand effects?

Aviation Environmental Design Tool
- Single Airport
- Regional
- Global Studies
- Integrated Noise, Emissions, and Fuel Burn Analyses

APMT Impacts
- CLIMATE IMPACTS
- AIR QUALITY IMPACTS
- NOISE IMPACTS

Cost Benefit
Aviation environmental Portfolio Management Tool (APMT)
What are the monetized benefits of decision alternatives?
Example: Effect of variability on system performance

Probabilistic analyses of large-scale (e.g. CFD) models to support design.

- Compressor blade mistuning: small variations in blade structural parameters and blade shape can have a large impact on blade row performance.

- 2D CFD model unsteady analysis for two blade passages:
 ~3 minutes per geometry.

- Monte Carlo simulation for forward uncertainty propagation:
 5000 samples ≈10 days
 50,000 samples ≈ 3.5 months

- To include uncertainty in design decisions: formulate and solve robust or stochastic optimization problems.
Example: Optimal aircraft/controller design with active gust load alleviation

Coupled multidisciplinary models, including a stochastic gust model.

- Benefits of active gust load alleviation require simultaneous design of controller and vehicle

![Diagram]

- Design variables:
 - AR, sweep, t/c, begin cruise alt, cruise \(C_L \)
 - Max gust load

- Coupling variables:
 - Geometry & size
 - Weights
 - Mission performance

- Aircraft Module:
 - Max gust load

- Gust Module:
 - Max actuator deflection
 - Max actuator rate

- LQR penalty factors
- Actuator bandwidth
Decision under uncertainty for complex systems

• Formulation is key (and often overlooked)
 – How to represent uncertainty
 – Constraints, objectives, measures of risk
 – How to communicate uncertainty

• Decomposition may be essential
 – Especially if the problem is multidisciplinary

• Cost of analysis may be prohibitive for repeated evaluations (sampling, scenarios)
 – Need surrogate models and multifidelity approaches
Surrogate modeling

- Simplified physics models
- Data-fit models
- Reduced-order models

Large-scale model → Reduced-order model (ROM)
Parameterized Dynamical Systems

In many engineering problems, objectives and constraints are described by PDEs.

Consider here the spatially discrete equations (for ease of presentation)

\[
\begin{align*}
\dot{x} &= A(p)x + B(p)u \\
y &= C(p)x
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= f(x, p, u) \\
y &= g(x, p, u)
\end{align*}
\]

\[x \in \mathbb{R}^N: \text{ state vector (e.g. flow unknowns)}\]
\[u \in \mathbb{R}^{N_i}: \text{ input vector (e.g. boundary forcing)}\]
\[p \in \mathbb{R}^{N_p}: \text{ parameter vector (e.g. geometry)}\]
\[y \in \mathbb{R}^{N_o}: \text{ output vector (e.g. forces, moments)}\]
Example: CFD Systems

\[
\begin{align*}
\dot{x} &= A(p)x + B(p)u \\
y &= C(p)x
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= f(x, p, u) \\
y &= g(x, p, u)
\end{align*}
\]

- \(x(t)\): vector of \(N\) flow unknowns
 - e.g. 2D Euler, \(P\) grid points, \(N = 4P\)
 - \(x = [\rho_1 \ (\rho u)_1 \ (\rho v)_1 \ e_1 \ \rho_2 \cdots \cdots \rho_P \ (\rho u)_P \ (\rho v)_P \ e_P]^T\)

- \(p\): input parameters
 - e.g. shape parameters, PDE coefficients

- \(u(t)\): forcing inputs
 - e.g. flow disturbances, wing motion

- \(y(t)\): outputs
 - e.g. flow characteristic, lift force
Projection-Based State-Reduced Models

- Approximate state by a linear combination of basis vectors
 \[\mathbf{x} \approx \sum_{i=1}^{n} \mathbf{V}_i \mathbf{x}_{r_i} \]

 - Define right basis, \(\mathbf{V} \)
 \[\begin{bmatrix} \mathbf{V} \\ \mathbf{x}_{r} \end{bmatrix} \]
 \[\begin{bmatrix} \mathbf{N} \times 1 \\ \mathbf{1} \end{bmatrix} \]

- Project equations onto reduced-order subspace
 - Define left basis, \(\mathbf{W} \)
 \[\mathbf{W}^T \mathbf{V} = \mathbf{I} \]
 (Often use \(\mathbf{W} = \mathbf{V} \))
Projection-Based State-Reduced Models

\[\begin{align*}
\dot{x} &= A(p)x + B(p)u \\
y &= C(p)x
\end{align*} \]

\[\begin{align*}
x &\approx Vx_r \\
r &= V\dot{x}_r - AVx_r - Bu \\
y_r &= CVx_r
\end{align*} \]

\[W^T r = 0 \]

\[\begin{align*}
A_r(p) &= W^T A(p)V \\
B_r(p) &= W^T B(p) \\
C_r(p) &= C(p)V \\
\dot{x}_r &= A_r(p)x_r + B_r(p)u \\
y_r &= C_r(p)x_r
\end{align*} \]

\[x \in \mathbb{R}^N: \text{ state vector} \quad x_r \in \mathbb{R}^n: \text{ reduced state vector} \]

\[p \in \mathbb{R}^{N_p}: \text{ parameter vector} \quad V \in \mathbb{R}^{N \times n}: \text{ reduced basis} \]

\[u \in \mathbb{R}^{N_i}: \text{ input vector} \quad V \in \mathbb{R}^{N \times n}: \text{ reduced basis} \]

\[y \in \mathbb{R}^{N_o}: \text{ output vector} \]
Reducing the Parameter Space

- Even with reduction in state, parameter dimension may be too large for optimization, control, statistical sampling
 - Distributed parameters may be represented with thousands of dof
- Define a parameter basis and approximate the parameter:

\[p \approx P p_r \]

\[
\begin{align*}
\mathbf{x} & \in \mathbb{R}^N: \text{state vector} \\
\mathbf{p} & \in \mathbb{R}^{N_p}: \text{parameter vector} \\
\mathbf{u} & \in \mathbb{R}^{N_i}: \text{input vector} \\
\mathbf{y} & \in \mathbb{R}^{N_o}: \text{output vector} \\
\mathbf{x}_r & \in \mathbb{R}^n: \text{reduced state vector} \\
\mathbf{p}_r & \in \mathbb{R}^{n_p}: \text{reduced parameter vector} \\
\mathbf{V} & \in \mathbb{R}^{N \times n}: \text{reduced state basis} \\
\mathbf{P} & \in \mathbb{R}^{N_p \times n_p}: \text{reduced parameter basis}
\end{align*}
\]
Reducing the Parameter Space

\(x \in \mathbb{R}^N\): state vector \\
\(p \in \mathbb{R}^{N_p}\): parameter vector \\
\(u \in \mathbb{R}^{N_i}\): input vector \\
\(y \in \mathbb{R}^{N_o}\): output vector \\
\(x_r \in \mathbb{R}^n\): reduced state vector \\
\(p_r \in \mathbb{R}^{n_p}\): reduced parameter vector \\
\(V \in \mathbb{R}^{N \times n}\): reduced state basis \\
\(P \in \mathbb{R}^{N_p \times n_p}\): reduced parameter basis

\[\begin{align*}
\dot{x} &= A x(p) + B u(p) \\
y &= C x(p)
\end{align*}\]

\[\begin{align*}
x &\approx V x_r \\
p &\approx P p_r
\end{align*}\]

\[\begin{align*}
\dot{x}_r &= A_r(p_r) x_r + B_r(p_r) u \\
y_r &= C_r(p_r) x_r
\end{align*}\]

\[\begin{align*}
A_r(p_r) &= W^T A(P p_r) V, \\
B_r(p_r) &= W^T B(P p_r), \\
C_r(p_r) &= C(P p_r) V
\end{align*}\]
State Basis Example:
Proper Orthogonal Decomposition (POD)

(aka Karhunen-Loève expansions, Principal Components Analysis,
Empirical Orthogonal Eigenfunctions, …)

• Consider K snapshots $x_1, x_2, \ldots, x_K \in \mathcal{R}^N$
 (solutions at selected times or parameter values)

• Form the snapshot matrix $X = [x_1 \ x_2 \ \ldots \ \ x_K]$

• Choose the n basis vectors $V = [V_1 \ V_2 \ \cdots \ V_n]$ to be left singular vectors of the snapshot matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq \sigma_{n+1} \geq \cdots \geq \sigma_K$

• This is the optimal projection in a least squares sense:

$$\min_V \sum_{i=1}^{K} ||x_i - VV^T x_i||^2_2 = \sum_{i=n+1}^{K} \sigma_i^2$$
Parameter and State Reduction

• How to determine the parameter basis \mathbf{P}?
 – While sampling states to form the state basis \mathbf{V}, also collect “snapshots” of \mathbf{p}
 – Apply POD/SVD to compute the parameter basis \mathbf{P}

• Choosing the right snapshots is critical
 – For both the state and the parameter basis
 – Especially for model reduction application to design, optimization, inverse problems
 – Especially challenging when parameter dimension is large

• Greedy algorithm
 (Veroy, Prud’homme, Rovas & Patera, 2003; Grepl & Patera, 2005)
 – Adaptive heuristic to choose “good” sample points for a state basis
 – Sample the location in parameter space of maximum error between full and reduced-order model outputs
Sampling: Model-Constrained Optimization

- Formulate the greedy task of finding the parameter sample points as a model-constrained optimization problem
 - Adaptive sampling (sequence of optimization problems)

- Sampling is driven by error, which includes effects of state and parameter approximations

- Linear problem with initial-condition parameters: explicit solution via eigenvalue problem
 \[\begin{align*}
 \dot{x} &= A(p)x + B(p)u \\
 y &= C(p)x \\
 \dot{x}_r &= V^T A(Pp)Vx_r + V^T B(Pp)u \\
 y_r &= C(Pp)Vx_r \\
 p_l &\leq p \leq p_u
 \end{align*} \]

- Nonlinear parametric dependence: solve with tailored PDE-constrained optimization algorithm
 (Bui-Thanh, Willcox, Ghattas; SIAM J. Sci. Comp., 2008)

- Simultaneous reduction in state and parameter: “regularized greedy formulation” reflects prior information
Parametric Inputs (Steady): Thermal Fin Design
Choosing the right snapshots is key

- Model-constrained optimization sampling approach for parametric input spaces
 - Application to thermal fin design problem with 21 parameter input space
 - Finite element model: 17,899 states
 - Reduced model has 3-4 orders magnitude lower error compared to Latin hypercube, log-random, and other sampling methods

![Graph showing comparison of maximum output error vs. number of reduced basis vectors for different sampling methods. The graph includes lines for Model-constrained, LHS, LogRandom, CVT, and URandom, with Model-constrained having the lowest error.]
Model Reduction for Probabilistic Analysis: Blade Shape Variations

\[\frac{\partial w}{\partial t} + \nabla \cdot \mathcal{F}(w) = 0 \]

\[w = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix}, \quad \mathcal{F}^x = \begin{pmatrix} \rho u \\ \rho u^2 + P \\ \rho u v \\ \rho u H \end{pmatrix}, \quad \mathcal{F}^y = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + P \\ \rho v H \end{pmatrix} \]

- Subsonic rotor blade, Mach 0.113
- 2D linearized Euler equations, DG CFD model
- 51,504 states per blade passage
- Small variations in blade structural parameters and blade shape can have large impact on blade row performance
- Inputs: blade plunging motion, blade shape parameters
- Output: blade lift forces

Goal: create a reduced-order model that captures input/output mapping between plunging motion input and lift force output over a range of blade geometries.
Model Reduction for Probabilistic Analysis: Blade Shape Variations

- Forced response of two blade passages to sinusoidal plunging motion (180° interblade phase angle)
- Full model: 103,008 states
- Reduced model: 201 states
- Offline cost ~3 hours
Model Reduction for Probabilistic Analysis: Blade Shape Variations

- Parameterized reduced model used to evaluate unsteady response over a range of geometry variations (same 10,000 random samples in each case)

- Full model: 103,008 states; ~3 mins per geometry
- Reduced model: 201 states, <0.1 secs per geometry

<table>
<thead>
<tr>
<th></th>
<th>Full CFD</th>
<th>Reduced CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model size</td>
<td>103,008</td>
<td>201</td>
</tr>
<tr>
<td>Number of nonzeros</td>
<td>2,846,056</td>
<td>40,401</td>
</tr>
<tr>
<td>Offline cost</td>
<td>-</td>
<td>2.8 hours</td>
</tr>
<tr>
<td>Online cost</td>
<td>501.1 hours</td>
<td>0.21 hours</td>
</tr>
<tr>
<td>Blade 1 WPC mean</td>
<td>-1.8572</td>
<td>-1.8573</td>
</tr>
<tr>
<td>Blade 1 WPC variance</td>
<td>2.687e-4</td>
<td>2.6819e-4</td>
</tr>
<tr>
<td>Blade 2 WPC mean</td>
<td>-1.8581</td>
<td>-1.8580</td>
</tr>
<tr>
<td>Blade 2 WPC variance</td>
<td>2.797e-4</td>
<td>2.799e-4</td>
</tr>
</tbody>
</table>
Model Reduction of Nonlinear Systems

\[
\begin{align*}
\dot{x} &= f(x, u) \\
y &= g(x)
\end{align*}
\]

\[
\begin{align*}
x &= v_{x_r} \\
\dot{x}_r &= V^T f(Vx_r, u) \\
y_r &= g(Vx_r)
\end{align*}
\]

- Nonlinear systems: standard projection approach leads to a model that is low order but still expensive to solve.

- The cost of evaluating the nonlinear term

\[
f_r(x_r, u) = V^T f(Vx_r, u)
\]

still depends on \(N \), the size of the large-scale system.

- Can achieve efficient nonlinear reduced models via interpolation: Empirical Interpolation Method

\[
\dot{x}_r = A_r x_r + E_r f_r(D_r x_r, u)
\]
• Goal: Simulation of few-million neuron system. State-of-the-art: 10K neuron system.

• Approach: construct a reduced-order model that captures input/output dynamics of a neuron type.

Math. Model: Hodgkin-Huxly Nonlinear PDE

Voltage v_j in and synaptic input $I_{j,\text{syn}}$ into branch j

$$
\frac{a_j}{2R_t} \partial_{xx} v_j = C_m \partial_t v_j + G_N a m^3 h_j (v_j - E_Na) + G_K n^4_j (v_j - E_K) + G_l (v_j - E_l) + I_{j,\text{syn}}
$$

Kinetics of potassium (n) and sodium (h, m) channels

$$
\partial_t m_j = \alpha_m(v_j)(1 - m_j) - \beta_m(v_j)m_j,
\partial_t h_j = \alpha_h(v_j)(1 - h_j) - \beta_h(v_j)h_j,
\partial_t n_j = \alpha_n(v_j)(1 - n_j) - \beta_n(v_j)n_j.
$$
Model Reduction of Hodgkin-Huxley Fiber

- Segment of neuron with three inputs. Observe voltage at node 10.
- Highly nonlinear system.

- Apply ROM (POD) and EIM.
- Full system: 1198 DOF
- Reduced system: 30 DOF
- Simulation speed up: up to 100
- Excellent agreement between full and reduced order model.

Forked neuron: voltages at node 10
Model Reduction of Hodgkin-Huxley Fiber

Voltage Profile at Various Times at all Observation Nodes (Full vs. ROM)
Combustion Chamber Model

Parameter: reaction parameters \((p)\)
State: fuel concentration \((x)\)
Output: fuel concentration \((y)\)
Input: source \((u)\)

Advection-diffusion-reaction problem:
\[
\dot{w} + \mathbf{U} \cdot \nabla w - \nabla (\kappa \nabla w) + s(w; \mu) = f
\]
\[
s(w; \mu) = Aw(c - w) e^{ -\frac{E}{d-w}}
\]
\[
w = w_D \quad \text{on} \quad \Gamma_{in}
\]
\[
\nabla w \cdot \hat{n} = 0 \quad \text{on} \quad \partial \Omega \setminus \Gamma_{in}
\]

\[
\dot{x} = f(x, p, u)
\]
\[
y = Cx
\]
POD-EIM Model Reduction for Combustor

3D FEM solution: $N=8.5M$, $M=20M$. One forward solve: 13h CPU time.

DEIM ROM: $n=40$, $m=50$. One forward solve: < 0.1s CPU time.
Bayesian Uncertainty Quantification of Combustor Inverse Problem (2D)

FEM: 10,000 samples, ~110 hours
ROM: 10,000 samples, ~100 seconds

Marginal posterior histograms for Arrhenius reaction parameters computed using Markov chain Monte Carlo (MCMC).

95% credible intervals for mean estimates of Arrhenius parameters.
Bayesian Uncertainty Quantification of Combustor Inverse Problem (3D)

- Reduced model with \(n=40 \).
- MCMC with 50,000 samples in the Markov chain.

Marginal posterior histograms for Arrhenius reaction parameters.

Iso-probability contours of posterior, generated by sampling the parameter space with reduced model on a \(256^2 \) grid.
How to achieve optimization under uncertainty for complex systems?

• Potential of surrogate models shown in forward propagation of uncertainty, statistical inverse problems (to some extent)

• In an optimization context there are many questions:
 – How to construct the surrogates
 – How to adapt the surrogates as the optimization proceeds
 – How to ensure convergence

• Draw on two ideas from deterministic MDO
 – Multifidelity optimization (exploiting coarse models)
 – Decomposition (exploiting problem structure)
Multifidelity Optimization

\[\min_x f(x) \quad \text{s.t.} \quad g(x) \leq 0 \quad h(x) = 0 \]

- Reduced complexity of \(f(\cdot), g(\cdot), h(\cdot) \)
 - Simplified physics
 - Model reduction
 - Other surrogate models (data fit, multigrid, etc.)

- Reduced complexity of \(x \)
 - May need mapping between \(x \) and \(\hat{x} \)

Figure adapted from Choi et al. 2004
Multifidelity Optimization: Key Components

\[
\begin{align*}
\min_{x} & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq 0 \\
& \quad h(x) = 0
\end{align*}
\]

\[
\begin{align*}
\min_{\hat{x}} & \quad \hat{f}^k(\hat{x}) \\
\text{s.t.} & \quad \hat{g}^k(\hat{x}) \leq 0 \\
& \quad \hat{h}^k(\hat{x}) = 0 \\
& \quad \|\hat{x} - \hat{x}^*_c\|_\infty \leq \Delta^k
\end{align*}
\]

- Surrogate models that are updated as the optimization proceeds
- A mapping method to connect high- and low-fidelity design descriptions
- A model management framework (e.g. trust regions) to ensure convergence
Multifidelity Optimization Methods
State-of-the-art

• Bayesian model calibration methods
 – Calibrate surrogate models globally (or over a large portion of the design space)
 – Reuse information collected about the high-fidelity function at each iteration

• Trust-region methods
 – Provably convergent with appropriate conditions on the surrogate model

• Hybrid methods
 – Including methods that do not require derivatives of the high-fidelity functions
Multifidelity optimization of supersonic airfoil geometry

Biconvex airfoil in supersonic flow
- $\alpha = 2^{\circ}, M_\infty = 1.5$
- $(t/c) = 5%$

<table>
<thead>
<tr>
<th></th>
<th>Linear Panels</th>
<th>Shock Expansion</th>
<th>Cart3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_L</td>
<td>0.1244</td>
<td>0.1278</td>
<td>0.12498</td>
</tr>
<tr>
<td>% Difference</td>
<td>0.46%</td>
<td>2.26%</td>
<td>0.00%</td>
</tr>
<tr>
<td>C_D</td>
<td>0.0164</td>
<td>0.0167</td>
<td>0.01666</td>
</tr>
<tr>
<td>% Difference</td>
<td>1.56%</td>
<td>0.24%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Multifidelity objectives and constraint

- Hybrid multifidelity approach combining derivative-free trust-region method (Conn et al., 2009), radial basis function model calibration (Wild and Shoemaker, 2009), multifidelity Bayesian calibration extension (March and Willcox, 2010)

- Max Lift/Drag (multifidelity)
- subject to: Drag ≤ 0.01 (multifidelity), t/c ≥ 5% and positive thickness

<table>
<thead>
<tr>
<th></th>
<th>High-Fidelity</th>
<th>Low-Fidelity</th>
<th>SQP</th>
<th>First-Order TR</th>
<th>RBF, ξ=2</th>
<th>RBF, ξ=ξ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Cart3D</td>
<td>Panel Method</td>
<td>1168*</td>
<td>97 (-92%)</td>
<td>104 (-91%)</td>
<td>112 (-90%)</td>
</tr>
<tr>
<td>Constraint</td>
<td>Cart3D</td>
<td>Panel Method</td>
<td>2335*</td>
<td>97 (-96%)</td>
<td>115 (-95%)</td>
<td>128 (-94%)</td>
</tr>
</tbody>
</table>

*Cart3D optimization sensitive to scaling and finite differences
Complex systems often comprise coupled multidisciplinary models

- In deterministic optimization, there are often advantages to decomposing the problem.
- For optimization under uncertainty, decomposition will almost certainly be essential.
Multidisciplinary Feasible (MDF)

Iteration loop to resolve coupling variables at each optimization cycle

- Aircraft Module
 - Aircraft variables
 - Mission performance
 - Geometry & size, weights
 - Max gust load

- Gust Module
 - Gust variables
 - Controller variables
 - Max actuator deflection & rate

Optimizer

- Aircraft variables
- Mission performance
- Controller variables
- Max gust load
- Geometry & size, weights
Individual Discipline Feasible (IDF)

Additional design variables:
- target max gust load
- target geometry & size
- target weights

Additional constraints:
- max gust load = target
- geometry & size = target
- weights = target

Diagram:
- Aircraft Module
- Mission performance
- max actuator deflection & rate
- Gust Module
- Target geometry & size
- Target weights
Conclusions

- Surrogate models play an essential role in reducing the cost of analyses for use in uncertainty quantification and optimization.

- Achieving optimization under uncertainty of complex systems will require
 - Approaches that exploit problem structure
 - Approaches that exploit a hierarchy of models and hierarchy of UQ methods

- Problem formulation is an essential but often poorly understood aspect in engineering design under uncertainty.